On the Divergence of Fourier Series in the General Haar System

M. G. Grigoryan and A. A. Maranjyan

Abstract. For any countable set $D \subset [0,1]$, we construct a bounded measurable function f such that the Fourier series of f with respect to the regular general Haar system is divergent on D and convergent on $[0,1]\backslash D$.

Key Words: Fourier series, general Haar system, divergence sets Mathematics Subject Classification 2010: 42A20, 42C10

1 Introduction

Let $\{f_n(x)\}_{n=1}^{\infty}$ be a sequence of functions, $f_n: [0,1] \to \mathbb{R}$ for all n.

For a functional series $\sum_{n=1}^{\infty} f_n(x)$, the set $D \subset [0,1]$ is called a divergence set if the series is divergent for any $x \in D$ and is convergent when $x \notin D$.

There are many results concerning divergence sets for the Fourier series with respect to classical systems. A. Haar [9] proved that the Fourier-Haar series of any function continuous on [0, 1] is uniformly convergent, and for any measurable function, its Fourier-Haar series is convergent almost everywhere on [0, 1]. V. Prokhorenko [18] proved that for any countable set $F \subset [0, 1]$, there exists a bounded function such that the Fourier-Haar series of that function is divergent on F and convergent on $[0, 1] \setminus F$. V. Bugadze [2] proved that for any set with 0 measure, there exists a bounded function such that its Fourier-Haar series is divergent on that set.

Other interesting results on divergence sets of the Fourier-Haar series can be found, for example, in [12] and [17]. For similar results for the Fourier-Walsh series see [7], [14], [15], and for the trigonometric Fourier series see [5], [6], [10], [19], [20], [21].

In this paper, we consider the Fourier series with respect to the classical Haar system. Particularly, we prove the following theorem.

Theorem 1 For any countable set $D \subset [0,1]$, there exists a bounded measurable function $f:[0,1]\to\mathbb{R}$ such that D is a divergence set for the Fourier series of f with respect to the regular general Haar system.

Note that Theorem 1 is a generalization of Prokhorenko's theorem mentioned above. The methods used in the proof of the Theorem 1 are generalizations of the methods used in [18].

The following question remains open: Is Theorem 1 true for every general Haar system (not regular)?

2 Notations

Let us recall the definition of the general Haar system $\{h_n\}_{n=1}^{\infty}$ normalized in $L^2[0,1]$ (see [11], [16]).

For
$$t_0 = 0$$
, $t_1 = 1$, let $A_1^{(1)} = [0, 1]$ and define $h_1(x)$ by

$$h_1(x) := \chi_{[0,1]}(x),$$

where by χ_E we denote the characteristic function of the set E. For $t_2 \in (0,1)$, let $A_1^{(2)} = [0,t_2)$, $A_2^{(2)} = [t_2,1]$, $\Delta_2 = A_1^{(1)} = [0,1]$, $\Delta_2^+ = [0, t_2), \, \Delta_2^- = [t_2, 1], \, \text{and put}$

$$h_{2}(x) := \begin{cases} \sqrt{\frac{\mu\left(\Delta_{2}^{-}\right)}{\mu\left(\Delta_{2}^{+}\right)\mu\left(\Delta_{2}\right)}}, & \text{if } x \in \Delta_{2}^{+}, \\ -\sqrt{\frac{\mu\left(\Delta_{2}^{+}\right)}{\mu\left(\Delta_{2}^{-}\right)\mu\left(\Delta_{2}\right)}}, & \text{if } x \in \Delta_{2}^{-}, \end{cases}$$

where $\mu(A)$ stands for the Lebesgue measure of the measurable set A.

Suppose now that t_0, t_1, \ldots, t_n $(n \geq 2)$ are already chosen. Let $A_1^{(n)}$, $A_2^{(n)}, \ldots, A_n^{(n)}$ be intervals, enumerated from the left to the right, obtained after splitting [0, 1] by $\{t_k\}_{k=2}^n$ points. Note that each interval $A_k^{(n)}$, $1 \le k < n$, is right-open, while $A_n^{(n)}$ is closed. Thus, every point from [0,1] is exactly in one interval $A_k^{(n)}$, $1 \le k \le n$.

