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Abstract

We consider a linear bounded operator in infinite dimensional separable Hilbert space
satisfying some conditions. We prove formulas that can be used to calculate the index of

this operator.

Key Words: Operator, index, trace, absolute norm.
Mathematics Subject Classification 2000: Primary 58J20 Secondary 45P05 .

Let V be a linear bounded operator, acting in an infinite dimensional Hilbert space
H, V*— the adjoint operator, ker V' and ker V* — their null-spaces, dim(ker V) and
dim(ker V*)— dimensions of corresponding subspaces. The index of the operator V' is the
number

ind V' = dim(ker V') — dim(ker V) , (1)
assuming that these dimensions are finite.

Under some conditions on V' we prove some formulas, which can be used to calculate

ind V. The conditions on V and the received formulas for ind V' differ from the known ones
(see [1]).

Lemma 1 Let [ be the identity operator and X#0 be some number. Then

ker(V*V) = kerV, ker(VV™) = kerV™, (2)

ker (V*V—=XI) N kerV ={0}, ker(VV*—XI)NkerV*={0}, (3)
V(ker(V*V—=XI))=ker(VV*=XI), V*(ker(VV*—=XI))=ker(V*V—-\I), (4)
dim(ker (V*V—=XI)) = dim(ker (VV*— XI)). (5)
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Proof. If x € ker (V*V), then (Vz, Va)=(V*Vz, )= 0. Therefore Vo = 0. It follows
that = € ker V' and ker (V*V)C ker V. From this and from obvious inclusion ker V' C
C ker (V*V') we get the first equality of . The second equality of can be proved in the
same way. Let z €kerV and x#0. Then V*'Va— A z=—-Ax#0, i. e. z¢ker (V*V—-AI).
This implies the first equality of . The second equality of can be proved in the same
way. If y€ker (V*V— M), then for z=Vy we have VV*2 - Az=V(V*Vy—\y)=0, i. e.
zeker (VV*—AI). Thus, V(ker (V*V—AI)) C ker (VV*—AI). Let x € ker (VV*— AI) and
y=51V*z. Then x=Vy and V*Vy—Ay= s V*(VV*z—Az)=0, i. e. yecker(V*V—-AI)
and z € V(ker (V*V—A\I)). Therefore, ker (VV*— AI) C V(ker (V*V—AI)). From these in-
clusions we obtain the first equality of . The second equality of can be proved
by similar reasoning. If x € ker(V*V—AI), then (Vz, Vy)=A(z, y) for all y€ H, and if
x € ker(VV*—XI), then (V*z, V*y) = A(x, y). Hence, using (3)) and (4)) we obtain that the
operator V' transforms any orthogonal non zero system of elements from ker (V*V— AI)
into an orthogonal non zero system of elements from ker (VV*— AI), and V* performs this

transformation in reversed order. Consequently, holds.

Theorem 1 Let for some number c#0 operators A=V*V —cl and B=VV* —cl be com-
pact. Then ¢ >0, and if the number —c is an eigenvalue of the multiplicity k' for A and of

the multiplicity k" for B (we do not exclude cases k' =0 or k" =0), then
indV = r" — K" (6)

Moreover, if the space H is separable and one of the operators A and B is Hilbert-Schmidt
operator, then the other one is also Hilbert-Schmidt operator, and for their absolute norms
N(A) and N(B) the equality

indV = L{N*(A) — N*(B)} (7)

holds. If one of the operators A or B is nuclear, then the other one is also nuclear, and for

their traces sp A and sp B the equality
, 1 1 1 T
indV = —{spB —spA} = —sp(B—A) = —sp(VV*=V*V) (8)
c c c
holds.

Proof. The spectrum o(A) of any compact operator A is at most a countable and
bounded set containing zero, and any non-zero element of this set is an eigenvalue of finite
multiplicity. Moreover, if the set o(A) is infinite, then zero is the only limiting point of
0(A). Evidently the spectrum of the operator V*V is the set o(V*V) = {A+c: Aea(4)}.
Thus ¢ € o(V*V). Since V*V is a non-negative self-adjoint operator, then ¢ > 0, and
A is self-adjoint. Similar statements are true for operators B and VV*. Particularly
o(VV*) = {A+c: A€o(B)}. From this and the statement (5)) it follows that o(A)\{—c} =
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=o0(B)\{—c}, and if the number A # —c is an eigenvalue for one of the operators A and
B, then ) is an eigenvalue of the same multiplicity for the other one (in the case A # 0 this
multiplicity is finite). Let —c be an eigenvalue of multiplicity «’ for A and of multiplicity x”

for B. These multiplicities, evidently are finite and
k' = dim(ker (V*V)), £” = dim(ker (VV™)).

