ARMENIAN JOURNAL OF MATHEMATICS
Volume 13, Number 7, 2021,
https://doi.org/10.52737/18291163-2021.13.7-1-32

Strong Convergence Algorithm for the Split
Problem of Variational Inclusions, Split
Generalized Equilibrium Problem and Fixed
Point Problem

S. Husain, M. Asad and M. U. Khairoowala

Abstract. The purpose of this paper is to recommend an it-
erative scheme to approximate a common element of the solu-
tion sets of the split problem of variational inclusions, split gen-
eralized equilibrium problem and fixed point problem for non-
expansive mappings. We prove that the sequences generated by
the recommended iterative scheme strongly converge to a com-
mon element of solution sets of stated split problems. In the end,
we provide a numerical example to support and justify our main
result. The result studied in this paper generalizes and extends
some widely recognized results in this direction.
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Introduction

We start with introducing some necessary notations. Let H; and Hy be
two real Hilbert spaces equipped with inner product (-, -) and induced norm
|- ||. Let C C H; and @ C Hy be two non-empty subsets of H; and Ha,
respectively, which are closed and convex.

A mapping f : Hy — H; is called 7-Lipschitzian if there exists a constant
7 > (0 such that

1 () = Fl < 7 llz = yll;

for any x,y € Hy. A mapping U : H; — H; is said to be non-expansive if

|U(x) =U)| < lle =yl for any z,y € H,.
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The solution set of U is defined as Fix(U) = {z € H; : U(z) = x}. A map-
ping A : Hy — H; is called strongly positive mapping if there exists a
constant ¢ > 0 such that

< Az, 2z >< (|2, x € Hi,

In 1994, Censor and Elfving [8] proposed split feasibility problem (SFP)
in the space of finite dimension, which could be characterized as:

reC and Ar €. (1)

Due to its vast applications in science and engineering, such as signal pro-
cessing, image reconstruction, medical specialities engineering, geophysics,
etc., much attention is paid to this problem (see, for example, 8,5 [7]). Also,
problem is strongly related to some general problems like the convex fea-
sibility problem [4], the multiple-set split feasibility problem (SPF) [9], the
split feasibility problem (SPF) [25, 20], and the split common fixed point
problem [32].

Now, let v = {z € C': Az € Q}. For finding a solution to problem (I,
Byrne [5] [6] proposed C'Q algorithm, which is formulated as follows: For any
xo € Hy define

Tmi1 = Po(tm —nA*(I — Po)Ar,),  m >0,

where P and Py denote the projection operators on C' and @), respectively.
Afterwards, several different techniques were proposed to solve the prob-
lem (see, for example, [29, B1] and the references therein). In 2013, Zhu
et.al. [34] proposed the following problem:

Find r e CNFix(V) such that Az € Q NFix(V), (2)

where U and V' are non-expansive mappings on C' and @), respectively. Under
some appropriate conditions, the sequence generated by technique proposed
in [34] converges strongly to an element of the solution set of the problem .

Let By : Hy — 2" and E, : He — 22 be two multi-valued map-
pings with non-void values, and let f and g be two mappings such that
f:Hi — Hy and g : Hy — Ho. Inspired by the work of Censor et.al. [10],
Moudafi [21] proposed the following split monotone variational inclusion
problem (SMVIP):

Find x € Hy such that 0 € f(z) + Ei(x), (3)

and y= Azr € H, solves 0 € g(x) + Ex(y). (4)

Under some acceptable conditions, Moudafi proved that the sequence gen-
erated by his algorithm converges weakly to a solution of the problem .
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Inspired by the work of Moudafi [21], Ansari and Rehan [3] considered
the following problem:

Find x € Fix(U) such that 0€ f(z)+ Ey(x),

and y = Az € Fix(V) solves 0 € g(z)+ Ex(y), (5)

under some suitable conditions, proved the weak convergence of their algo-
rithm.

If f =0and g = 0, the problem — reduces to the following split
variational inclusion problem (SVIP):

Find r € Hy such that 0 € Ey(z), (6)

and y= Azx € H, solves 0 € Es(y).

Let SOL(E;) = {x € H1 : 0 € Ey(z)} and SOL(Ey) = {x € Hs :
0 € Ey(x)}. In the past few years, many authors have studied and found
solutions for SVIP (see, for example, [1], [2]).

In 2018, Majee et.al. [I8] considered the following SVIP and fixed point
problems: Find = € N Fix(U;) N SOL(E;) such that

Az € N2 Fix(V;) N SOL(Ey), (7)
where U; : Hy — Hy, 1 = 1,2, ..., My, and ‘/] cHo — Hoy, g = 1,2, ..., My,

are non-expansive mappings. They define a sequence {z,,} as follows: For
r1 € H; and

Um = U]\TZUZ\T;thl”'UTLJ)\,El (l’m + T]A*(V]\%VAT/Zfl...‘/lmJ)\,EQ — I)Al’m),
put
Tma1 = OV f (@) + by + (1 = by) — 0pW)up,, m > 1.

Also, they establish the strong convergence of their scheme under some ap-
propriate conditions.

In equilibrium problem (EP) for a bi-function G : C'x C' — R, one needs
to find p € C such that

G(p,y) > 0 forally € C. (8)

The solution set for the problem is denoted by EP(G). Takahashi and
Takahashi [26] proposed an iterative method to find a common element of
the solution set of the problem ([§]) and the solution set of fixed point problem
of a non-expansive mapping in a Hilbert space. For z; € H;, they defined
the sequences {z,,} and {w,,} recursively by
Gl(wm,y)%—i(y—wm,wm—xm20, y e C,

T'm
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Tims1 = O f (@) + (1 — o) T2, m € N.

Obtaining motivation from the work of Marino and Xu [27] and Taka-
hashi and Takahashi [26], Plublieng and Punpaeng [23] proposed a general
iterative method to find a common element of solution set for EP () and
a fixed point problem for a non-expansive mapping in a Hilbert space. For
x1 € Hy, they defined the sequences {z,,} and {w,,} recursively by

1
G1<wmay>+r_<y_wm7wm_xm>207 yEC,

Tma1 = oo f () + (1 — 0, A) Uz, m € N.

Under some acceptable conditions on sequences {o,,} and {r,, }, they proved
that the sequence generated by their algorithm converges strongly to the
unique solution of the variational inequality problem:

(A=nf)z,x —z) > 0, z € EP(G) NFix(U).

