On w-extensions of the abelian semigroups

S. A. Grigorian* and T. A. Khorkova**
* Kazan State Power-Engineering University. Russian Federation, 420066, Kazan, Krasnoselskaya str., bldg. 51, KSPU.
gsuren@inbox.ru
** Kazan State Power-Engineering University. Russian Federation, 420066, Kazan, Krasnoselskaya str., bldg. 51, KSPU.
tamarakhrkva@rambler.ru

Abstract

In this paper introduced a criterion of weight extension on semigroups.

Key Words: semigroup, weight, extension.
Mathematics Subject Classification 2000: Primary 20K35, Secondary 20M15, 20F60, 46A22.

Introduction

Let H be a subsemigroup of commutative additive group without torsion Γ. A map ν on the semigroup H with values in the extended half line $\overline{\mathbb{R}}_{+}=[0, \infty]$ is called a weight if $\nu(a+b)=\nu(a)+\nu(b)$, for all $a, b \in H$. A weight ν is called finite, if $\nu: H \rightarrow[0, \infty)$. By $W(H)$ we denote the set of all weights on H.

All the semigroups in this paper are assumed to contain an identity element 0 of the group $\Gamma, \nu(0)=0$, for all $\nu \in W(H)$ and the semigroup H is assumed to not contain any non-trivial subgroup.
K. Ross [1] (see also [2]) obtained a criterion for weight ν on the subsemigroup $H(H \subset S)$ to be extended as a weight on the semigroup S in terms of order relation on H, generated by S. The question of weight extension is strongly connected with the question of multiplicative linear functionals extension from algebra A_{H} to algebra A_{S} (see [3], [4]).

Definition. A semigroup S is called a w-extension of subsemigroup H if every weight $\nu \in W(H)$ can be extended as a weight $\tilde{\nu}$ on S.

In this paper we define an angle between elements of the semigroup H and give a criterion of w-extension by this definition.

1 Angles on semigroups

Consider two additive semigroups $H \subset S$. We define a partial order in the semigroup H generated by S as follows: $a<b, a, b \in H$, if $a+c=b$, for some $c \in S \backslash\{0\}$.

The following theorem gives a necessary and sufficient condition for weight ν to be an extendable.

Theorem 1.1 ([1], [2]). The weight $\nu \in W(H)$ has an extension on S if and only if ν preserves an order relation on H generated by S.

Consider a semigroup $H, H \subset \Gamma$. The elements $a, b \in H$ are called independent on \mathbb{Z} if $n \cdot a+m \cdot b \neq 0, n, m \in \mathbb{Z} \backslash\{0\}$. Given an independent elements $a, b \in H$ on \mathbb{Z}, let

$$
\Gamma_{a, b}=\{n \cdot a+m \cdot b \mid n, m \in \mathbb{Z}\} \subset \Gamma .
$$

One can easily check that $\Gamma_{a, b}$ is a group. Define a mapping $\Phi_{a, b}: \Gamma_{a, b} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by letting $\Phi_{a, b}(n \cdot a+m \cdot b)=(n, m)$, for all $n, m \in \mathbb{Z}$. Clearly, $\Phi_{a, b}$ is a homomorphism. Let $H_{a, b}=\Phi_{a, b}\left(\Gamma_{a, b} \cap H\right), H_{a, b}$ is a subsemigroup in $\mathbb{Z} \times \mathbb{Z}=\mathbb{Z}^{2}$.

Definition 1.2 Let $a, b \in H$ be an independent elements on \mathbb{Z}. The angle of a minimal cone in \mathbb{R}^{2} containing $H_{a, b}$ is called the angle between a and b in H.

Since $a, b \in H$, the points $(1,0)$ and $(0,1)$ belong to $H_{a, b}$. Therefore, $(n, m) \in H_{a, b}$, for all $n, m \in \mathbb{Z}_{+}$. Denote by $K_{a, b}^{H}$ the minimal cone containing $H_{a, b}$ and by $\delta_{H}(a, b)$ the angle between a and b.

Similarly, one can define a semigroup $S_{a, b}=\Phi_{a, b}\left(\Gamma_{a, b} \cap S\right)$, a cone $K_{a, b}^{S}$ and an angle $\delta_{S}(a, b)$.

Since $H \subset S$, we have $K_{a, b}^{H} \subset K_{a, b}^{S}$ and $\delta_{H}(a, b) \leq \delta_{S}(a, b)$.

2 Main Result

We are now able to state the main result.
Theorem 2.1 Let $0 \in S$. The following conditions are equivalent:

1. every weight ν on H can be extended to a weight $\tilde{\nu}$ on S;
2. $\delta_{H}(a, b)=\delta_{S}(a, b)$, for all $a, b \in H$.

Proof. $1 \Rightarrow 2$.
Conversely, assume that there are independent elements $a, b \in H$ on \mathbb{Z} such that $\delta_{H}(a, b)<$ $\delta_{S}(a, b)$. It means that the cone $K_{a, b}^{H}$ is a proper subset of the cone $K_{a, b}^{S}$. Then there is a line l with the following properties: $(0,0) \in l, l \subset K_{a, b}^{S}$, the line l and the cone $K_{a, b}^{H}$ have only one common point $(0,0)$.