From here, by (1)) and (2) we get (6) . Put o = o(A)\{—c, 0} = 0(B)\{—c, 0}. Any number
A €0 is an eigenvalue of the same multiplicity x(\) for both operators A and B. Let A be
a Hilbert—Schmidt operator, i. e. have finite absolute norm N(A) (see [2], pp. 96—103,
208—212). Since the operator A is self-adjoint, then (see [2], p. 209)

N2(A) = A+ > XNk(N).

ANEo

Hence the absolute norm N (B) of the operator B is also finite and

N2(B) = k" + > Nk(N).
A€o
Thus N?(A) — N*(B) = (k' — £"). From this and relation (6) we get (7).
Let the operator A be nuclear (see [2], p. 208—212), i. e.
YA K(A) < 0.
A€o

Then the operator B is also nuclear. According to the theorem of V. B. Lidskii (see [2], p.
212; 3], p. 101; [4]), for sp A and sp B the following equalities

spA = —ck'+ > Ar(N\), spB = —ck’+ > A&(N)
A€o A€o
are true. Hence sp B —sp A = ¢(x' — &) and by (6]) we get (g).
The theorem is proved.
Consider in the space L?(a, b) with finite or infinite interval (a, b) the following integral

operator K:
b

(Kz)(§) = [K( n)zn)dy, =€ La,b), € (ab),

where the function K (&, n) satisfies the following condition:
b b
JJIKE )PP dndé < oo

a a

It is known (see [2], pp. 101—102), that K is Hilbert—Schmidt operator and its absolute
norm N (K) is equal to

NAK) = [ FIK(E. ) dnde.
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If the operator K is self-adjoint, then K (&, n) = K(n, £). For the sake of definiteness

we consider the case, where the self-adjoint compact operator K has an infinite set of eigen-

values. Enumerate non-zero eigenvalues \, (n =1,2,---) in order of decreasing mod-
uli: |[A|>|X2| >, repeating each eigenvalue according to its multiplicity. Denote by ¢,
(n=1,2,---) the orthonormal set of corresponding eigenfunctions: I, =A,p,. It is

known (see [2], pp. 102, 209), that
N*(K) = > A
n=1

K(€, ) = i:: Mo 0n(E) on (). (9)

and the functional series in (9 converges in the space L*((a, b)x(a, b)).
Let the self-adjoint operator IC be nuclear. Then
Yol <o, spK=> A\,
n=1

n=1

We extend each function x € L*(a, b) onto R=(—o0, 00), putting z(£) =0 for £ € (a, b).
We extend also the function K (&, 1) onto R?, putting K (&, n) =0 for (¢, n) ¢ (a, b)x(a, b).
By @ we have

KE+46) = X Agal6 +00a(6). (10)

and the functional series on variables ¢ and ¢ converges in the space L?(R?). Indeed, this

fact follows from the equality:

f f Z/\n@nf"’t)@n(g ‘ dt dg j?j?

—00 —00 | N=p

m

> Anen(n )‘Pn@) Zdndﬁz

n=p

, dc| = S
n=p j=p n=p
which is valid for any positive integers p < m.
Besides, for any ¢ the functional series on the variable £ in (L0]) converges in the space
L'(R). Indeed, this follows from the estimate:

o0

T | & rgale+02@ |de < 3 0l [ lenle+0)0a00) | de

—0o0 ' n=p n=p

N\

<X (S onle + 0P ) (J leute ) -

iw NGRS zm

Define the function K (&, &) by the equality
K(é 5) = 2_:1 An |90n(£)|2> (11)
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where the functional series converges in the space L'(R). Evidently,

b 00
JE(E §)dE = ;An = spk. (12)

Taking into account and , we get

JIK(E+1 O = K(E OldE = [ | 5 Mba@fione +1) -~ wu(@)}|de <

—0o0  N=

(e 9]

< 3 Il [ [Ral@on6 +0) = enle)H df <

—00

1

g < f lon ()] df) < Z lon(€+1) — on(&)? dé—) _

—00

N

= Sl ] lenle + 0 = alOP )"

But (see [5], pp. 499—502)

lim f |on(§ +1) — en(§)I?d§ = 0,

(J leute+t —cuOP dg)’

< (T lenterorae)’+( T lenterrae)” =
Hence

hmf|K(€+t §) — K(& &)lde = 0.

