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Abstract

We consider a linear bounded operator in infinite dimensional separable Hilbert space

satisfying some conditions. We prove formulas that can be used to calculate the index of

this operator.
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Let V be a linear bounded operator, acting in an infinite dimensional Hilbert space

H, V ∗— the adjoint operator, kerV and kerV ∗ — their null-spaces, dim(kerV ) and

dim(kerV ∗)— dimensions of corresponding subspaces. The index of the operator V is the

number

indV = dim(kerV )− dim(kerV ∗) , (1)

assuming that these dimensions are finite.

Under some conditions on V we prove some formulas, which can be used to calculate

indV . The conditions on V and the received formulas for indV differ from the known ones

(see [1]).

Lemma 1 Let I be the identity operator and � ∕= 0 be some number. Then

ker (V ∗V ) = kerV, ker (V V ∗) = kerV ∗, (2)

ker (V ∗V−�I)∩ kerV = {0}, ker (V V ∗−�I)∩ kerV ∗= {0}, (3)

V (ker (V ∗V−�I)) = ker (V V ∗−�I), V ∗(ker (V V ∗−�I)) = ker (V ∗V−�I) , (4)

dim(ker (V ∗V−�I)) = dim(ker (V V ∗−�I)) . (5)
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Proof. If x∈ ker (V ∗V ), then (V x, V x) = (V ∗V x, x) = 0. Therefore V x = 0. It follows

that x ∈ kerV and ker (V ∗V )⊂ kerV . From this and from obvious inclusion kerV ⊂
⊂ ker (V ∗V ) we get the first equality of (2). The second equality of (2) can be proved in the

same way. Let x∈ kerV and x ∕= 0. Then V ∗V x−�x=−�x ∕= 0, i. e. x /∈ ker (V ∗V−�I).

This implies the first equality of (3). The second equality of (3) can be proved in the same

way. If y∈ ker (V ∗V−�I), then for z=V y we have V V ∗z−�z=V (V ∗V y−�y) = 0, i. e.

z ∈ ker (V V ∗−�I). Thus, V (ker (V ∗V−�I)) ⊂ ker (V V ∗−�I). Let x∈ ker (V V ∗−�I) and

y= 1
�
V ∗x. Then x=V y and V ∗V y−�y= 1

�
V ∗(V V ∗x−�x) = 0, i. e. y∈ ker (V ∗V−�I)

and x∈V (ker (V ∗V−�I)). Therefore, ker (V V ∗−�I)⊂V (ker (V ∗V−�I)). From these in-

clusions we obtain the first equality of (4). The second equality of (4) can be proved

by similar reasoning. If x∈ ker(V ∗V−�I), then (V x, V y) =�(x, y) for all y∈H, and if

x∈ ker(V V ∗−�I), then (V ∗x, V ∗y) =�(x, y). Hence, using (3) and (4) we obtain that the

operator V transforms any orthogonal non zero system of elements from ker (V ∗V−�I)

into an orthogonal non zero system of elements from ker (V V ∗−�I), and V ∗ performs this

transformation in reversed order. Consequently, (5) holds.

Theorem 1 Let for some number c ∕= 0 operators A=V ∗V − cI and B=V V ∗− cI be com-

pact. Then c> 0, and if the number −c is an eigenvalue of the multiplicity �′ for A and of

the multiplicity �′′ for B (we do not exclude cases �′= 0 or �′′= 0), then

indV = �′ − �′′. (6)

Moreover, if the space H is separable and one of the operators A and B is Hilbert–Schmidt

operator, then the other one is also Hilbert–Schmidt operator, and for their absolute norms

N(A) and N(B) the equality

indV = 1
c2
{N2(A)−N2(B)} (7)

holds. If one of the operators A or B is nuclear, then the other one is also nuclear, and for

their traces spA and spB the equality

indV =
1

c
{spB − spA} =

1

c
sp (B − A) =

1

c
sp (V V ∗ − V ∗V ) (8)

holds.