Consider the function ν on $K_{a, b}^{H}$ defined by the equality: $\nu(c)=p r_{l}(c)$, for all $c \in K_{a, b}^{H}$, i.e. $\nu(c)$ is a distance between $c \in K_{a, b}^{H}$ and a line l. Clearly, ν is an additive positive function on $K_{a, b}^{H}$, i.e. ν is a weight. Since $H_{a, b}$ is a subsemigroup of $K_{a, b}^{H}$, a restriction function $\left.\nu\right|_{H_{a, b}}$ is also a weight.

Prove that $\left.\nu\right|_{H_{a, b}}$ doesn't have an extension to a weight on $S_{a, b}$.
Indeed, let the element $c \in S_{a, b}$ and the cone $K_{a, b}^{H}$ lie on the opposite sides from the line l. Suppose $c=(n, m)$ and $k=|n|+|m|$. The points $d=(-k, k)$ and $c+d$ belong to $H_{a, b}$. We have that $p r_{l}(c+d)=p r_{l}(d)-p r_{l}(c)$. Hence $\nu(c+d)<\nu(d)$. Therefore, a weight ν doesn't preserve an order relation. Hence, $\delta_{H}(a, b)=\delta_{S}(a, b)$.

$2 \Rightarrow 1$.

Conversely, suppose there is a weight $\nu \in W(H)$ that doesn't have an extension on S. According to the theorem 1.1, there are elements $a, b \in H$ such that $a<b(b=a+c, c \in S)$ and $\nu(a)>\nu(b)$.

We claim that a and b are independent elements on \mathbb{Z}. Indeed, if we suppose the contrary, i.e. $n a+m b=0$, for some $n, m \in \mathbb{Z}$, then $(n+m) a+m c=0$. Without loss of generality we can assume that $m>0$. Then $n+m<0$ and $m c=-(n+m) a$ is an element in H. Therefore $\nu(m b)>\nu(m a)$. Hence $\nu(b)>\nu(a)$ contrary to the hypothesis on ν. We also prove that $m c \notin H$, for all $m \in \mathbb{Z} \backslash\{0\}$.

For the mapping $\Phi_{a, b}: \Gamma_{a, b} \rightarrow \mathbb{Z} \times \mathbb{Z}$ we have $\Phi_{a, b}(a)=(1,0), \Phi_{a, b}(b)=(0,1), \Phi_{a, b}(c)=$ $(-1,1)$. Therefore, $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$is a subsemigroup of the semigroup $H_{a, b}$. Show that the intersection of the half-plane $\left\{(x, y) \in \mathbb{R}^{2}: x+y<0\right\}$ and $H_{a, b}$ is the empty set. Suppose, in the contrary, $(l, k) \in H_{a, b}$ and $l+k<0$. Then $-k-l>0$ and $(-k-l)(1,0)=(-k-l, 0)$ belongs to the semigroup $H_{a, b}$. Hence, $(l, k)+(-k-l, 0)=(-k, k)=k(-1,1) \in H_{a, b}$. We observe that $k c \in H_{a, b}$ in contradiction with the hypothesis on c. Hence $\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x+y<0\} \cap H_{a, b}=\emptyset$.

If $\delta_{H}(a, b)=\delta_{S}(a, b)$, i.e. $K_{a, b}^{H}=K_{a, b}^{S}$, then the half-line $\left\{(-t, t): t \in \mathbb{R}_{+}\right\}$belongs to a minimal cone $K_{a, b}^{H}$. Therefore, for any $\epsilon>0$ there exists an element $(n, m) \in H_{a, b}$, such that $n<0, m>0$ and $\left|-1+\frac{n}{m}\right|<\epsilon$. Hence $n a+m b \in H$ and $\nu(n a+m b)+\nu(-n a)=\nu(m b)$.

Consequently,

$$
\begin{aligned}
m \nu(b)-(-n) \nu(a) & \geq 0 \\
\nu(b) \geq\left(1-\frac{n}{m}\right) \nu(a)+\nu(a) & \geq(1-\epsilon) \nu(a)
\end{aligned}
$$

Taking a limit by $\epsilon \rightarrow 0$, we obtain that $\nu(b) \geq \nu(a)$ in contradiction with the assumption $\nu(a)>\nu(b)$.

References

[1] K. A. Ross, A note of extending semicharacters on semigroups, Proc. Amer. Math. Soc., p. 579-583.
[2] A. N. Sherstnev, An analog of the Hahn-Banach theorem for commutative semigroups, Russian Journ. of Math. Physics, 2002, v. 9, N 2; p. 198-201.
[3] S. A. Grigorian and Th. Tonev, Shift-invariant algebras on groups, Cont. Math., v. 363, 2004, p. 111-127.
[4] Th. Tonev and S. A. Grigorian, Analytic functions on compact groups and their applications to almost periodic functions, Cont. Math., v. 328, 2003, p. 299-321.