Let $t_{n+1} \in (0,1) \setminus \{t_2,\ldots,t_n\}$ be the next point, and suppose $t_{n+1} \in A_{k_0}^{(n)}$ for some $k_0 \in [1, n]$. If $k_0 = n$, put $\Delta_{n+1} = A_n^{(n)} = [a, 1]$ and let $\Delta_{n+1}^+ = [a, t_{n+1})$, $\Delta_{n+1}^- = [t_{n+1}, 1]$. If $1 \le k_0 < n$, put $\Delta_{n+1} = A_{k_0}^{(n)} = [b, c)$, $\Delta_{n+1}^+ = [t_{n+1}, 1]$ $[b, t_{n+1}), \ \Delta_{n+1}^- = [t_{n+1}, c), \text{ and define } h_{n+1}(x) \text{ by }$

$$h_{n+1}(x) := \begin{cases} \sqrt{\frac{\mu(\Delta_{n+1}^{-})}{\mu(\Delta_{n+1}^{+})\mu(\Delta_{n+1})}}, & \text{if } x \in \Delta_{n+1}^{+}, \\ -\sqrt{\frac{\mu(\Delta_{n+1}^{+})\mu(\Delta_{n+1})}{\mu(\Delta_{n+1}^{-})\mu(\Delta_{n+1})}}, & \text{if } x \in \Delta_{n+1}^{-}, \\ 0, & \text{if } x \in [0, 1] \backslash \Delta_{n+1}. \end{cases}$$

The only requirement for the points t_n is that the set $\mathcal{T} = \{t_k\}_{k=0}^{\infty}$ be dense in [0,1], i.e.,

$$\lim_{n \to \infty} \max_{1 \le k \le n} \mu\left(A_k^{(n)}\right) = 0. \tag{1}$$

Note that if $\tau = \left\{0, 1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \dots\right\}$, we get the classical Haar system (see [1, chapter 1, §6], [13, chapter 3, §1]).

For each dense in [0,1] set \mathcal{T} , the corresponding Haar system is a complete orthonormal system in $L^2[0,1]$, and it forms a basis in each $L^p[0,1]$, $1 \leq p < \infty$. Since the Haar system forms a martingale differences, from Burkholders results on unconditionality of martingale differences ([3], [4]), it follows that every general Haar system is an unconditional basis in $L^p[0,1]$, 1 .

The general Haar system is called regular (see [8]) if there exists a real number $\lambda \geq 1$ such that for any natural number n > 1

$$\frac{1}{\lambda} \le \frac{\mu\left(\Delta_n^+\right)}{\mu\left(\Delta_n^-\right)} \le \lambda. \tag{2}$$

The classical Haar system is regular with $\lambda = 1$.

Note that for any $x \in [0,1]$ and n in \mathbb{N} , there exists $k_0 \in [1,n]$ such that $x \in A_{k_0}^{(n)}$. We set

$$A(x,n) := A_{k_0}^{(n)},$$

For a function f, denote by $c_n(f)$ its Fourier coefficients with respect to the general Haar system:

$$c_n(f) := \int_0^1 f(t)h_n(t)dt, \qquad n \ge 1,$$

and put

$$S_n(f;x) := \sum_{k=1}^n c_k(f)h_k(x), \qquad x \in [0,1], \ n \ge 1.$$

An important property of the classical Haar system is that the partial sums of the Fourier-Haar series can be expressed by means of integrals on dyadic intervals (see [1, chapter 1, $\S 6$], [13, chapter 3, $\S 1$]).

It is not difficult to see that the general Haar system has the same property, that is, for each function $f \in L^1[0,1]$ and $n \ge 1$,

$$S_n(f;x) = \frac{1}{\mu(A(x,n))} \int_{A(x,n)} f(t)dt \quad \text{for any } x \in [0,1]$$
 (3)

From (3) it follows that for each continuous function f its Fourier series with respect to the general Haar system converges uniformly, and for each function $f \in L^1[0, 1]$, the series converges almost everywhere on [0, 1].

3 Auxiliary Lemma

To prove our main result, we need the following auxiliary lemma.

Lemma 1 Let $\{h_n\}_{n=1}^{\infty}$ be a regular general Haar system. Then for any point $x_0 \in [0,1]$, there exists a function $f: [0,1] \to \mathbb{R}$ satisfying the following conditions:

- I. $0 \le f(x) \le 1$ for all $x \in [0, 1]$;
- II. For each point $x \in [0,1] \setminus \{x_0\}$, there exists $n_0 = n_0(x_0,x)$ such that $S_n(f;x) = S_{n_0}(f;x)$ for all $n > n_0$, $n \in \mathbb{N}$;
- III. There exist sequences of natural numbers $p_s = p_s(x_0)$ and $q_s = q_s(x_0)$, $s \in \mathbb{N}$, such that $p_s \nearrow \infty$ and $q_s \nearrow \infty$ as $s \to \infty$, $p_s > q_s$, and $|S_{p_s}(f;x_0) S_{q_s}(f;x_0)| \ge \frac{1}{(\lambda+1)^2}$ for all $s \in \mathbb{N}$.

