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Abstract. The independence of the axioms of hypergroup over
the group is proven. The proof is composed of two parts. In the
first part, the independence of the axioms (P3), (A1), (A3), (A5)
in the system of axioms of hypergroup over the group is shown
by fixing the structural mappings Φ and Ξ. In the same way,
in the second part of the proof, the independence of the axioms
(P1), (P2), (A2), (A4) is shown by fixing Ψ and Λ.
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Introduction

The concept of hypergroup over the group naturally arises when one tries to
extend the notion of a quotient group for the case of an arbitrary subgroup.
This concept was firstly introduced in [1] and developed in [2] and [3].

Let us emphasize that R. Lal has introduced the concept of c-groupoids
[5], which coincides with a special case of the hypergroups over the group,
namely the unitary hypergroups over the group [4]. The concept of c-
groupoids has found its applications in the characterization of Tarski mon-
sters [6], in research on right transversals in topological groups [7], and other
problems. The concept of hypergroups over the group has arisen indepen-
dently from the notion of c-groupoids.

Also, let us mention that the term “hypergroup” is already used for
another concept. Here this concept of hypergroup is not considered, so
sometimes we will call the hypergroups over the group shortly hypergroups.
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The further development of hypergroups over the group was done on the
basis of the axiomatic system introduced in [3]. This axiomatic system is
consistent, since models based on the group theory are constructed for it
(see [3]).

In the present paper, the independence of this axiomatic system is
proved. We use the following well-known principle. In a consistent ax-
iomatic system, to show the independence of an axiom, it is sufficient to
construct a model satisfying all the axioms except the one under consid-
eration. Following this principle, we present eight models for showing the
independence of each axiom from others.

In summary, the main result of this paper is the following. A hypergroup
over the group is defined as a triple (M,H,Ω), where M is a set, H is a group
and Ω = (Φ,Ψ,Ξ,Λ) is a system of mappings (see the first section of this
paper) which satisfies the conditions (P1), (P2), (P3), (P4).

Theorem 1 (The main result) The axiomatic system of hyper-
group over the group, consisted of (P1), (P2), (P3) and the identities
(A1), (A2), (A3), (A4), (A5) making up (P4), is independent.

1 Definition of the hypergroup over the

group

It is well known that for a given group G and its arbitrary normal subgroup
H, the quotient group is defined in two steps. First, for any subgroup S,
the right S\G and the left G/S quotient sets are defined. Then, as H is
a normal subgroup, we get H\G = G/H, and on this set, a well-defined
binary group operation is induced from the group operation of G.

In general, when the subgroup H is not necessarily normal, the left and
the right quotient sets H\G and G/H are not the same. Moreover, the
above-mentioned binary operation induced from the group operation of G
is not well-defined. In this case a (right) transversal M of the subgroup H
in G is considered, i.e., a subset M ⊂ G such that |M ∩ Ha| = 1 for any
a ∈ G. It is proven (see [8]) that the following statements are equivalent.

� M is a (right) transversal of the subgroup H in G;

� M is a (right) complementary set of the subgroup H in G, i.e., for any
x ∈ G, there are unique elements α ∈ H, a ∈M such that x = α · a.

Thus, if M is a (right) transversal of the subgroup H in G, for any
elements α ∈ H and a, b ∈ M , the elements α · a, a · b ∈ G are uniquely
represented as products of an element from H and an element from M :

a · α = aα · aα, a · b = (a, b) · [a, b],
where aα, (a, b) ∈ H and aα, [a, b] ∈M .
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The concept of the hypergroup over the group arises when considering
the triple (G,H,M) and the mappings1

(Φ) Φ : M ×H →M, Φ(a, α) = aα,

(Ψ) Ψ : M ×H → H, Ψ(a, α) = aα,

(Ξ) Ξ : M ×M →M, Ξ(a, b) = [a, b],

(Λ) Λ : M ×M → H, Λ(a, b) = (a, b).

