On *w*-extensions of the abelian semigroups

S. A. Grigorian^{*} and T. A. Khorkova^{**}

- * Kazan State Power-Engineering University. Russian Federation, 420066, Kazan, Krasnoselskaya str., bldg. 51, KSPU. gsuren@inbox.ru
- ** Kazan State Power-Engineering University. Russian Federation, 420066, Kazan, Krasnoselskaya str., bldg. 51, KSPU. tamarakhrkva@rambler.ru

Abstract

In this paper introduced a criterion of weight extension on semigroups.

Key Words: semigroup, weight, extension. Mathematics Subject Classification 2000: Primary 20K35, Secondary 20M15, 20F60, 46A22.

Introduction

Let H be a subsemigroup of commutative additive group without torsion Γ . A map ν on the semigroup H with values in the extended half line $\overline{\mathbb{R}}_+ = [0, \infty]$ is called a *weight* if $\nu(a + b) = \nu(a) + \nu(b)$, for all $a, b \in H$. A weight ν is called *finite*, if $\nu : H \to [0, \infty)$. By W(H) we denote the set of all weights on H.

All the semigroups in this paper are assumed to contain an identity element 0 of the group Γ , $\nu(0) = 0$, for all $\nu \in W(H)$ and the semigroup H is assumed to not contain any non-trivial subgroup.

K. Ross [1] (see also [2]) obtained a criterion for weight ν on the subsemigroup $H(H \subset S)$ to be extended as a weight on the semigroup S in terms of order relation on H, generated by S. The question of weight extension is strongly connected with the question of multiplicative linear functionals extension from algebra A_H to algebra A_S (see [3], [4]).

Definition. A semigroup S is called a *w*-extension of subsemigroup H if every weight $\nu \in W(H)$ can be extended as a weight $\tilde{\nu}$ on S.

In this paper we define an angle between elements of the semigroup H and give a criterion of w-extension by this definition.

1 Angles on semigroups

Consider two additive semigroups $H \subset S$. We define a partial order in the semigroup H generated by S as follows: $a < b, a, b \in H$, if a + c = b, for some $c \in S \setminus \{0\}$.

The following theorem gives a necessary and sufficient condition for weight ν to be an extendable.

Theorem 1.1 ([1], [2]). The weight $\nu \in W(H)$ has an extension on S if and only if ν preserves an order relation on H generated by S.

Consider a semigroup $H, H \subset \Gamma$. The elements $a, b \in H$ are called *independent* on \mathbb{Z} if $n \cdot a + m \cdot b \neq 0, n, m \in \mathbb{Z} \setminus \{0\}$. Given an independent elements $a, b \in H$ on \mathbb{Z} , let

$$\Gamma_{a,b} = \{ n \cdot a + m \cdot b | n, \ m \in \mathbb{Z} \} \subset \Gamma.$$

One can easily check that $\Gamma_{a,b}$ is a group. Define a mapping $\Phi_{a,b} : \Gamma_{a,b} \to \mathbb{Z} \times \mathbb{Z}$ by letting $\Phi_{a,b}(n \cdot a + m \cdot b) = (n,m)$, for all $n,m \in \mathbb{Z}$. Clearly, $\Phi_{a,b}$ is a homomorphism. Let $H_{a,b} = \Phi_{a,b}(\Gamma_{a,b} \cap H)$, $H_{a,b}$ is a subsemigroup in $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$.

Definition 1.2 Let $a, b \in H$ be an independent elements on \mathbb{Z} . The angle of a minimal cone in \mathbb{R}^2 containing $H_{a,b}$ is called the angle between a and b in H.

Since $a, b \in H$, the points (1,0) and (0,1) belong to $H_{a,b}$. Therefore, $(n,m) \in H_{a,b}$, for all $n, m \in \mathbb{Z}_+$. Denote by $K_{a,b}^H$ the minimal cone containing $H_{a,b}$ and by $\delta_H(a,b)$ the angle between a and b.

Similarly, one can define a semigroup $S_{a,b} = \Phi_{a,b}(\Gamma_{a,b} \cap S)$, a cone $K_{a,b}^S$ and an angle $\delta_S(a,b)$.

Since $H \subset S$, we have $K_{a,b}^H \subset K_{a,b}^S$ and $\delta_H(a,b) \leq \delta_S(a,b)$.

2 Main Result

We are now able to state the main result.

Theorem 2.1 Let $0 \in S$. The following conditions are equivalent:

- 1. every weight ν on H can be extended to a weight $\tilde{\nu}$ on S;
- 2. $\delta_H(a,b) = \delta_S(a,b)$, for all $a, b \in H$.

Proof. $1 \Rightarrow 2$.

Conversely, assume that there are independent elements $a, b \in H$ on \mathbb{Z} such that $\delta_H(a, b) < \delta_S(a, b)$. It means that the cone $K_{a,b}^H$ is a proper subset of the cone $K_{a,b}^S$. Then there is a line l with the following properties: $(0, 0) \in l, l \subset K_{a,b}^S$, the line l and the cone $K_{a,b}^H$ have only one common point (0, 0).