Proof. The spectrum �(A) of any compact operator A is at most a countable and

bounded set containing zero, and any non-zero element of this set is an eigenvalue of finite

multiplicity. Moreover, if the set �(A) is infinite, then zero is the only limiting point of

�(A). Evidently the spectrum of the operator V ∗V is the set �(V ∗V ) = {�+ c : �∈�(A)}.
Thus c ∈ �(V ∗V ). Since V ∗V is a non-negative self-adjoint operator, then c > 0, and

A is self-adjoint. Similar statements are true for operators B and V V ∗. Particularly

�(V V ∗) = {�+ c : �∈�(B)}. From this and the statement (5) it follows that �(A)∖{−c} =
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= �(B)∖{−c}, and if the number � ∕= −c is an eigenvalue for one of the operators A and

B, then � is an eigenvalue of the same multiplicity for the other one (in the case � ∕= 0 this

multiplicity is finite). Let −c be an eigenvalue of multiplicity �′ for A and of multiplicity �′′

for B. These multiplicities, evidently are finite and

�′ = dim(ker (V ∗V )) , �′′ = dim(ker (V V ∗)) .

From here, by (1) and (2) we get (6) . Put � = �(A)∖{−c, 0} = �(B)∖{−c, 0}. Any number

�∈� is an eigenvalue of the same multiplicity �(�) for both operators A and B. Let A be

a Hilbert–Schmidt operator, i. e. have finite absolute norm N(A) (see [2], pp. 96—103,

208—212). Since the operator A is self-adjoint, then (see [2], p. 209)

N2(A) = c2�′ +
∑
�∈�

�2�(�) .

Hence the absolute norm N(B) of the operator B is also finite and

N2(B) = c2�′′ +
∑
�∈�

�2�(�) .

Thus N2(A)−N2(B) = c2(�′−�′′). From this and relation (6) we get (7).

Let the operator A be nuclear (see [2], p. 208—212), i. e.∑
�∈�
∣�∣�(�) <∞ .

Then the operator B is also nuclear. According to the theorem of V. B. Lidskii (see [2], p.

212; [3], p. 101; [4]), for spA and spB the following equalities

spA = −c�′ +
∑
�∈�

��(�) , spB = −c�′′ +
∑
�∈�

��(�)

are true. Hence spB− spA = c(�′−�′′) and by (6) we get (8).

The theorem is proved.

Consider in the space L2(a, b) with finite or infinite interval (a, b) the following integral

operator K :

(K x)(�) =
b∫
a

K(�, �)x(�) d� , x ∈ L2(a, b), � ∈ (a, b),

where the function K(�, �) satisfies the following condition:

b∫
a

b∫
a

∣K(�, �)∣2 d� d� <∞ .

It is known (see [2], pp. 101—102), that K is Hilbert–Schmidt operator and its absolute

norm N(K) is equal to

N2(K) =
b∫
a

b∫
a

∣K(�, �)∣2 d� d� .
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If the operator K is self-adjoint, then K(�, �) = K(�, �). For the sake of definiteness

we consider the case, where the self-adjoint compact operator K has an infinite set of eigen-

values. Enumerate non-zero eigenvalues �n (n = 1, 2, ⋅ ⋅ ⋅ ) in order of decreasing mod-

uli: ∣�1∣⩾ ∣�2∣⩾ ⋅ ⋅ ⋅ , repeating each eigenvalue according to its multiplicity. Denote by 'n

(n = 1, 2, ⋅ ⋅ ⋅ ) the orthonormal set of corresponding eigenfunctions: K'n =�n'n. It is

known (see [2], pp. 102, 209), that

N2(K) =
∞∑
n=1

�2n ,

K(�, �) =
∞∑
n=1

�n 'n(�)'n(�) , (9)

and the functional series in (9) converges in the space L2((a, b)×(a, b)).

Let the self-adjoint operator K be nuclear. Then

∞∑
n=1

∣�n∣ <∞ , spK =
∞∑
n=1

�n .

We extend each function x∈L2(a, b) onto ℝ= (−∞, ∞), putting x(�) = 0 for � /∈ (a, b).

We extend also the function K(�, �) onto ℝ2, putting K(�, �) = 0 for (�, �) /∈ (a, b)×(a, b).