It is proven ([3], Theorem 2) that the following conditions are satisfied:

(P1) The mapping Ξ is a binary operation on M such that

(i) any equation [x, a] = b with elements a, b ∈ M has a unique
solution in M ;

(ii) (M,Ξ) has a left neutral element o, i.e., [o, a] = a for any a ∈M .

(P2) The mapping Φ is an action of the group H on the set M , i.e.,

(i) (aα)β = aα·β for any elements α, β ∈ H and for every a ∈M ;

(ii) aε = a for each a ∈M , where ε is the neutral element of H.

(P3) For any α ∈ H, there is an element β ∈ H such that α = oβ.

(P4) The following identities (A1)− (A5) hold:

(A1) a(α · β) = aα · aαβ,

(A2) [a, b]α = [a
bα, bα],

(A3) (a, b) · [a,b]α = a(bα) · (abα, bα),

(A4) [[a, b], c] = [a(b,c), [b, c]],

(A5) (a, b) · ([a, b], c) = a(b, c) · (a(b,c), [b, c]).

Now let us define the (right) hypergroup over the group. For an arbitrary
set M , a group H and a system of mappings Ω = (Φ,Ψ,Ξ,Λ), we call
the triple (M,H,Ω) a (right) hypergroup over the group if the conditions
(P1) − (P4) are satisfied. Such a hypergroup over the group is denoted by
MH .

In this paper, we will also use the notion of triviality of the structural
mappings Φ,Ψ,Ξ,Λ. The mappings Φ,Ψ,Ξ,Λ are called trivial if, respec-
tively,

(TrΦ) Φ(a, α) = a for any a ∈M,α ∈ H,

(TrΨ) Ψ(a, α) = α for any a ∈M,α ∈ H,
1Further in this paper, we will often use these notations for the mappings Φ,Ψ,Ξ,Λ.
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(TrΞ) Ξ(a, b) = o for any a, b ∈M and, consequently, M = {o},

(TrΛ) Λ(a, b) = ε for any a, b ∈M .

Remark 1 Note that in [4], the triviality of the mapping Λ is defined as
Λ(a, b) = Λ(o, o) (for any a, b ∈ M). In this paper, we will need only its
special case when Λ(o, o) = ε. Thus there will be no misconceptions if here
we call Λ trivial in only this special case.

2 The independence of the axioms (P3), (A1),

(A3) and (A5)

In this section, by fixing the mappings Φ,Ξ and varying the set M , the group
H and the mappings Ψ,Λ, we construct models showing the independence
(in the axiomatic system of hypergroup over the group) of the axioms (P3),
(A1), (A3) and (A5).

Consider an arbitrary set M and a group H with the neutral element
ε. Let the mapping Φ : M × H → M be trivial (TrΦ) and fix the binary
operation Ξ : M ×M → M such that (M,Ξ) is a group with the neutral
element o ∈M .

It turns out that the fixation of Φ and Ξ indicated above is sufficient for
some axioms to be satisfied. More precisely, the following lemma holds.

Lemma 1 For an arbitrary set M , a group H and mappings Φ,Ψ,Ξ,Λ, if
(M,Ξ) is a group and Φ is trivial, the conditions (P1), (P2), (A2), (A4) are
satisfied. Moreover, the identities (A1), (A3), (A5) turn into the identities:

(A1)′ a(α · β) = aα · aβ,

(A3)′ (a, b) · [a,b]α = a(bα) · (a, b),

(A5)′ (a, b) · ([a, b], c) = a(b, c) · (a, [b, c]),

respectively, for any a, b, c ∈M,α, β ∈ H.

Thus, according to Lemma 1, for the fixed mappings Φ,Ξ, the axioms
(P1), (P2), (A2), (A4) are satisfied. Hence, for the independence of any ax-
iom X ∈ {(P3), (A1), (A3), (A5)} it is sufficient to choose a set M , a group
H and mappings Ψ,Λ such that all the axioms (P3), (A1), (A3), (A5) are
satisfied except the axiom X.

For this, let us consider the set TH composed of all mappings H → H and
the function composition as a binary operation on it (the full transformation
semigroup of H). Let Ψ be the following mapping:

Ψ : M → TH , Ψ(a) = Ψa, where Ψa : H → H, α 7→ aα.
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Theorem 2 allows us to describe for each axiom (P3), (A1), (A3), (A5) a
family of models showing the independence of that axiom.