To find a common element of the solution set for EP and a fixed
point problem for a finite family of p-strictly pseudocontractive mappings,
Peng et.al. [22] introduced the following iterative scheme: For x; € Hy, they
defined the sequences {x,,}, {yn} and {w,,} recursively by

1
G(wma y) + ¢(y) - ¢(wm> + 7’_<y — Wy, Wiy, — xm> 2 07 Yy € 07

m

Tmt1 = O f(@Tm) + b + (1 — 0 — b)Y, m € N.
Moudafi [21] introduced the following split equilibrium problem (SEP):
Find p* € C such that Gi(p*,z) >0, ze€C, 9)

and y* = Ap* € Q satisfies Ga(y*,y) >0 for any y € Q, (10)

where G; and (G5 are bi-functions and A is a bounded linear operator. The
solution set of the split equilibrium problem @f is denoted by & =
{p* € EP(G)) : Ap* € EP(G5)}.

In 2017, Majee et.al. [I7] considered the following split generalized equi-
librium problem (SGEP):

Find p* € C such that Gi(p*,x)+ ¢1(p,z) >0, zeC, (11)

and y* = Ap* € @ satisfies G2(y*, y) + ¢2(y*,y) > 0 for any y € @, (12)

where Gy, ¢; and Gg, ¢ are non linear bi-functions, and A is a bounded
linear operator. They denote by GEP(G1, ¢1) the solution set for GEP



STRONG CONVERGENCE ALGORITHM FOR SPLIT PROBLEMS

and by GEP(Gy, ¢2) the solution set for GEP (12]), while the solution set
for SGEP (11)—(12) is denoted by S = {p € EP(G1,¢1) : Ap € EP(G>, ¢»)}.

Further, they define a sequence {z,,} as follows: For x; € H; and

Wy, = Tr(fhd)l)(xm + 77A* (T(G27¢2) _ [)Al’m),

Tm

Ym = CmTm + (1 - Cm)V]\?VJ\?—I‘/lmum7
put
Timt1 = OV f (@) + by + (1 = b)) — 0pW ) Up, m € N.

Authors of [I7] established the strong convergence of their scheme under
some appropriate conditions.

Motivated and inspired by the above mentioned works, we suggest and
study an iterative scheme to approximate a common element for the solution
sets of SVIP (7)), SGEP (11)—(12) and a fixed point problem in a real Hilbert
space. Further, we provide a numerical example to support and justify our
work. Also, we prove strong convergence of the iterative method we used,
which is prudent than weak convergence.

The paper is organized in the following manner. In the second section,
we recall some definitions and auxiliary results. In the third section, we
present our scheme and study its convergence. In the last section, we justify
our algorithm with a numerical example.

1 Preliminaries

In this section, we provide definitions, assumptions and lemmas which will
be used to prove our main result.

Throughout the paper, we use the symbol — for weak convergence and
the symbol — for strong convergence.

The mapping U : H; — H; is said to be
(i) monotone if for any z,y € H,

(Ux — Uy, x —y) > 0;
(ii) o-strongly monotone if there exists o > 0 such that
Uz —Uy,x —y) > ollz —y|* for any 2,y € Hi;
(iii) firmly non-expansive if for any x,y € Hy,
(Uz — Uy, —y) = Uz — Uyll%,
or, equivalently,

Uz = Uy|* < |z = ylI* = (T = U)x — (I = U)yl%;
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(iv) p-strictly pseudo-contraction if there exists a constant pu € [0,1) such
that

Uz = Uyl* < [lo = yl* + pll(I = U)z = (I = U)y||*  for any z,y € H,.

It is well known that every firmly non-expansive mapping is a non-
expansive mapping as well. Note also that every non-expansive mapping
U : Hy — H, satisfies the inequality

1
((z=Uz)=(y=Uy), Uy=Uz) < S||(Uz=2)=Uy=y)II’, (2,y) € HaixHo.
Therefore, for all (z,y) € Hy x Fix (U), we get

1
<£L‘—Ux,y—UZL‘>§§||(UZL“—:E)||2. (13)

A mapping f : H; — H, is called a contraction if there exists 7 € (0,1)
such that

1f(@) = fWl < 7lle —yll, 2y e

A mapping Pr : H; — C is called a metric projection if for each point
x € H;, there exists a unique nearest point Po(z) in C' such that

o = FPo(@)] <z —yl, yel

Note that P is non-expansive and firmly non-expansive. Moreover, Py is
characterized by the following property:

(x — Po(z),y — Po(z)) <0, x€H,yeC. (14)
In the Hilbert space Hy, the following inequalities hold for any x,y € H;:
lz+ylI* < llzl* + 2y, = +y), (15)

loz + (1 = o)yll* = ollz[* + (1 = o)yl —o(L =)l —ylI*.  (16)

A multi-valued mapping £ : H; — 27 is said to be monotone if for each
x,y € Hy and any u € Fx, v € Ey,

(u—wv,z—1y) >0.
For a multi-valued mapping E, graph G(F) is defined as
GEE)={(x,u) € H1 x H; :ue€ E(x)}.

A monotone mapping F : H; — 27 is called maximal monotone if the
graph of any other monotone mapping does not contain G(F) properly.
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Remark 1 A monotone mapping is said to be mazximal monotone if and
only if for (x,u) € Hy X Hy, (x —y,u—v) > 0 for all pairs (y,v) € G(E)
implies that u € Ex.

Let B, : H; — 2" be a multi-valued maximal monotone mapping. For
some A > 0, the resolvent mapping Jy g, (z) : H1 — Hy equipped with E, is
defined by

JA,El(I> = (I+ )\E1>71<$), r € Hy,

where [ stands for identity operator on H;.

It is obvious that for all A > 0, the resolvent operator Jy g, is single-
valued, non-expansive and firmly non-expansive. Also, it is known that p*
solves the VIP () iff p* = J, g, (p*).

A mapping U : Hy — H; is called averaged mapping if there exists
o € (0,1) such that U = (1 — 0)I + oV, where V : H; — H; is a non-
expansive mapping. It is well known that an averaged mapping is also a
non-expansive mapping and Fix(V') = Fix(U) (see [30]).

Lemma 1 [6,12] If {U;}}, are the averaged mappings with a common fized
point, then
N Fix(U;) = Fix(UyUs...Uyy).

Particularly, for M = 2, Fix(U;) N Fix(Usy) = Fix(U1Us) = Fix(UyUy).

Lemma 2 [I6] Let C' be a non-empty, convex and closed subset of a real
Hilbert space Hy and let U : C — C be a non-expansive mapping. If {x,,}
is a sequence in C converging weakly to x € C and {(I — U)z,,} strongly
converges to y € C, then (I — U)x = y. In particular, if y = 0, then
x € Fix(U).

