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On the Divergence of Fourier Series in the
General Haar System
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Abstract. For any countable set D C [0, 1], we construct a
bounded measurable function f such that the Fourier series of f
with respect to the regular general Haar system is divergent on
D and convergent on [0, 1]\ D.
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1 Introduction

Let {f.(z)}22, be a sequence of functions, f,: [0,1] — R for all n.
For a functional series > f,(z), the set D C [0, 1] is called a divergence

n=1
set if the series is divergent for any x € D and is convergent when x ¢ D.

There are many results concerning divergence sets for the Fourier series
with respect to classical systems. A. Haar [9] proved that the Fourier-Haar
series of any function continuous on [0, 1] is uniformly convergent, and for any
measurable function, its Fourier-Haar series is convergent almost everywhere
on [0,1]. V. Prokhorenko [I8] proved that for any countable set F' C [0, 1],
there exists a bounded function such that the Fourier-Haar series of that
function is divergent on F' and convergent on [0, 1]\ F. V. Bugadze [2] proved
that for any set with 0 measure, there exists a bounded function such that
its Fourier-Haar series is divergent on that set.

Other interesting results on divergence sets of the Fourier-Haar series can
be found, for example, in [12] and [I7]. For similar results for the Fourier-
Walsh series see [7], [14], [15], and for the trigonometric Fourier series see
[51, [6], [0, [19], [20], [21].

In this paper, we consider the Fourier series with respect to the classical
Haar system. Particularly, we prove the following theorem.
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Theorem 1 For any countable set D C [0, 1], there exists a bounded mea-
surable function f: [0,1] — R such that D is a divergence set for the Fourier
series of f with respect to the reqular general Haar system.

Note that Theorem [1|is a generalization of Prokhorenko’s theorem men-
tioned above. The methods used in the proof of the Theorem (1| are general-
izations of the methods used in [18].

The following question remains open: Is Theorem [1]true for every general
Haar system (not regular)?

2 Notations

Let us recall the definition of the general Haar system {h,}5°; normalized
in L?[0,1] (see [11], [16]).
For to =0, t; = 1, let A" = [0,1] and define hy(z) by
hl(x) = X[0,1](m)7
where by X', we denote the characteristic function of the set £.
For t; € (0,1), let A® = [0,t), AP = [t2,1], Ay = AP = [0,1],
AS =1[0,t5), Ay = [t2,1], and put

B \/M(Az*)u(Az)’ fe i

S

where 1(A) stands for the Lebesgue measure of the measurable set A.

ho(z) :

Suppose now that tg,ty,...,t, (n > 2) are already chosen. Let AY‘),
Agn), ..., A" be intervals, enumerated from the left to the right, obtained af-
ter splitting [0, 1] by {tx}}_, points. Note that each interval Agcn), 1 <k<n,
is right-open, while A% is closed. Thus, every point from [0, 1] is exactly in
one interval Ain), 1<k<n.

Let t,41 € (0,1)\{t2,...,t,} be the next point, and suppose t,1 € A,(g;)
for some ko € [1,n]. If ko = n, put Apyy = A = [a,1] and let A}, =
[aytr)s Anyy = [tars, 1 1 < ko < m, put A,y = AYY = [be), AL, =
(b, th+1), A1 = [tny1, ¢), and define A, (x) by

( 1% (A;-i-l) . +
ifexeA .,
Vi ﬂ

A:L_"rl) 2 (An—H) ’
hpy1(x) == _\/ H (Ar+1+1)

H (A;H) 1 (Anir)’
0, if x € [0, 1]\Ap41.

ifrel 4,

\
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The only requirement for the points ¢, is that the set T = {tx}72, be
dense in [0, 1], i.e
lim max pu (A( )) = 0. (1)

n—oo 1<k<n

Note that if 7 = {0,1, %, i, 2,%,2, g, g, e }, we get the classical Haar
system (see [I, chapter 1, §6], [I3] chapter 3, §1]).

For each dense in [0, 1] set T, the corresponding Haar system is a com-
plete orthonormal system in L2[0,1], and it forms a basis in each L[0, 1],
1 < p < o0. Since the Haar system forms a martingale differences, from
Burkholders results on unconditionality of martingale differences ([3], [4]),
it follows that every general Haar system is an unconditional basis in L?[0, 1],
1 <p<oo.

The general Haar system is called regular (see [§]) if there exists a real
number A > 1 such that for any natural number n > 1

L p(AY)
Py

n

<A\ 2)

The classical Haar system is regular with A = 1.
Note that for any z € [0,1] and n in N, there exists ky € [1,n] such that

T e A,(:g). We set
Afe,n) = Ay,

For a function f, denote by ¢, (f) its Fourier coefficients with respect to

the general Haar system:
1
~ [ fOmar w1
0

Sn(f; ) ::ch(f)hk(x), zel0,1, n>1.
k=1
An important property of the classical Haar system is that the partial sums
of the Fourier-Haar series can be expressed by means of integrals on dyadic
intervals (see [Il chapter 1, §6], [I3] chapter 3, §1]).
It is not difficult to see that the general Haar system has the same prop-
erty, that is, for each function f € L'[0,1] and n > 1,

Su(f;x) = A / f(t)dt for any x € [0,1] (3)
A(z,n)

and put

From it follows that for each continuous function f its Fourier series
with respect to the general Haar system converges uniformly, and for each
function f € L'[0, 1], the series converges almost everywhere on [0, 1].
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3 Auxiliary Lemma

To prove our main result, we need the following auxiliary lemma.