Theorem 2 Let M be an arbitrary set, H be a group, Ω = (Φ,Ψ,Ξ,Λ) be
a system of mappings such that Φ is trivial and (M,Ξ) is a group. In that
case,

1) if Λ is trivial, then for the fulfillment of the axioms (A1), (A3), (A5)
and non-fulfillment of the axiom (P3), it is necessary and sufficient
that Ψ be an antihomomorphism and Ψ(a) be a non-surjective homo-
morphism for any a ∈M ;

2) if Λ is trivial and H is a finite group, then for the fulfillment of the
axioms (P3), (A3), (A5) and non-fulfillment of the axiom (A1), it is
necessary and sufficient that Ψ be an antihomomorphism, Ψ(a) be such
a bijective function that Ψ(a)(ε) = ε for any a ∈ M , and Ψ(a) be a
non-homomorphic function for an element a ∈M ;

3) if Λ is trivial and H is a finite group, then for the fulfillment of the
axioms (P3), (A1), (A5) and non-fulfillment of the axiom (A3), it is
necessary and sufficient that Ψ be a non-antihomomorphism, Ψ(a) be
a homomorphism for any a ∈M , and Ψ(o) be a bijection;

4) if Ψ is trivial then for the fulfillment of the axioms (P3), (A1), (A3) and
non-fulfillment of the axiom (A5), it is necessary and sufficient that
elements Λ(a, b) be in the center Z(H) of the group H for any a, b ∈M ,
and the following identity not be satisfied for some a, b, c ∈M :

(A5)′′ (a, b) · ([a, b], c) = (b, c) · (a, [b, c]).

Proof. Since in the points 1) − 3) of the theorem, the triviality of Λ
is present as a condition, let us first assume, that Λ is trivial. Then
(P3), (A1), (A3), (A5) turn, respectively, into the following conditions:

(ΨP3) Ψ(o) : H → H is a surjective mapping;

(ΨA1) Ψ(a) : H → H is a homomorphism for any a ∈M ;

(ΨA3) Ψ : M → TH is an antihomomorphism, i.e., Ψ([a, b]) = Ψ(b) ◦ Ψ(a)
for any a, b ∈M ;

(ΨA5) Ψ(a)(ε) = ε for any a ∈M .

Let us prove the points 1)− 3) of Theorem 2.
1) Suppose the conditions (A1), (A3), (A5) be satisfied and (P3) not.

Then, according to (ΨA3) and (ΨA1), Ψ is an antihomomorphism and Ψ(a)
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is a homomorphism for any a ∈ M . It remains to show that Ψ(a) is not
surjective for any a ∈ M . Indeed, if for an element a ∈ M the mapping
Ψ(a) is surjective, then from (ΨA3) and the fact that (M,Ξ) is a group, we
get Ψ(a) = Ψ([o, a]) = Ψ(a) ◦ Ψ(o), which means Ψ(a) ◦ Ψ(o) is surjective,
hence, Ψ(o) is also surjective. On the other hand, (P3) is not satisfied.

2) Let the axioms (P3), (A3), (A5) be satisfied and (A1) not. Then,
according to (ΨA3) and (ΨA5), Ψ is an antihomomorphism and for any
a ∈ M , the mapping Ψ(a) : H → H fixes ε. Since the condition (ΨA1)
is not satisfied, there exists an element a ∈ M such that Ψ(a) is not a
homomorphism. It remains to show that Ψ(a) is bijective for any a ∈ M .
Indeed, notice that from (ΨP3) and the finiteness of H, it follows that Ψ(o)
is bijective. On the other hand, due to (ΨA3) we have

Ψ(o) = Ψ([o, o]) = Ψ(o) ◦Ψ(o).

Hence,

1H = Ψ(o) = Ψ([a, a′]) = Ψ(a′) ◦Ψ(a),

where a′ is the inverse element of a in the group (M,Ξ) and 1H is the identity
mapping of the set H (it can be shown by the same way, that Ψ(a′) is also the
right inverse element of Ψ(a)). Therefore, Ψ(a) is bijective for any a ∈M .