The above lemma is called demiclosedness principle.

Lemma 3 [27] Suppose that A is a strongly positive bounded linear operator
on a Hilbert space Hy with coefficient 7 > 0 and 0 < 7 < ||A||™'. Then
I —7TA|| <1—77.

Lemma 4 [33] Suppose that V : Hy — Hy is a p-strictly pseudo contractive
mapping on a Hilbert space Hi, and the mapping U 1is defined by Uxr =
ox+ (1 —o0)Vx for each x € Hy where o € [, 1). Then U is non-expansive
mapping with Fix(U) = Fix(V).

Lemma 5 [I3] Suppose Hi is a Hilbert space. Let f : C — C be a T-
Lipschitzian mapping and A : Hy — Hy be a strongly positive bounded linear
operator with coefficient > 0. If p{ > ~1, then

(pA =)z — (pA—~f)y,x —y) > (o — )|z —yl>, 2,y € Ha.

That is, pA — ~f is strongly monotone with coefficient p( — yT.
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Further, we present some assumptions, which for the first time were
considered in [I1].
Assumptions 1 Let G : C' x C' — R be a non linear bi-function satisfying
the following conditions: for all z,y € C'
(i) G(z,x) > 0;
(il) G is monotone, i.e., G(z,y) + G(y,z) < 0;
(iii) G is upper semi continuous, i.e.,

limsup G(tz + (1 — t)z,y) < G(zx,y);
t—0

(iv) the function y — G(z,y) is convex and lower semi continuous.
Let ¢ : C' x C'— R be such a function that for all x,y € C|
a) ¢(z,x) < 0;
b) the function x — ¢(z,y) is upper semi continuous;
¢) the function y — ¢(z,y) is convex and lower semi continuous.

(

(

(

(d) for a fixed r > 0 and z € C, there exists a non-empty, closed, convex
and bounded subset K of H; and x € C'N K such that

1
Under these assumptions, the following statements hold.

Lemma 6 [II] Suppose that the non-linear bi-functions Gy, ¢; : CxC — R
satisfy Assumptions 1, and r > 0, x € Hy. Then there exists z € C' such
that

1
Gl(Zuy)+¢1(27y>+;<y_z7z_'r>207 yEO

Lemma 7 [§] Suppose that the non-linear bi-functions G1,¢; : C x C' — R

satisfy Assumptions 1. For r > 0 and for each x € Hy, define a mapping
T, — O as follows:

T G9) (z) = {z € C:Gi(z,y)+ di(z,y) + %(y —z,z—1x) >0,y € C’},
Then
(i) T s non-empty;
(i1) T s firmly non-expansive, i.e.,
T () =T () || < (TI (a) =T (y), 2 —y), @,y € Has
(iii) Fix(T\)) = GEP(G1, ¢1);
(iv) T s single-valued;

(v) GEP(Gy, ¢1) is convex and closed.
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Suppose that Ga, ¢ : QQ X Q — R satisfy Assumptions 1. For s > 0 and
for each w € H,, define a mapping ASER Ho — Q as follows:

T(G2:92) (1) = {c €Q:Gac,e) + dolc,e) + %(e —¢ec—w) 20,e€ @}-

Then, we observe that T. (G202) i non-empty single-valued and firmly non-

expansive. Also, GEP(Gy, ¢, Q) is convex and closed, and Fix(T§G2’¢2)) =
GEP(Gs, ¢2, Q) where GEP(Gs, ¢, Q) is a solution of GEP (1.

We find that GEP(Gs, ¢2) € GEP(Ga, ¢2, Q). Furthermore, one can
easily prove that S is convex and closed.

Lemma 8 [19] Let G; : C x C — R be a non linear bi-function satisfying
Assumptions 1 and let T be defined as in Lemma @for r > 0. Then for
all x,y € Hy and ri,m9 > 0,

ro —

IT5 () = T W)l < lly — =l + 175 () — .

71
T2
Lemma 9 [28] Let 0, be a sequence of non-negative real numbers such that

Om+1 S (1 - nm)o-m + Cmv

where {nm} and {(n} are the sequences of real numbers which satisfy the
following conditions:

(2) Nm € (0, 1) and Zinozl Nm = OQ;

(i1) limsupc—m <0 or Y > |Gn < 0.

m—0o0 m

Then lim o,, = 0.
m—00

Lemma 10 [24] Let {x,,} and {z,,} be two bounded sequences in a Banach
space X and let {b,,} be a sequence in [0,1] which satisfies the following
condition:

0 < liminf b, < limsupb,, < 1.

m—00 m—oo
Suppose Tpmi1 = (1 — by)zm + by, for all integers m >0, and

lim sup(||zm+1 — Zm|| = |Tme1 — zm||) < 0.
m—0o0

Then

lim ||z, — 2| = 0.
—00
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2 Main Result

In this section, we define our algorithm and provide its convergence analysis.
Suppose H; and H, are two real Hilbert spaces. Let C' and @) be two

non-empty closed and convex subset of H; and Hs, respectively. Let Gy, ¢y :

C xC — R and Gy, ¢9 : @ X Q — R be non-linear bi-functions satisfying

Assumptions 1, ¢1, ¢ be monotone, and GG be upper semi continuous in the

first argument.

Assumptions 2

(A1) The solution set F = QNS # (), where Q = {z : z € N, Fix(U;) N
SOL(E;) and Az € NM2Fix(V;)NSOL(E,)} and S = {p € GEP(G1, ¢y) :
Ap € GEP(Ga, ¢2)};

(A2) A:H; — Hy is a bounded linear operator and A* : ‘Hy — H; is the
adjoint operator of A;

(A3) By : Hy — 2" and Ey : Ho — 22 are two maximal monotone
operators;

(A4) {U}M and {V;}}2 are two finite families of non-expansive mappings
on H; and H,, respectively;

(A5) W : Hy — H; is a strongly positive bounded linear operator with
coefficient ¢ > 0;

(A6) f:Hy — H; is a 7-Lipschitzian mapping with the coefficient 7 > 0;

(B1) Let «,p > 0 be such that p¢ > 7. Let {0,,} C (0,1) be such that
lim 0, =0, 0 0m =0,0 < 0, <min{l, (p|[W]|)" '} and {b,,} C

m—r0o0

(0,1) be such that 0 < b,, <b < 1and 0 < liminfb,, <limsupb,, <1

m—+00 m—o0

for some b € (0, 1);

(B2) {r,,}C(0,00) is such that liminfr,, >0 and lim |7, — 7 |=0;
m—o0

m—r0o0
(B3) ni, € (0,1), &, € (0,1), lim |n.y —ni |=0fori=1,2,..,M; and
m—0o0
lim [ &, =&, |=0for j=1,2, .. M.
m—0o0
Supposing Assumptions (A1-B3) are satisfied, we suggest the follow-

ing algorithm to approximate a common element for the solution sets of

SVIP , SGEP — and a fixed point problem in a real Hilbert space.