By (9) we have

K(� + t, �) =
∞∑
n=1

�n 'n(� + t)'n(�) , (10)

and the functional series on variables � and t converges in the space L2(ℝ2). Indeed, this

fact follows from the equality:

∞∫
−∞

∞∫
−∞

∣∣∣ m∑
n=p

�n 'n(� + t)'n(�)
∣∣∣2 dt d� =

∞∫
−∞

∞∫
−∞

∣∣∣ m∑
n=p

�n 'n(�)'n(�)
∣∣∣2 d� d� =

=
m∑
n=p

m∑
j=p

�n�j

∣∣∣ ∞∫
−∞

'n(�)'j(�) d�
∣∣∣2 =

m∑
n=p

�2n

which is valid for any positive integers p < m.

Besides, for any t the functional series on the variable � in (10) converges in the space

L1(ℝ). Indeed, this follows from the estimate:

∞∫
−∞

∣∣∣ m∑
n=p

�n 'n(� + t)'n(�)
∣∣∣ d� ⩽

m∑
n=p

∣�n∣
∞∫
−∞
∣'n(� + t)'n(�) ∣ d� ⩽

⩽
m∑
n=p

∣�n∣
( ∞∫
−∞
∣'n(� + t)∣2 d�

) 1
2
( ∞∫
−∞
∣'n(�)∣2 d�

) 1
2

=

=
m∑
n=p

∣�n∣
∞∫
−∞
∣'n(�)∣2 d� =

m∑
n=p

∣�n∣ .

Define the function K(�, �) by the equality

K(�, �) =
∞∑
n=1

�n ∣'n(�)∣2, (11)
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where the functional series converges in the space L1(ℝ). Evidently,

b∫
a

K(�, �) d� =
∞∑
n=1

�n = spK . (12)

Taking into account (10) and (11), we get

∞∫
−∞
∣K(� + t, �)−K(�, �)∣ d� =

∞∫
−∞

∣∣∣ ∞∑
n=1

�n 'n(�){'n(� + t)− 'n(�)}
∣∣∣ d� ⩽

⩽
∞∑
n=1

∣�n∣
∞∫
−∞
∣'n(�){'n(� + t)− 'n(�)}∣ d� ⩽

⩽
∞∑
n=1

∣�n∣
( ∞∫
−∞
∣'n(�)∣2 d�

) 1
2
( ∞∫
−∞
∣'n(� + t)− 'n(�)∣2 d�

) 1
2

=

=
∞∑
n=1

∣�n∣
( ∞∫
−∞
∣'n(� + t)− 'n(�)∣2 d�

) 1
2
.

But (see [5], pp. 499—502)

lim
t→0

∞∫
−∞
∣'n(� + t)− 'n(�)∣2 d� = 0 ,

( ∞∫
−∞
∣'n(� + t)− 'n(�)∣2 d�

) 1
2
⩽

⩽
( ∞∫
−∞
∣'n(� + t)∣2 d�

) 1
2

+
( ∞∫
−∞
∣'n(�)∣2 d�

) 1
2

= 2 .

Hence

lim
t→0

∞∫
−∞
∣K(� + t, �)−K(�, �)∣ d� = 0 .

Thus for any finite or infinite interval (�, �) the equality

�∫
�

K(�, �) d� = lim
ℎ→0

1
ℎ

ℎ∫
0

�∫
�

K(� + t, �) d� dt (13)

holds. Particularly,

spK = lim
ℎ→0

1
ℎ

ℎ∫
0

b∫
a

K(� + t, �) d� dt . (14)

It is evident that if the function K(�, �) is continuous in the domain (a, b)×(a, b), then

the function K(�, �), defined in the usual sense, satisfies the equality (13) for any finite

interval (�, �). Thus, for the function K(�, �) the equality (12) is also true, as

spK = lim
ℎ→0

1
ℎ

ℎ∫
0

∞∫
−∞

K(� + t, �) d� dt =

= lim
�→−∞

lim
�→∞

(
lim
ℎ→0

1
ℎ

ℎ∫
0

�∫
�

K(� + t, �) d� dt
)
.
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It is clear that above assertions remain true also for the case, where the set of eigenvalues

of K is finite.