3) Since H is a finite group, the surjectivity of Ψ(o) implies its bijectivity.
Now let us prove the point 4).
4) Since Ψ is trivial, we get that (P3) is satisfied and (A1) becomes a

tautology. Notice that (A3) turns into the following identity:

(a, b) · α = α · (a, b)

for any α ∈ H, a, b ∈ M , which is equivalent to the condition Λ(M ×M) ⊂
Z(H). It remains to notice that (A5) turns into (A5)′′. �

Thus, Theorem 2 gives a possibility to construct models showing the in-
dependence of each of (P3), (A1), (A3), (A5) axioms. Indeed, for construct-
ing the models showing the independence of the axioms (P3), (A1), (A3),
it is sufficient to fix the mapping Λ as trivial and choose the mapping
Ψ : M → TH in a suitable way. For constructing a model showing the
independence of the axiom (A5), it is sufficient to fix the mapping Ψ as
trivial and choose the mapping Λ : M ×M → H.

The model showing the independence of (P3).
Let us fix the mapping Λ as trivial. Then, according to the point 1)

of Theorem 2, for constructing the model showing the independence of the
axiom (P3), it is sufficient to choose a set M , a group H and an antihomo-
morphism Ψ : M → TH such that Ψ(a) be a non-surjective homomorphism
for any a ∈M .
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Let M be an arbitrary set and H be an arbitrary non-trivial group.
Consider the mapping f : H → H, f(α) = ε for any α ∈ H, and take

Ψ : M → TH , Ψ(a) = f for any a ∈M.

The model showing the independence of (A1).
Let us fix the mapping Λ as trivial. Then, according to the point 2)

of Theorem 2, in order to show the independence of the axiom (A1), it is
sufficient to choose a set M , a finite group H and an antihomomorphism
Ψ : M → TH such that Ψ(a) be a bijection, Ψ(a)(ε) = ε for any a ∈M and
there exists an element a ∈M such that Ψ(a) is not a homomorphism.

It is not difficult to see that M must have at least two elements. Take
M = {o, a} and let o be the neutral element of the group (M,Ξ). Also, using
the antihomomorphity of Ψ and the bijectivity of Ψ(o), we get Ψ(o) = 1H .
On the other hand, Ψ(a) can not be a homomorphism, must be a bijection
and must fix the neutral element ε of the group H. If |H| ≤ 3, there is no
such mapping Ψ(a) since in this case all bijections fixing the element ε are
homomorphisms.

Consider the cyclic group of order four H = {ε, α, α2, α3} and the fol-
lowing mapping:

f : H → H, f(ε) = ε, f(α) = α2, f(α2) = α, f(α3) = α3.

It remains to take Ψ(a) = f and check that the obtained mapping Ψ : M →
TH is an antihomomorphism.

The model showing the independence of (A3).
Let us fix the mapping Λ as trivial. Then, according to the point 3) of

Theorem 2, for showing the independence of the axiom (A3), it is sufficient
to choose a set M , a finite group H and a mapping Ψ : M → TH such that
Ψ(a) be a homomorphism for any a ∈M , Ψ(o) be a bijection and Ψ not be
an antihomomorphism.

Let M be an arbitrary set, H be an arbitrary non-trivial finite group and
f : H → H be a non-trivial automorphism. It remains to take Ψ(a) = f for
any a ∈M .

The model showing the independence of (A5).
Let us fix the mapping Ψ as trivial. Then, according to the point 4) of

Theorem 2, for showing the independence of the axiom (A5), it is sufficient
to choose a set M , a group H and a mapping Λ such that Λ(M×M) ⊂ Z(H)
and (A5)′′ is not satisfied for some elements a, b, c ∈M .