Algorithm For A > 0, select x1 € H;, the parameters v, p and the sequences
{om}, {bm}, {rm} such that Assumptions (B1-B2) are satisfied.
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Step 1. Set
U = Uy, Unp 1 U I gy (0 + 0 A" (Vig Va1 - V" I g, — 1) Azy,),

where U}, = (1 —ni ) + 0 U; for i = 1,2, .., My; VI = (1= &)+ &V,

m

for j =1,2,..., Ms; n € (0, L7') and L is the spectral radius of the operator
A*A.
Step 2. Compute

Wy = T(G1,¢1)(Um + nA* (TT(S2’¢2) — 1) Av,,).

Tm

Step 3. Compute
Tma1 = OV f (@) + b + (1 = b)) — OnpW )wi, meN. (17)

Then the sequence {z,,} strongly converges to p* € F, which is the unique
solution of the following variational inequality

(PW —yf)p", 2 —p") >0, x€F, (18)

or, equivalently, we have Pr(I — pW + ~f)p* = p*.

We prove the convergence of Algorithm for M; = M, = 2 only. That is,
we consider the case

U, = U" UM s gy (2 + A (V3" V" I\ g, — 1) Ay,).

Theorem 1 Let p € F. Then the sequences {xn,}, {wn}, {f(zm)} and
{W(wy,)} defined in Algorithm are bounded.

Proof. From (B1), we may assume without loss of generality that
Omp < (1 — b)) [[W| 71 for all m > 0.

Since W is a strongly positive bounded linear operator on H,
W = sup{[(Wu,u)| - w € Hy, [[ul| = 1}.

Further,

(1= b)) — ompW)u,u) = 1 — by, — omp(Wu, u)
> 1= by —onp||W| >0,

and hence,

[(((X = b)) I — ompW )u, u)||

= sup{{((1 = b)) I — oppW)u,u) : u € Hy, ||ul]| = 1}
sup{1l — by, — opp(Wu,u) : u € Hy, |lul]| = 1}
1 —b, — ompC.

IA I
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Let p € F and U,, = UJ'UT", V,,, = V"V, 2 = I\ AT, Um =
T FNA* (Vinda gy, — 1) AT, Uy = I\ B, Y, Um = Uptiy, for all m € N. Since
Jrm, and Jy g, are firmly non-expansive, they are also non-expansive, and
we have

|l 2m — Ap|| = || Ix.pyAzm — Ap|| < || Az, — Ap|;
tm — pll = | I Ym — Pl < llym — pl-

Further, since &, 7!, € (0,1), we conclude that U™ and V" are averaged as

a composition of averaged mappings.
Using the non-expansivity of the averaged mappings, we get

[vm = pII* = [|Unx 5y (2 + 1A (Vi Iy 5, — 1) Az — )|
= U, (@ + 1A Vi dr g — I) Ay — Un T, p) |12
= [lzm +nA* (Vi drm, — 1) Az — p)|?
= ||lTm — p||2 + 772||A*(Vm‘]>\,E2 - I)A:L‘M)H2
+ 20z — p, A" (Vinr gy, — 1) Azy).

Due to firmly non-expansivity of Jy g,, we obtain

(xm —Dp, A (Vindr g, — Axy,) = (Azy, — Ap , (Vindam, — 1) Azy,)
= ((Vindrg, — I)Az,, — Ap
+ Az, — (Vindag, — DAz, , (Vinda g, — 1) Azy,)
= {(Vidr AT, — Ap ;. (Vindag, — DAzZ)) — [|(Vindag, — 1) Az, |?

= Vi, At = Apl” + | (Vo — 1) A
_ %HA:cm — Ap|l? = |(Vin gy — D) Azw)||?
< %||JA7E2Axm — IneAp|? — %IlAazm — Apl|* - %II(VmJA,Ea = I)Azy,)||*
< %(HAxm — Ap|]® — 1r 5y ATy — A|)?)
_ %HA:Bm — Apl|® - %H(VmJU;2 — I Az,,)|?
= AT — Azl = Vi, — DAz
= L= Aral? — Vi, — DA

Thus,

[vm = plI* < llem = plI* +7° LI (VinIa gy — I) Az |12
— | (Vindr g — DAz |* = [[2m — Az
= ||@m = pI* + 0L = DI (VinJr g, — 1) Azy)|1?
—||2m — Az | (19)
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From the definition of n, we get

[vm = pII* < [lzm — plI?,
and hence,
[vm = pll < lzm —pll.
Since p € F, we have ngl’m)p p and T (G2,¢2) Ap = Ap. Then

[wm = pl* = 1T (vn + nA*(TG>%2) — T) Avy,) — pl|?
_ HT (G1,61) (v + 77A* (ngz’qﬁz) _ I)Avm) T(Gl o1
< vm + nA (1929 — T) Av,) — p||®
< lom = plI* + | A (T2 — T) Avy,)|I?
+ 20 (v — p, AN (TS ) 1) Avy,)).

pl|?

Thus,

[ = pI* < Jom = plI? + 72T = 1) Avyy , AA(TZ2%) — 1) Auy,)
+20{v — p, AN(TT%) — 1) Avy)).

m

Further,

AT — 1) Av,, , ATATE — 1) Au,)

<7]2L<<T(G2¢2 — D Av,, , (T (G2¢2)_I>Avm>
= i’ L|(T52%) — 1) Avy, ) ||,

Using , we can write

277<Um —-p, A*(ngg%@) - I)Avm>
=20({A(vm — p) , (T(Gz’¢2) —1)Av,)

= 20(A(vy, — p) + (T,5%) — ) Avy,
_ (T(G2,¢2) _ [)AU ’ (Trggmtﬁz) _ [)Avm>
= 2 { (159 Av,, — Ap , (T — 1) Av,,)