Note that in the case of finite interval [a, b] and continuous function K(�, �) the formula

(12) has been obtained also in [3], pp. 115–118.

Corollary 1 Let H =L2(a, b) with finite or infinite interval (a, b), and for some num-

ber c> 0 the operators A=V ∗V− cI and B = V V ∗− cI are integral operators, defined for

x∈L2(a, b) by

(Ax)(�) =
b∫
a

A(�, �)x(�) d� , (B x)(�) =
b∫
a

ℬ(�, �)x(�) d� , � ∈ (a, b) ,

where the functions A(�, �) and ℬ(�, �) satisfy the following conditions:

b∫
a

b∫
a

∣A(�, �)∣2 d� d� <∞ ,
b∫
a

b∫
a

∣ℬ(�, �)∣2 d� d� <∞ .

Then

indV = 1
c2

b∫
a

b∫
a

{∣A(�, �)∣2 − ∣ℬ(�, �)∣2} d� d� .

Besides, if operators A and B are nuclear, then

indV = lim
ℎ→0

1
ℎc

ℎ∫
0

b∫
a

{ℬ(� + t, �)−A(� + t, �)} d� dt

(we suppose that A(�, �) and ℬ(�, �) are equal to zero outside of (a, b)×(a, b)), and if the

functions A(�, �) and ℬ(�, �) are continuous in (a, b)×(a, b), then

indV = 1
c

b∫
a

{ℬ(�, �)−A(�, �)} d� . (15)

As an example of a bounded linear operator V in L2(0, ∞), for which A=V ∗V− I and

B = V V ∗−I are integral operators, we can take the operator, defined for x∈L2(0, ∞) by

(V x)(�) = 1√
2�

m∑
k=0

∞∫
0

x(�)Sk(�) ei!k�� d� , � ∈ (0, ∞) , (16)

where m⩾ 1 is a integer, i is the imaginary unit,

!k = exp( i�k
m

) , k = 0, 1, ⋅ ⋅ ⋅ , m ,

the functions Sk(�) are continuous and bounded on (0, ∞), with Sm(�)≡ 1, ∣S0(�)∣ ≡ 1, the

function S0(�) has continuous and integrable on (0, ∞) derivative S ′0(�), and the limits S0(0)

and S0(∞) of S0(�) at �→ 0 and �→∞ are real numbers.

The adjoint operator V ∗ is defined by the formula

(V ∗ x)(�) = 1√
2�

m∑
k=0

Sk(�)
∞∫
0

x(�) e−i!k�� d� .
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It is easy to see that

(Ax)(�) =
∞∫
0

A(�, �)x(�) d� , (B x)(�) =
∞∫
0

ℬ(�, �)x(�) d� ,

where

A(�, �) = 1
2�i

m∑
k,j=0

Sk(�)Sj(�)

!k�−!j�
,

ℬ(�, �) = 1
2�i(�+ �)

{ ∞∫
0

S ′0(t) e
−it(�+ �) dt −

∞∫
0

S ′0(t) e
it(�+ �) dt

}
+

+ 1
2�

m−1∑
k=1

∞∫
0

{
Sk(t) e

it(!k�+ �) + Sk(t) e
−it(�+!k�)

}
dt+

+ 1
2�

m−1∑
k=1

∞∫
0

{
Sk(t)S0(t) e

it(!k�− �) + Sk(t)S0(t) e
it(�−!k�)

}
dt+

+ 1
2�

m−1∑
k,j=1

∞∫
0

Sk(t)Sj(t) e
it(!j�−!k�) dt .

Under some additional restrictions on the functions Sk, the equality (15) can be proved

and reduced to the form

indV = 1
2�i

∞∫
0

S′
0(�)

S0�)
d� − 1

4
(S0(∞)− S0(0)) .

In the case of m= 1 at least one of the operators V and V ∗ has inverse even if the function

S0 is only measurable and bounded (see [6]).

Operator of the form (16) arise in the investigations of the scattering inverse problem

for differential operator of order 2m, and the equality (15) expresses a relation between

scattering data (see [7]—[9]).
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