Lemma 1 Let {h,}>°, be a regular general Haar system. Then for any
point xy € [0, 1], there exists a function f: [0,1] — R satisfying the following
conditions:

L 0< f(x) <1 forallx €[0,1];

II. For each point x € [0,1]\{xo}, there exists ng = ng(xo, ) such that
Sn(fix) = Sny(f;2) for alln > ng, n € N;

III. There exist sequences of natural numbers ps = ps(zo) and qs = qs(zo),
s € N, such that p; / o0 and qs / o0 as s — 00, ps > s, and

1Sp. (f370) — Sg.(f; 20)| > m for all s € N.

Proof. Let us define inductively an increasing sequence {k;}°; of natural
numbers such that xg € Ay, for every i (such sequence exists due to ().
For ¢« = 1, we get k; = 2 since Ay = [0, 1] is the first interval including z.
We set

A+ if To € A+ ~
A = ki? ki A, = AL \AL [x0].
k; [ 0] {Az;-a if 2y € A7, k; [0 ki \A, [70]

Since xg € Ay, [zo], we have
Ap,[xo] = Ao, ki). (4)

Choose k;;1 such that Ay, , coincides with Ay, [z]. Then

Aki+1 - Ak@ [CL’()] = Aki+1[x0] U zki-ﬁ-l [[Eo],
(D) = (B foo]) = (A wo]) + 4t (Bpfoa] ). (5)
Since {h,}52, is a regular general Haar system (2)), we have
% < M <\ A> 1 (6)
(B fao])
Define a function f by
f(x):XGEs(x), x € [0,1], (7)

where E, = Z;%H[xo]. It is clear that f satisfies (see (7).
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Let z € [0, 1]\{xo} and let ny be the smallest natural number for which f
is constant on A(z,ng) (see (7). It is not difficult to see that f is constant
on A(z,n) for all n > ng. Taking into account, we immediately get
Sn(f;x) = Sny(f;x) for all n > ng, n € N.

To verify the statement , define p, and ¢, as follows:

Ps = k?sa qs ‘= k?s—l; seN. (8)
From f we get
|Sps(f’ l’o) - SQs(fa $0)| -

L 1
| n (Ao, R)) /)f(t)dt_u(A(xO,km)) JARCEE

A(zo,k2s A(zo,k2s—1)

4 Proof of the Theorem

Proof. Let E = {x1,x9,...,2k,...}. Successively applying Lemma [1| for
each point x;, € E, we obtain a sequence of functions { fz(x)},—, such that
the following conditions are satisfied:
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1. Forall k € N
0< fi(z) <1 forall z € [0, 1]; 9)

2. For all £ € N and = € [0,1]\{xx}, there exists a natural number
ng = ng(zg, x) such that

Sn(fr;x) = Sp, (fi; ) for all m > ny, neN; (10)

3. For all k € N, there exist sequences N* = N(k)( k), MP = M(k)( k)s

s > 1, of natural numbers such that N /‘ oo and MF /‘ 00 as
s — oo, and for all s > 1, N® > M) and

1
‘Sngk)(fk;Ik) = Sy (feszn)| 2 SR (11)
From @ we get that the series
DA+ 1) fi(a)
k=1
is uniformly convergent on [0, 1]. Setting
fla) =Y A+ 1) fi(a),
k=1
we obtain .
=3 A+ 1) S, (fisx). (12)

=1

k
First, let us prove that S,(f;z) is convergent on [0,1]\E. Let z €
[0, 1]\ E. For any § > 0, take v = v(d) such that

[ee)

d (1)< (13)

k=v+1

Let Ny := max{ni(z1,z), na2(22, ), ...,n,(x,,z)}. Taking into account (10)),
for all n > Ny, we get S, (fx,z) = Sn,(fx,x), k =1,2,...,v. Therefore, for
all N, M > Ny, we have

Sx(fiir) = Sulfisz) =0 for any k € [1,1]. (14)
Since, according to and @,

0<Su(fr;z) <1 for all n,k € N, (15)
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from f for all N, M > Ny, we obtain

1Sn(fs2) = Su(f2)] = ki@ + 1) (Sn(fis2) — Su(fi; @) <

v

< IS A+ D) (Sy(fir; o) — SM(fk;ZIT))‘ +

k=1

3 ) [ S (fri ) — S (fi 0] <

k=v+1

< Y A+ <
k=v+1

Now let us prove that S, (f;x) is divergent on E = {x1, 29, ...,zk, ... }.
For any « = xy, € E and take a natural number jj such that (see (10), (1))

N;50)7 M](f()) > maX{TIq(.Tl, xko)a ng(l'g, xk0)7 s 7nk071(xk0717 xko)}a

and let Ny = min{N}fO), Mj(fo)}. From it follows that S,(fk, k) =
SN (fr, k) forany k= 1,2, ..., kg—1 and n > Ny. Therefore, for all j > jo,
we have

SN](km(fk;xko) - SM](ko)(kaxko) =0, k€1, ko).

From here and , , it follows that for all j > 7, we can write

‘SN](km (f3 k) — Stk (f: ko)

= Z(/\ 4 1)~ (SN(ko)(fk;Jiko) — 5M§k0>(fk;$ko)) >
k=1 J J

> (A1)~ SN](_ko)(fko;Iko) - SM;km(fko;xko) -

- Z (/\ + 1>_4k SN(kO)(fk; "Eko) - SM§kO)(fk; xko) -
k=ko+1 ! !
ko—1

- Z()\ + 1)~ ‘SN(ko)(fk§$ko) — 8,00 (fi; Tho ) | 2
k=1 J J

o0

> (>\+1)_4k°—()\i1>2 = Y =

k=ko+1
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1 (A + 1)~ 40ko+1)

A+ 1)ot2 1T (A4 1)~4

1 1
O D) (A Do((A+ 1)1 —1)

1 1
= (A + 1)%o+2 (X 1)%ho+3 - (A + 1)%o+3”

This completes the proof. [
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