= (T TG I) Avy|1*}

szn{ |(TC22) — 1) v | — [|(TC#) >Avm|r2}
ol (T — 1) Auy 2

Thus, we obtain

[ = plI* < [fom — plI? + 0L = DIITE> — 1) Av,, )|
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From the definition of 7, we obtain
[wm = pl| < Jlvm = pll < ||2m = pl-
Since 0 < 0,,p < [|[W||7!, by Lemma [3] we get
1 = ompW || <1 = 0mpC.
It follows that

|Zmi1 = pll = lomyf (Tm) + b + (1 = b)) I — 0mpW )w, — pl|
= [lom(Vf(2m) — pWD) + by (T — )
+ (1 = b)) I — UmpW)(wm _p)H
< Nlom(vf(@m) = pPWD)|| + b |2 — |
+ (1 = b)) I = 0mpW ) (wy, — p)|
< o7 f(@n) =1 + onllvf(@m) — pWo|
+ bm|m — pl| + (1 = b — 0mpQ)[|wm — p||
< 0Tl Tm — Pl + bl — D
+ (1 = bm = 0mpQ) | Tm — pll + oml[vf(p) — pW|
lvf(p) — PWp|
pS =T

= [1 = om(pC = y7)l[|xm — pll + om(p¢ —7)

Continuing in the same way, we see that

(p) — pWp||
pC —T

s — 7] < max{nxo ) 10 } m> 0,20 € C.

Therefore, the sequence {x,,} is bounded, and so are the sequences {v,,},

{wm}, {ym}, {zm}, {f(2m)} and {W(wy,)}. O

Theorem 2 Let p € F and {x,,} be the sequence generated by Algorithm.
Then

(a) lim |[2p1 — 2| =0;
m—0o0
(b) Algorithm converges weakly to p € F.
Proof. (a) Consider t,, = (41 — bin®m)/(1 — by,). Since

Tm+2 — bm—l—lxm-l—l Tm+1 — bmxm

bt = o = 1 — byps 1—b,
o O-m—&—l’}/f(xm—i-l) + ((1 - bm+1)[ - 0m+1pW)wm+1
N 1- bm+1
OV (@m) + (1 = b)) I — 0ppW)w,,
1 -0,

_ Um+1(7f(l’m+1) - wam+1) _ Um(Wf(CUm) - prm) Wy — Wy,
1-— bm+1 1- bm
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we have

g
Htm-i-l - tm” < —m

||7f($m+1) - wam+1||
- bm—H

+

20 @) = W0+ s = 0]

< Om+41
- 1-
+ 1—_l)H7f<xm) - prmH + ||wm+1 - wm”

||7f(55m+1) Pme+1||

Using Lemma [§, we can write

lmss = Wl = T (01 + AT (TS = 1) Avyesa)

— T3 (0, + nAN(TE? — 1) Avy )|
TS (Wgr + A (T — 1) Avpan)
~ T3 (0 + AT (TSP — 1) Avy)|
H|TE2) (v, + nAS(TE29) — T) Av,,)

— T3 (0 + AT — 1) Avy)|

< Omr + AT = 1) Avyyin) = (0 + 0 AN (TS — 1) Av,,)|

Tm
+1 rfﬂbl)(vm +77A*( (G2,2) I)Avm)

+

rm—i—l
— (U + AT — 1) Avy,) |

* (G (@
< Jomsr = vm = DA A(vr = ) | + I AN|TEE Avgay = T Av,|

1/2
fom < {nvmﬂ — ll? = 20} At — v + 72 A ot — vaQ}

Tm+1

+nHAH{HAvm+1 ~ Av| +

G
(G gy AvaH} .

Tm41
1

< (=2 AP + A2 [omer = vaall + 0l AIP [ 0ms1 = Vil + 7l Allwn

+sm = (L=l Al)[[vmrr = vinll + 0l Al [vmsr = vinl + 1l Allwm + s

= [[omi1 = vmll + 0l Allwm + sm,
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where
T —T
Wy = | —2 ||Tr(§i’1¢2)AUm+1 — Avp ||
T'm41
and
Sy = Tm41l = T'm HT;Srlm)(Um + nA*(TT(Sm@) — 1) Auv,,)
T'm+1
— (U + AT (TG — ) Avy,) ||
Further,
va-f—l - /Um” = ”Um—&-lum—H - Umum”
= ||Um+1um+1 - Um—l—lum + Um+lum - UmumH
S |’Um+1um+1 - Um+1um|l + ||Um+1um - UmumH
< ”um-i-l - Um“ + ||Um+1um - UmumH
< ”ym—i-l - ym” + ”Um-i-lum - UmumH‘
Since,

||ym+1 - ym” = ||xm+1 + nA*(VM+1J)\7E2 - I)Axm-&-l
— Ty — NA (Vi Ia g, — 1) Az, ||
< Nzmt1r = 2m — nA*A(@mi1 — )|l + 0l A [[Vint12me1 — Vinzil|

1/2
_ {||mm+1 o2 = 20| Azar — Az ]2+ 2 Al st — a:m||2}

+ 0l AllVint12me1 = Vinsazm + Vine12m — Vinzi||
< (L=l AP lzmer — zml

FalAl (\|vm+1zm+1 Vvl 4 [Vons 12 — vmzmu)

< (1= nllAID) st — o] + 1Al (|rzm+1 )+ Vi — vmzmu)
< (1= A [2msr — 2]

CallAl (IIJA,EzAme s Azl + [Vinsrzm — vmzmu)

< (1= g A2 [2msr — 2mll + ]l Al (||Axm+1 — Azl + [Vinsr2m — vmzmn)
< me—i—l - me + 77||A||va—f—lzm - szm”a
we get

[vm1 = vl < @i = @l + 0l AN Vis12m — Vinzi|
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Therefore,

me-H - me < ”xm—i—l - xm“ + 77||A||||Vm+lzm — Vinzml||
0l Allwm + (| Uns1tim — Ut || + 8m
= meJrl - me + 77HAH(HVm+12m - szmH + wm) + HUm+1um - Umumu + Sm-

Substituting obtained estimations, we get

[tms1 = tmll = [Zma1 — @l
Om4-1 9m
ST b|’7f($m+1) — W || + mHVf(me) — pWwy ||
+ 77||AH(”Vm+12m - szm” + wm) + HUerlum - Umum” + Sm-
Further,
| Unng1tm — Umum” = ||U2m+1U{n+1um - U?Ulmum”

< U5 U iy = U5 U |+ U5 U i — U5 Ut .
It follows from the definition of U™ that
U7ty — U ]|
= [I(1 - 77in+1)um + 7771n+1)U1um — (1 = 1 )t + 103 ) Ut
< g1 = M| (| + U120 )