Proof. Let us define inductively an increasing sequence $\{k_i\}_{i=1}^{\infty}$ of natural numbers such that $x_0 \in \Delta_{k_i}$ for every i (such sequence exists due to (1)). For i = 1, we get $k_1 = 2$ since $\Delta_2 = [0, 1]$ is the first interval including x_0 . We set

$$\Delta_{k_i}[x_0] := \begin{cases} \Delta_{k_i}^+, & \text{if } x_0 \in \Delta_{k_i}^+, \\ \Delta_{k_i}^-, & \text{if } x_0 \in \Delta_{k_i}^-, \end{cases} \qquad \widetilde{\Delta}_{k_i}[x_0] := \Delta_{k_i} \backslash \Delta_{k_i}[x_0].$$

Since $x_0 \in \Delta_{k_i}[x_0]$, we have

$$\Delta_{k_i}[x_0] = A(x_0, k_i). \tag{4}$$

Choose k_{i+1} such that $\Delta_{k_{i+1}}$ coincides with $\Delta_{k_i}[x_0]$. Then

$$\Delta_{k_{i+1}} = \Delta_{k_i}[x_0] = \Delta_{k_{i+1}}[x_0] \cup \widetilde{\Delta}_{k_{i+1}}[x_0],$$

$$\mu\left(\Delta_{k_{i+1}}\right) = \mu\left(\Delta_{k_i}[x_0]\right) = \mu\left(\Delta_{k_{i+1}}[x_0]\right) + \mu\left(\widetilde{\Delta}_{k_{i+1}}[x_0]\right). \tag{5}$$

Since $\{h_n\}_{n=1}^{\infty}$ is a regular general Haar system (2), we have

$$\frac{1}{\lambda} \le \frac{\mu\left(\Delta_{k_i}[x_0]\right)}{\mu\left(\widetilde{\Delta}_{k_i}[x_0]\right)} \le \lambda, \qquad \lambda \ge 1.$$
 (6)

Define a function f by

$$f(x) = \chi_{\bigcup_{s=1}^{\infty} E_s}(x), \qquad x \in [0, 1],$$
 (7)

where $E_s = \widetilde{\Delta}_{k_{2s+1}}[x_0]$. It is clear that f satisfies (I.) (see (7)).

Let $x \in [0,1] \setminus \{x_0\}$ and let n_0 be the smallest natural number for which f is constant on $A(x,n_0)$ (see (7)). It is not difficult to see that f is constant on A(x,n) for all $n > n_0$. Taking (3) into account, we immediately get $S_n(f;x) = S_{n_0}(f;x)$ for all $n > n_0$, $n \in \mathbb{N}$.

To verify the statement (III.), define p_s and q_s as follows:

$$p_s := k_{2s}, \ q_s := k_{2s-1}, \ s \in \mathbb{N}.$$
 (8)