Thus for any finite or infinite interval («, ) the equality

B h B
f (&, §')d£—h_> %ngS-%tﬁdfdt (13)
holds. Particularly,
hb
spK = lim + [ [K(E+t, €)dEde. (14)
h—0 0 a

It is evident that if the function K (&, n) is continuous in the domain (a, b)x(a, b), then
the function K(¢, &), defined in the usual sense, satisfies the equality for any finite
interval («, 8). Thus, for the function K (&, £) the equality is also true, as

oo

sp K %fthﬁ—i—tfd{dt
0—

8

a——00 f—o00 \ h—0

= lim lim < im %fthﬁ—l—t €) dﬁdt)
0 «
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It is clear that above assertions remain true also for the case, where the set of eigenvalues
of K is finite.

Note that in the case of finite interval [a, b] and continuous function K (&, n) the formula
has been obtained also in [3], pp. 115-118.

Corollary 1 Let H=L*(a, b) with finite or infinite interval (a, b), and for some num-
ber ¢ >0 the operators A=V*V—cl and B = VV*—cl are integral operators, defined for
z € L*(a, b) by

(A)(€) = J A, m)etn)dn, (Ba)(©) = [ BE nyalm) dn, €€ (a,b),

where the functions A(§, n) and B(&, n) satisfy the following conditions:

/

8~

|A(E, n)|? dnd€ < oo, ff|B£, )dndé < oo
Then -
indV = & [ [{IA& n)I* = |B(& n)*} dndé .

Besides, if operators A and B are nuclear, then

indV = lim%fhj{l’j’fjtt €) — A(E+1, &)} dedt
0 a

h—0

(we suppose that A(&, n) and B(E, n) are equal to zero outside of (a, b)x(a, b)), and if the
functions A(E, n) and B(&, ) are continuous in (a, b)x(a, b), then

indV — 1 [{B(e, &) — A, €)} de. (15)

As an example of a bounded linear operator V' in L?(0, oo), for which A=V*V —1T and
B = VV*—I are integral operators, we can take the operator, defined for z € L?(0, co) by

ﬁ\

(V)(©) = F 2 [ =) Suln) e1d. €€ (0. 00). (16)

where m > 1 is a integer, ¢ is the imaginary unit,
wk—ea:p(”k) k=01 --,m,

the functions Si(n) are continuous and bounded on (0, co), with S,,(n) =1, |So(n)| =1, the
function Sp(n) has continuous and integrable on (0, oo) derivative S (n), and the limits Sy(0)
and Sy(o0) of Sp(n) at n— 0 and 7 — oo are real numbers.

The adjoint operator V* is defined by the formula

3

(V*2)(©) = gh 3 Sef®) [ aln) e =i,
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It is easy to see that

(Ax)(€) = 7 A€, ma()dy,  (Bx)(€) = T B(E, n) x(n) dn.

where

N Sk(6) S,
Al = 55 > TELT

B(& n) = m{ [ Sh(t) e~ tE+m dt — Ofsg(t) eME+m) dt}+

[e=]

+ % Of {Sk(t) eit(wrE+m) Sk(t) e—it(£+wk77)} dt +

k=1
m—1 oo | )
+ % ’;1 {Sk(t) S()(t) etwrE—mn) 4 Sk(t) So(t) e”(f_wkﬁ)} di+
m—1 00
+ 52 3 [ Sk(t) S;(t) €M@t == gt
k,j=10

Under some additional restrictions on the functions S, the equality can be proved

and reduced to the form

ndV = ;L bf 08 g — 1(So(00) — So(0)).

In the case of m =1 at least one of the operators V' and V* has inverse even if the function
So is only measurable and bounded (see [6]).

Operator of the form arise in the investigations of the scattering inverse problem
for differential operator of order 2m, and the equality expresses a relation between
scattering data (see [7]—[9]).
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