Since lim |n} ., —n,| =0 for i = 1,2 and the sequences {u,,} and {Uyu,,}
m— o0

are bounded, we get

lim (|U" ", — UMuy|| = 0.
m—0o0

Similarly,
U5 Ut — U3 U | < 101 = 10 (WU || + U5 U i ),
from which it follows that

lim [|US U™y, — U U, || = 0.
m—r0o0

Therefore,

lim ||Upi1tm — Untin|| = 0. (20)
m—0oQ

Using the similar reasoning, one can show that

lm ||Vir1tm — Vgt = 0. (21)
—00

m

Hence, due to (20)), and (B1),(B2), we get

lim (Htm-i-l - tmn - “xm—i—l - xm”) <0.
m—00
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Thus, by Lemma , we conclude that lim ||t,, — x,,|| = 0, which implies
m—0o0
that
lim ||zy41 — 2m| = 0. (22)
m—r0o0

(b) To show the weak convergence of Algorithm, consider

[Zm = Wil < l@m — Tmar || + [[Tmr1 — winl

< l@m = Tmial| + lomVf (@m) + bn@m + (L= bp) ] — 0mpW)wim — wa|
< lwm = Zmiall + oy f (@m) = pPWwmll + bnl[2m — wn|

< NZm = gl + oV f (@)l + |pWwn||) + bml|Tm — wim]-

That is,

1 Om
[2m = wmll < == l2m = Tmall + (U f@m) |+ oW ),
which together with (B1) implies that
Jim [z, — wp|| = 0. (23)

Now let us show that lim ||z, — v,/ = 0. Using the non-expansivity of
m—r0o0

averaged mappings, we can write

[0m = pII> = 1Un s, (2 + 0A* (Vindamy, — 1) Azy) — pl|?
= U, (e + 0 A Vi, — ) Azn) — Um0
= ||z + 1A (VinJr i, — ) Az — p|?
< <Um — D, Ty + 7714*<va/\£2 - I)Axm - p)

1

= 5{ o = D17+ o + 14 (i, = Dk, = P

(0 = ) = (@& 1A (Vinay — I) A — p)l!2}

1
= 5 W = D12+ o = 4 0L = Vi, — Dk

— vm — @ — A (Vi Ir B, — I)A:pm||2}

1

= §{I|Um = plP* + llzm = pI* = [lvm = zll?

+ 772|]A*(VmJ)\7E2 — I)A.tl:mH2 = 20(Um, — Ty A" (VinIa 5, — I)Awm>]}

1
= 5{ I = I+ o =l = 1 =

2 Ao — 2| (Vin s — f)Axmu}.
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Hence,

[vm = pII* < llzm = plI* = l[vm — 2l

+ 20[[A(0m = 2m) | (Vin Iy, = 1) Az (24)
Now we consider ||z,,+1 — pl||?>. Using and (16), we can write

|Zm+1 _p“2 = llomyf(@m) + bym + (1 = b )L — ompW )wy, — p”2
= |low(vf (@m) = pWD) + bin(@m — W) + (I = 0pW ) (wi — p)|®
< b (zm — wim) + (I = 0mpW ) (Wi — p)H2

+ 200 (Vf (#m) = pWP, Timi1 — p)
< [(1 - Ompg)me - p” + bm”xm - meQ}

+ 207 f (@) — pPWp|l|2ms1 —
< (1= 0npC)?|lwm — plI* + 03, [ — wpn[?

+ 2bm (1 = ompQ)l|wm — plll|zm — wnl

+ 20m |7 f (@m) — pPWp||[|2ms1 — pll-

Using (77?), we obtain

|Zm1 =l < (1= 0mpC)?[llom = plI* + n(nL = DT> = 1) Avy)|°]
+ Ol — winl* + 265 (1 = 030pQ) [, = Pl — wial|
+ 200m[7f (2m) — WP |21 — pll
< (1= 0mpO)? [[l#m = plI* +n(nL = DT> — 1) Av,) 7]
+ b?onm - wm”2 + 20 (1 — ompQ) |wm — plll|m — win|
+ 200m|17f (2m) — WD lZmr1 — pll.

Therefore,

(1= ampC)?n(1 = nL)|(T152%) — 1) Avy,) |

< banxm - wm”2 + 26 (1 — ompQ) |wm — plll|m — win|
+ 20m|[7f (@m) — PWD| | Zmr1 — pl|
+ (1= 0npC)?l|lwm — plI* = l2mss — pll;

which gives

(1= 0mpC)*n(L = nL)|[(T152%) — 1) Avy,) |2
< (@mpC)*llzm = plI* + 26, (1 = 0pC)lwm — pll[|2m — wa
+ 2017/ (@m) = PWplll2mrr = pll + 0 ll2m — wi®
= 20mpC||2m — Pl + 2m = T |12 — Pl + 21 — pll).
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Further, using , we can write

|Zmr = plI* < (1= 0mpQ)? lzm = plI* + 0L = DI (Vi dr ., — 1) Az )|

~llzm — Azl +0(nL = DT — 1) Av,,)|1®

+ berme - wm”2 + 2bm(1 - Ump<)||wm - pHHIm - me
+ 20017 f (@) — pPW Dl |Z 41 — PI|-

Since due to (B3), and (23), we get

lim [|(7'9>%) — 1) Av,,)|| = 0, (25)
m—0o0

we obtain

[z = plI* < (1 = ompC)? {me = pI* + 0L = DIl (Vinzim — Azn)|1*

~lom —Axmuz] B2 — wn?

+ 25 (1 — 0 pC) | — pll|2m — Wi |
+ 200 ||7f (2m) — pPW || Zmgr — I

Hence,
(1= 0mpQ)? [n(nL = V| (Vinzm — Az )|* = [l2m — Az|]
< b?onm - wm”2 + 205 (1 = 0 pC) [ W — D[ || — W |
+ 200 [7f (@m) — PW ||| i1 — 2l + (1 = 0mp)* |l 2m — plI?

= [lm1 = pII.