From (3)–(8) we get

$$|S_{p_s}(f,x_0) - S_{q_s}(f,x_0)| =$$

$$\begin{split} &=\left|\frac{1}{\mu\left(A(x_{0},k_{2s})\right)}\int\limits_{A(x_{0},k_{2s})}f(t)dt-\frac{1}{\mu\left(A(x_{0},k_{2s-1})\right)}\int\limits_{A(x_{0},k_{2s-1})}f(t)dt\right|=\\ &=\left|\frac{1}{\mu\left(\Delta_{k_{2s}}[x_{0}]\right)}\int\limits_{\Delta_{k_{2s}}[x_{0}]}f(t)dt-\frac{1}{\mu\left(\Delta_{k_{2s-1}}[x_{0}]\right)}\int\limits_{\Delta_{k_{2s-1}}[x_{0}]}f(t)dt\right|=\\ &=\frac{\mu\left(\widetilde{\Delta}_{k_{2s}}[x_{0}]\right)}{\mu\left(\Delta_{k_{2s}}[x_{0}]\right)\mu\left(\Delta_{k_{2s-1}}[x_{0}]\right)}\int\limits_{\Delta_{k_{2s}}[x_{0}]}f(t)dt\geq\\ &\geq\frac{\mu\left(\widetilde{\Delta}_{k_{2s}}[x_{0}]\right)}{\mu\left(\Delta_{k_{2s}}[x_{0}]\right)\mu\left(\Delta_{k_{2s-1}}[x_{0}]\right)}\int\limits_{\widetilde{\Delta}_{k_{2s+1}}[x_{0}]}f(t)dt=\\ &=\frac{\mu\left(\widetilde{\Delta}_{k_{2s+1}}[x_{0}]\right)\mu\left(\widetilde{\Delta}_{k_{2s+1}}[x_{0}]\right)}{\left(\mu\left(\Delta_{k_{2s+1}}[x_{0}]\right)+\mu\left(\widetilde{\Delta}_{k_{2s}}[x_{0}]\right)+\mu\left(\widetilde{\Delta}_{k_{2s}}[x_{0}]\right)\right)}=\\ \end{split}$$

4 Proof of the Theorem

 $= \frac{1}{\left(\frac{\mu\left(\Delta_{k_{2s+1}}[x_0]\right)}{\frac{\mu\left(\Delta_{k_{2s}}[x$

Proof. Let $E = \{x_1, x_2, \dots, x_k, \dots\}$. Successively applying Lemma 1 for each point $x_k \in E$, we obtain a sequence of functions $\{f_k(x)\}_{k=1}^{\infty}$ such that the following conditions are satisfied:

1. For all $k \in \mathbb{N}$

$$0 \le f_k(x) \le 1 \text{ for all } x \in [0, 1];$$
 (9)

2. For all $k \in \mathbb{N}$ and $x \in [0,1] \setminus \{x_k\}$, there exists a natural number $n_k = n_k(x_k, x)$ such that

$$S_n(f_k; x) = S_{n_k}(f_k; x) \text{ for all } n > n_k, \ n \in \mathbb{N};$$
 (10)

3. For all $k \in \mathbb{N}$, there exist sequences $N_s^{(k)} = N_s^{(k)}(x_k)$, $M_s^{(k)} = M_s^{(k)}(x_k)$, $s \geq 1$, of natural numbers such that $N_s^{(k)} \nearrow \infty$ and $M_s^{(k)} \nearrow \infty$ as $s \to \infty$, and for all $s \geq 1$, $N_s^{(k)} > M_s^{(k)}$ and

$$\left| S_{N_s^{(k)}}(f_k; x_k) - S_{M_s^{(k)}}(f_k; x_k) \right| \ge \frac{1}{(\lambda + 1)^2}.$$
 (11)

From (9) we get that the series

$$\sum_{k=1}^{\infty} (\lambda + 1)^{-4k} f_k(x)$$

is uniformly convergent on [0,1]. Setting

$$f(x) = \sum_{k=1}^{\infty} (\lambda + 1)^{-4k} f_k(x),$$

we obtain

$$S_n(f;x) = \sum_{k=1}^{\infty} (\lambda + 1)^{-4k} S_n(f_k;x).$$
 (12)

First, let us prove that $S_n(f;x)$ is convergent on $[0,1]\backslash E$. Let $x \in [0,1]\backslash E$. For any $\delta > 0$, take $\nu = \nu(\delta)$ such that

$$\sum_{k=\nu+1}^{\infty} (\lambda+1)^{-4k} < \delta. \tag{13}$$

Let $N_0 := \max\{n_1(x_1, x), n_2(x_2, x), \dots, n_{\nu}(x_{\nu}, x)\}$. Taking into account (10), for all $n > N_0$, we get $S_n(f_k, x) = S_{N_0}(f_k, x), k = 1, 2, \dots, \nu$. Therefore, for all $N, M > N_0$, we have

$$S_N(f_k; x) - S_M(f_k; x) = 0$$
 for any $k \in [1, \nu]$. (14)