For (A5)′′ to be not satisfied, we must choose H and M with at least two
elements. Consider the cyclic group of the second order H = {ε, α} and the
following mapping:

Λ : M ×M → H, Λ(o, o) = ε, Λ(a, b) = α

for any a, b ∈ M such that a 6= o or b 6= o. Then Λ(M ×M) = H = Z(H)
and (A5)′′ does not hold for a = b = o, c 6= o.
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3 The independence of the axioms (P1), (P2),

(A2) and (A4)

For showing the independence of the axioms (P1), (P2), (A2), (A4), consider
an arbitrary set M , a group H with the neutral element ε, and fix the
mappings Ψ : M ×H → H and Λ : M ×M → H as trivial.

It turns out that the trivialities of Ψ and Λ are sufficient for some axioms
of the hypergroup to be satisfied. More precisely, the following lemma holds.

Lemma 2 For an arbitrary set M , a group H and mappings Φ,Ψ,Ξ,Λ
where Ψ and Λ are trivial, the axioms2 (P3), (A1), (A3), (A5) are satisfied.
Moreover, the identities (A2) and (A4) turn into the following identities:

� (A2)′ [a, b]α = [aα, bα],

� (A4)′ [[a, b], c] = [aε, [b, c]].

Thus, according to Lemma 2, for showing the independence of each of the
axioms (P1), (P2), (A2), (A4), it is sufficient to choose a set M , a group H
and mappings Φ and Ξ such that (P1), (P2), (A2), (A4) are satisfied except
the axiom under the consideration. For this purpose, consider the full trans-
formation semigroup of M TM = {f : M → M} and define the following
mapping:

Φ : H → TM , Φ(α) = Φα, where Φα : M →M, a 7→ aα.

Theorem 3 Let M be an arbitrary set, H be a group and Ω = (Φ,Ψ,Ξ,Λ)
be a system of mappings such that Ψ and Λ are trivial. In that case,

1) if (M,Ξ) is a group, then for the fulfillment of the axioms
(P1), (A2), (A4) and non-fulfillment of (P2), it is necessary and suffi-
cient that Φ(α) : (M,Ξ)→ (M,Ξ) be a homomorphism for any α ∈ H,
Φ(ε) be the identity mapping of M and Φ not be a homomorphism;

2) if (M,Ξ) is a group, then for the fulfillment of the axioms
(P1), (P2), (A4) and non-fulfillment of the axiom (A2), it is necessary
and sufficient that Φ be a homomorphism, Φ(ε) be the identity mapping
of M and Φ(α) not be a homomorphism for an element α ∈ H;

3) if Φ is trivial, then for the fulfillment of the axioms (P2), (A2), (A4)
and non-fulfillment of the axiom (P1), it is necessary and sufficient
that the binary operation Ξ be associative but (M,Ξ) not be a group;

4) if Φ is trivial and (P1) holds, then for the fulfillment of the axioms
(P2), (A2) and non-fulfillment of the axiom (A4), it is necessary and
sufficient that (M,Ξ) not be a group.

2In order to formulate (P3), there must be an element o ∈M fixed in M . In Lemma
2, we will just fix this element without any assumptions about it.
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Proof. To prove first two points, assume that (M,Ξ) is a group with the
neutral element o. Then the axiom (P1) is satisfied. It is not difficult to see
that (A2) and (A4) are equivalent, respectively, to

(ΞA2) The mapping Φ(α) : (M,Ξ)→ (M,Ξ), a 7→ aα is a group homomor-
phism for any α ∈ H;

(ΞA4) Φ(ε) is the identity mapping of M , i.e., aε = a for any a ∈M .

Note also that (P2)(i) is equivalent to Φ being homomorphic and (P2)(ii)
is the same as (ΞA4). Hence, 1) and 2) hold.

Now assume that Φ is trivial. Then (P2) holds, (A2) turns into a tautol-
ogy and (A4) turns into the assosiativity property of the binary operation
Ξ. On the other hand, it is well known that (M,Ξ) is a group if and only
if the operation Ξ is associative and satisfies the condition (P1). From this
fact and (P2), (A2), the proof of 3) and 4) follows. �

Thus, Theorem 3 gives a possibility to construct models showing the
independence of each of the axioms (P1), (P2), (A2), (A4).