Thus, from and (B2), we get
[Vinzm — Az ||* + |2m — Azn|]?] =0,

lim
m—r0o0
which means that
(26)

lim ||Vizm — Azl = 0.
m—0o0

Due to (24), we have
| Tt _p||2 <(1- UmPOQ | Zm _pH2 - “vm - meQ
+ 20| AV — 20) (|| Vinzm — Az | + b?onm - wm||2

+ 205 (1 = 01 pC) | W — Pl |20 — W]
+ 200 |17 f (zm) — pPWD||[|Znt1 — Pl
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and therefore,

(1 = 0mpC)? lvm — T |
< 277(1 - Umpg)2||A(Um - Im)” vazm - Axm“
+ 02| — winl* 4 260 (1 = 0 p) [ wm = plll|2m — wh]|
+ 20|17 (2m) — PW Dl |Zme1 — Pl + (0¥ 12m — DI
= 20mpCl|zm — plI* + |mi1 — Tl ([ = DIl + [[2m11 = pI)-

Thus, from (B3), and (26]), we get

lim ||v,, — 2n| = 0. (27)
m—0oQ
Now, we can write

[Zm — Untim || < 12m — Tt [] + (|21 — Ut
<Mzm — il + lom ¥ f(@m) + bnTm
+ (I = by) — OmpW )Wy, — Uyt ||
< [ = Tl + omll7f (2m) — pWwn |
+ O[T — Ut |
< @ = sl + o ([ (@) | + | oW wn])
+ by || T — U |

that is
[ = Unitenl] < 15l =
Om
t1 (v f @) || + [[pW wi ),

which together with (B1) implies that
7711_1)1;0 |€m — Unuml|| = 0. (28)
From , we get
|Tms1 — vmll < |Tms1 — Tml| + |Tm — vm]] = 0 as m — oc. (29)
From , and , we get
[wm = vl < Nlwm = 2|l + |2m = Zmia | + |l2mes — vl =0
as m — oo. Further,

me - mxm“ < o — mum” + HUmum — UnW|| + || U Wi — Umxm”

< me - mum” + ||Um - mwm” + me - me
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From here it follows that

nh_{go @ = Unwin|| = 0. (30)

Finally, using equation and , we get
me - Umxm” < me - Umum” + va - Umwm” + me - xm” —0
as m — oo. [

Theorem 3 The sequence {z,,} generated by Algorithm strongly converges
to p*, which is the unique solution to the variational inequality .

Proof. First, we show that the solution of the variational inequality prob-
lem is unique. Suppose towards a contradiction that p and p are two
different solutions to variational inequality problem ([18)). Then

(W =y )p.p—p) <0 and  ((pW —~f)p,p — p) < 0.

Adding the above two inequalities, we get

(PW —=~f)p — (bW —~f)p,p — p) < 0.

According to (B1), p¢ > y7. Thus, by Lemma |5, we get

(pW =) — (pW =~ f)p,p — ) > (p¢ — v7)||p — pl|* > O,

which leads to the contradiction. Hence, the variational inequality prob-
lem has a unique solution p* € F.
Now, we show that

Jim sup((pW =~ f)p", p* = 2m)) < 0.

Due to the boundedness of {z,,}, there exists a subsequence {z,,} of {z,,}
such that x,,; — p as j — oo and

7&1_1)20 sup((pW —~vf)p*, 0" — Tm))

Since |2y — yml| — 0 as m — oo, we have y,,; — p. Note that {n } is
bounded for 7 = 1,2. We can assume that n,, — 75, as j — oo where
0<nl, <1lfori=1,2,
Define
U =1 —=n ) +nU;, i=1.2.
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Then we have
Fix(U*) = Fix(U;), 1=1,2.

Furthermore, since
Fix(U7°) N Fix(Us®) = Fix(Uh)Fix(Us) = 0.
and U is n'_-averaged for i = 1,2, by Lemma , we get
Fix(UseU°) = Fix(U°)Fix(Us©) = Fix(Uy) N Fix(Us).

Note that
1U7 w — Ul < [n5,, — mio| (lull + | Tsul)).

Hence,

lim sup [0 u — U=u]| = 0,
)70 ueB

where B is an arbitrary bounded subset of H;. Also, we have

Hmmj - Ué’onoxij < meg - U;nj 1mjxij + HUzmj 1mjxmj - U;OUlmjxij
+ HUgoUinjxmj - UgoUlooxij
< mej - U;njU{njxij + ||U2ij1mjxmj - UZOOUlmjxij
+ ”Uiﬂjxmj - Ufoxmj”

< Nam, — Us U 2, || + sup Uy & — Use||
xT

+sup UV — Uz,
zeB"

where B is a bounded subset including {U;"”z,,,}, and B” is a bounded
subset including {x,, }. It follows that

lim ||z, — Us°U 2y, || = 0.
j—o0

Thus, by Lemma [2] we have
b € Fix(UZUX) = Fix(Uy) N Fix(Us).

Now, Ym;, — D, Um, = P, Az, — Ap, and z,,; — Ap. Using the above
arguments, we can show that

11II1 ||ij - ‘/2001/1002771]' || = 0.
j—00

Since V3°V* is non-expansive, by Lemma [2| we get

Ap € Fix(V3°V®) = Fix(Vh) N Fix(Vs).
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Next, we show that p € SOL(E;) and Ap € SOL(E,). Since y,,, — P,

W Jwm =yl = Lm [|Jy g Ym — ymll = 0,
m—00 m—00

and Jy g, is non-expansive, by Lemma , we get p = JypgD, ie, D €
SOL(E1). Also, since z,, — Ap,

lim ||z, — Az || = lim ||y g, A%y — Az || =0,
m—0o m—00

and by Lemma , we get Ap = J\ g, Ap, i.e., Ap € SOL(FE,). Therefore,
p e Q.

Now, we show that p € S. First, we will show that p € GEP(G1, ¢1).
(G1,91)

Tm

Since w,, = Uy, We have

1
G1<wmay>+¢1(wm7y>+r_<y_wm7wm_vm> 207 yec

m

It follows from the monotonicity of GG; that

1
D1 (Wi, ) + — (Y — Wi, Wiy — Um) > G (Wi, ),

m

and hence, replacing m by m;, we get

Wm; — Umy,
gbl(wmiay) + <y — W, —> Z G1<wm1ay)

m;

) _ Win;, — U,
Since ||w,, —vp|| — 0, we have w,,, — p and ———" — 0. It follows from
T

(iii) in Assumptions 1, that 0 > G1(w,,y) for angf p € C. For any t with
O<t<landyeC, lety =ty+ (1 —1t)p. Since y,p € C, we have y, € C,
and hence, G1(y:, p) < 0. Thus, due to (i) and (iv) in Assumptions 1, we
obtain

0= G1(y, ) + &1(ye, ye)
< G (Y, y) + o1(ye y)] + (1 = DG (e, D) + ¢1(we. D))
< tGi(yy) + 1y y)] + (1 = [G1(D, ye) + d1(D, )]
< t[Gi(yt,y) + é1(ye, y)].