Consider the function ν on $K_{a,b}^H$ defined by the equality: $\nu(c) = pr_l(c)$, for all $c \in K_{a,b}^H$, i.e. $\nu(c)$ is a distance between $c \in K_{a,b}^H$ and a line l. Clearly, ν is an additive positive function on $K_{a,b}^H$, i.e. ν is a weight. Since $H_{a,b}$ is a subsemigroup of $K_{a,b}^H$, a restriction function $\nu|_{H_{a,b}}$ is also a weight.

Prove that $\nu|_{H_{a,b}}$ doesn't have an extension to a weight on $S_{a,b}$.

Indeed, let the element $c \in S_{a,b}$ and the cone $K_{a,b}^H$ lie on the opposite sides from the line l. Suppose c = (n, m) and k = |n| + |m|. The points d = (-k, k) and c + d belong to $H_{a,b}$. We have that $pr_l(c + d) = pr_l(d) - pr_l(c)$. Hence $\nu(c + d) < \nu(d)$. Therefore, a weight ν doesn't preserve an order relation. Hence, $\delta_H(a, b) = \delta_S(a, b)$.

$2 \Rightarrow 1.$

Conversely, suppose there is a weight $\nu \in W(H)$ that doesn't have an extension on S. According to the theorem 1.1, there are elements $a, b \in H$ such that a < b $(b = a + c, c \in S)$ and $\nu(a) > \nu(b)$.

We claim that a and b are independent elements on Z. Indeed, if we suppose the contrary, i.e. na + mb = 0, for some $n, m \in \mathbb{Z}$, then (n + m)a + mc = 0. Without loss of generality we can assume that m > 0. Then n + m < 0 and mc = -(n + m)a is an element in H. Therefore $\nu(mb) > \nu(ma)$. Hence $\nu(b) > \nu(a)$ contrary to the hypothesis on ν . We also prove that $mc \notin H$, for all $m \in \mathbb{Z} \setminus \{0\}$.

For the mapping $\Phi_{a,b}: \Gamma_{a,b} \to \mathbb{Z} \times \mathbb{Z}$ we have $\Phi_{a,b}(a) = (1,0), \Phi_{a,b}(b) = (0,1), \Phi_{a,b}(c) = (-1,1)$. Therefore, $\mathbb{Z}_+ \times \mathbb{Z}_+$ is a subsemigroup of the semigroup $H_{a,b}$. Show that the intersection of the half-plane $\{(x,y) \in \mathbb{R}^2 : x+y < 0\}$ and $H_{a,b}$ is the empty set. Suppose, in the contrary, $(l,k) \in H_{a,b}$ and l+k < 0. Then -k-l > 0 and (-k-l)(1,0) = (-k-l,0) belongs to the semigroup $H_{a,b}$. Hence, $(l,k) + (-k-l,0) = (-k,k) = k(-1,1) \in H_{a,b}$. We observe that $kc \in H_{a,b}$ in contradiction with the hypothesis on c. Hence $\{(x,y) \in \mathbb{R}^2 : x+y < 0\} \cap H_{a,b} = \emptyset$.

If $\delta_H(a,b) = \delta_S(a,b)$, i.e. $K_{a,b}^H = K_{a,b}^S$, then the half-line $\{(-t,t) : t \in \mathbb{R}_+\}$ belongs to a minimal cone $K_{a,b}^H$. Therefore, for any $\epsilon > 0$ there exists an element $(n,m) \in H_{a,b}$, such that n < 0, m > 0 and $|-1 + \frac{n}{m}| < \epsilon$. Hence $na + mb \in H$ and $\nu(na + mb) + \nu(-na) = \nu(mb)$.

Consequently,

$$m\nu(b) - (-n)\nu(a) \ge 0,$$

$$\nu(b) \ge \left(1 - \frac{n}{m}\right)\nu(a) + \nu(a) \ge (1 - \epsilon)\nu(a).$$

Taking a limit by $\epsilon \to 0$, we obtain that $\nu(b) \ge \nu(a)$ in contradiction with the assumption $\nu(a) > \nu(b)$. \Box

References

- K. A. Ross, A note of extending semicharacters on semigroups, Proc. Amer. Math. Soc., p. 579-583.
- [2] A. N. Sherstnev, An analog of the Hahn-Banach theorem for commutative semigroups, Russian Journ. of Math. Physics, 2002, v. 9, N 2; p. 198-201.
- [3] S. A. Grigorian and Th. Tonev, Shift-invariant algebras on groups, Cont. Math., v. 363, 2004, p. 111-127.
- [4] Th. Tonev and S. A. Grigorian, Analytic functions on compact groups and their applications to almost periodic functions, Cont. Math., v. 328, 2003, p. 299-321.