The model showing the independence of (P1). Fix the mapping Φ
as trivial. To satisfy the conditions of the point 3) of Theorem 3, one can
take M = {o, a} and Ξ(x, y) = y for any x, y ∈M .

Remark 2 The following question may arise: are parts (P1)(i) and
(P1)(ii) of the axiom (P1) independent as individual axioms in the hyper-
group axiomatic system? Notice that in order to show the independence of
(P1)(i) and (P1)(ii), it is sufficient to show the independence of the ax-
iomatic system X = {(P1)(i), (P1)(ii), (ASΞ)}, where (ASΞ) is the axiom
of the associativity of the binary operation Ξ. It is well known that X is
equivalent to the axiomatic system of the group theory and is independent.

The model showing the independence of (P2). Let Ξ be such an
operation that (M,Ξ) is a group with the neutral element o.

According to the point 1) of the Theorem 3, M and H need to have at
least two elements. Consider a non-trivial group H, the set M = {o, a} and
the mapping f : M →M , defined by f(x) = o. Take

Φ : H → TM , Φ(ε) = 1M , Φ(α) = f

for any α ∈ H,α 6= ε. Then Φ(α) is a homomorphism for any α ∈ H and Φ
is not a homomorphism, as for any α 6= ε,

Φ(α · α−1) = Φ(ε) = 1M 6= f = f ◦ f = Φ(α) ◦ Φ(α−1).

Remark 3 Here we have shown the independence of (P2) in the case when
(P2)(ii) is satisfied and (P2)(i) is not. It turns out that (P2)(ii) can be
implied from (P2)(i) and the rest of the hypergroup axioms. More precisely,
the following lemma holds.
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Lemma 3 If the conditions (P1), (P2)(i) and (A4) are satisfied, then
(P2)(ii) is also satisfied.

Proof. By taking b = o in (A4) and using (P1)(ii), we get

[[a, o], c] = [a(o,c), [o, c]] = [a(o,c), c].

Hence, according to (P1)(i), we get [a, o] = a(o,c) for any a, c ∈M .
Take c = o and denote θ = (o, o). Then [a, o] = aθ for any a ∈ M . On

the other hand, according to (P2)(i), we have (aθ)ε = aθ·ε = aθ. Therefore
[a, o]ε = [a, o] for any a ∈M . It remains to notice that according to (P1)(i)
for any b ∈ M , there exists a (unique) element a ∈ M such that [a, o] = b.
Hence, bε = b for any b ∈M . �

The model showing the independence of (A2). Here we also con-
sider such a binary operation Ξ that (M,Ξ) is a group with the neutral
element o. According to the point 2) of Theorem 3, M and H need to have
more than one element.

Let us take H and (M,Ξ) isomorphic (in the simplest case the cyclic
group of the second order). Fix an isomorphism f : H → M and consider
the mapping

Φ : H → SM ⊂ TM , Φ(α) = Rf(α),

where Ra ∈ SM is the right translation of the group (M,Ξ) with the element
a ∈M , i.e.,

Ra : M →M, Ra(b) = [b, a].

Since f is a homomorphism and R[a,b] = Ra ◦Rb for any a, b ∈M , it follows
that Φ is also a homomorphism:

Φ(α · β) = Rf(α·β) = R[f(α),f(β)] = Rf(α) ◦Rf(β) = Φ(α) ◦ Φ(β).

It is clear that Φ(ε) = Rf(ε) = Ro = 1M .
It remains to note that the mapping Φ(α) = Rf(α) is not a homomor-

phism for any element α ∈ H,α 6= ε.
The model showing the independence of (A4). Fix the mapping Φ

as trivial. According to the point 4) of Theorem 3, a groupoid (M,Ξ) needs
to have at least three elements. Take M = {o, a, b} and consider Ξ with the
following table:

Ξ o a b
o o a b
a b o a
b a b o

It is not difficult to see that (P1) holds. At the same time, (M,Ξ) is not
a group since Ξ is not associative:

[[a, a], b] = [o, b] = b 6= o = [a, a] = [a, [a, b]].
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