Therefore, 0 < Gi(yt,y) + ¢1(y,y). From Assumptions 1 (iii), we have
0 < G1(p,y) + é1(p, y). This implies that p € GEP(Gy, ¢1).

Next, we show that Ap € GEP(Gy, ¢2). Since ||wy, — vp|| = 0, ||[vm, —
ZTm| — 0, we get w,, — p as m — oo and {z,,} is bounded, there exists
a subsequence {x,, } such that z,,, — p, and since A is bounded linear
operator, Ax,,, — Ap.
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Now, set ¢, = Az, — Tﬁgf’@)Axmi. It follows from (25]), that

lim ¢,, =0 and Ay, — G, = TC292) A,

i—00 M

Therefore, from Lemma [7], we have

GQ(Axmz - Qmiaﬁ) + ¢2(A:Emz - Qm”ﬁ)

1 -
+ _<]3 - (AZL’mZ - qmi)’ (A.T?ml - qmi) - A$m1> >0 (31)

T'm;

for all p € . Since G5 and ¢, are upper semi continuous, taking limit
superior in (31)) as ¢ — oo and using condition (B3), we obtain

G2(Aﬁ7ﬁ)+¢2(14ﬁuﬁ> 207 ﬁEQ7

which implies that Ap € GEP(Gs, ¢2) and hence, p € S. Therefore, p € F.
Thus,

jlggo«pW =) 0" = ) S ((PW = f)p",p" —p) <0. (32
Finally, we show that x,, — p* as m — oo. From and , we have

me—i-l - p*HZ = ”Um')’f(xm) + bmTm + ((1 - bm)I - Umpw)wm - p*H2
= lom(vf(@m) — pWD*) + by (T — p*)
+ (1= bi) T = 0pW ) (W, — p) |12
< b (€m — %) + (1 = b)) = 0npW ) (W, — p*)|I?
+ 20m<'7f(xm) — pWp* o1 — p*>
< [(1 = b = 0mp)[wm = P + bl — 7]
+ 200 (v f(@m) = 7f (D7), Tmia — D7)
+ 20, (v f(P") — PWD", Zimi1 — D7)
< [(1 = by = 0Ol = Pl + bl |n = 7]
+ 20,77 |2 — P @1 — P
+ 20, (v f(P") — PWD", Tpy1 — D7)
< 20 ((pW =7 f)p", " — Timya).

Since p¢ > y7 and 0 < o, < —, we get

—— <
pl[W1 — p¢

l—opyr>1—0,p¢ > 0.
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Hence, we can write

* (1 - Ump<)2 + OmT *
|1 — P < . [z — p*|?
— OmT
20m )
Al g (oW =4 )p*, " — Timt)
20m pC 77—> * O-vzanCQ *
1——— [2m — P[> + |2 — P
1—ouy7 1—o0op,
tr———— e (W =~ )p™, p" — Tmya)
200, (pC =T .
[1 nls )pum—pnz
OmYT
N 20 (pC — 7)) [{(pW =~ f)p*, " — Tmia) VoLl
1 —omyT pC =T

where L is a constant satisfying

22
&S 5
Lz sup { Z o~ I

m>0

Now, using the condition (B3) and (32), we obtain

and

m—00 pC — T

Therefore, according to Lemma 9] ||z, — p*|| = 0 as m — oo.
To conclude the proof, note that the variational inequality can be
rewritten as

(I =pW +~f)p" —p*z—p") <0, zcF,
which, due to , is equivalent to the fixed point equation
Pr(l — pW +~f)p" =
O

3 Numerical Example

Set Hy = Hs = R. Let C' = [0,4+00) and @ = (—00,0]. Suppose A: R — R,
W . R—->RU:C—->C,V:Q — Qand f:R — R are defined by
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Table 1: Results for different initial values
No. of iterations z9=—1.5 z9=10 xz9=2.0

-1.500000  1.000000 2.000000
-0.254372  0.170616 0.336936
-0.049675 0.033328 0.065775
-0.010527  0.007063 0.013939
-0.002359  0.001583 0.003124
-0.000551  0.000370 0.000730
-0.000133  0.000089 0.000176
-0.000033  0.000022 0.000043
-0.000008  0.000006 0.000011
-0.000002  0.000001  0.000003
-0.000001  0.000000 0.000001
-0.000000  0.000000 0.000000

— = =
Do ©woao ok W

Figure 1: Convergence of {x,,} with different initial values for n = 20.

Az) = —z, W(zx) =2z, U(x) = z/2, V(x) =sin(z), and f(z) = z/3, z € R,
respectively. Here A is a bounded linear operator, W is a strongly positive
bounded linear operator with coefficient ( = 2, and f is a 7-Lipschitzian
mapping with coefficient 7 = 1/3. Also, both U and V' are non-expansive
mappings.

Let £y : R — R be defined as Ey(x) = 2z and E, : R — R be defined as
Ey(x) = =4z /5. For A = 1/4, we compute the resolvent of F; and E, as

2 5

Jag () = gzt, and Ia g, (x) = e

It can be easily seen that € = {0} here.
Also, define G1(z,y) = 3y* + 22y — 522 and Go(z,y) = y? — 22, and put
d1(z,y) = ¢a(z,y) = 0. It is easy to see that G and G5 satisfy conditions

27
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(i)—(iv) of Assumptions 1. Therefore, for 7, = r > 0, T (x) is non-empty
and single-valued for each x € C'. Hence, for r > 0, there exists z € C' such
that

1
Gi(z,y) +=(y—2z2—2) >0 for any y € C,
r
which is equivalent to
3ry? + (2 — x4+ 2r2)y + (vz — 5rz* — 2%) > 0, yeC.

After solving the above inequality, we get z = /(1 + 8r) for each r > 0, i.e.,
T (x) = x/(1 + 8r) for each r > 0. Similarly, 7°2(x) = z/(1 + 2r). It can
be easily seen that & = {0} here. This implies that F = QNS = {0}. Now,
let us put r =1/8, v =1 and

1 m+1 . m+3 . m+4

=6 T omrs) M mra T mys

for each m > 1. Then p¢ > 7 and the sequences {0y, }, {bm}, {7}, and
{¢L} satisfy the conditions of Theorems [1], [2] and

In Table |1} we present iterations of the Algorithm for different initial val-
ues, which are illustrated on Figure [I} It can be seen, that the constructed
sequence {x,,} converges to 0.

Acknowledgments. The authors are very grateful to the anonymous ref-
eree for his valuable comments toward the improvement of the paper.
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