Since, according to (3) and (9),

$$0 < S_n(f_k; x) < 1 \qquad \text{for all } n, k \in \mathbb{N}, \tag{15}$$

from (12)–(15) for all $N, M > N_0$, we obtain

$$|S_N(f;x) - S_M(f;x)| = \left| \sum_{k=1}^{\infty} (\lambda + 1)^{-4k} \left(S_N(f_k;x) - S_M(f_k;x) \right) \right| \le$$

$$\le \left| \sum_{k=1}^{\nu} (\lambda + 1)^{-4k} \left(S_N(f_k;x) - S_M(f_k;x) \right) \right| +$$

$$+ \sum_{k=\nu+1}^{\infty} (\lambda + 1)^{-4k} \left| S_N(f_k;x) - S_M(f_k;x) \right| \le$$

$$\le \sum_{k=\nu+1}^{\infty} (\lambda + 1)^{-4k} < \delta.$$

Now let us prove that $S_n(f;x)$ is divergent on $E = \{x_1, x_2, \ldots, x_k, \ldots\}$. For any $x = x_{k_0} \in E$ and take a natural number j_0 such that (see (10), (11))

$$N_{j_0}^{(k_0)}, M_{j_0}^{(k_0)} > \max\{n_1(x_1, x_{k_0}), n_2(x_2, x_{k_0}), \dots, n_{k_0-1}(x_{k_0-1}, x_{k_0})\},$$

and let $N_0 = \min\{N_{j_0}^{(k_0)}, M_{j_0}^{(k_0)}\}$. From (10) it follows that $S_n(f_k, x_{k_0}) = S_{N_0}(f_k, x_{k_0})$ for any $k = 1, 2, ..., k_0 - 1$ and $n > N_0$. Therefore, for all $j > j_0$, we have

$$S_{N_j^{(k_0)}}(f_k; x_{k_0}) - S_{M_j^{(k_0)}}(f_k; x_{k_0}) = 0, \qquad k \in [1, k_0).$$

From here and (11), (12), (15) it follows that for all $j > j_0$, we can write

$$\begin{split} &\left|S_{N_{j}^{(k_{0})}}(f;x_{k_{0}}) - S_{M_{j}^{(k_{0})}}(f;x_{k_{0}})\right| = \\ &= \left|\sum_{k=1}^{\infty} (\lambda + 1)^{-4k} \left(S_{N_{j}^{(k_{0})}}(f_{k};x_{k_{0}}) - S_{M_{j}^{(k_{0})}}(f_{k};x_{k_{0}})\right)\right| \geq \\ &\geq (\lambda + 1)^{-4k_{0}} \left|S_{N_{j}^{(k_{0})}}(f_{k_{0}};x_{k_{0}}) - S_{M_{j}^{(k_{0})}}(f_{k_{0}};x_{k_{0}})\right| - \\ &- \sum_{k=k_{0}+1}^{\infty} (\lambda + 1)^{-4k} \left|S_{N_{j}^{(k_{0})}}(f_{k};x_{k_{0}}) - S_{M_{j}^{(k_{0})}}(f_{k};x_{k_{0}})\right| - \\ &- \sum_{k=1}^{\infty} (\lambda + 1)^{-4k} \left|S_{N_{j}^{(k_{0})}}(f_{k};x_{k_{0}}) - S_{M_{j}^{(k_{0})}}(f_{k};x_{k_{0}})\right| \geq \\ &\geq (\lambda + 1)^{-4k_{0}} \frac{1}{(\lambda + 1)^{2}} - \sum_{k=k_{0}+1}^{\infty} (\lambda + 1)^{-4k} = \end{split}$$

$$= \frac{1}{(\lambda+1)^{4k_0+2}} - \frac{(\lambda+1)^{-4(k_0+1)}}{1-(\lambda+1)^{-4}} =$$

$$= \frac{1}{(\lambda+1)^{4k_0+2}} - \frac{1}{(\lambda+1)^{4k_0}((\lambda+1)^4-1)} >$$

$$> \frac{1}{(\lambda+1)^{4k_0+2}} - \frac{1}{(\lambda+1)^{4k_0+3}} = \frac{\lambda}{(\lambda+1)^{4k_0+3}}.$$

This completes the proof. \Box

References

- [1] G. Alexits, Konvergenz probleme der orthogonalreihen, Budapest, VEB Deutscher Verlag der Wissenschafter, Berlin, 1960.
- [2] V. M. Bugadze, Divergence of Fourier-Haar series of bounded functions on sets of measure zero, Math. Notes **51** (1992), no. 5, pp. 437–441. https://doi.org/10.1007/BF01262173
- L. [3] D. Burkholder, Martingale transforms,Ann. Math. (1966),Statist. 37 no. 6, 1494–1504. pp. https://doi.org/10.1214/aoms/1177699141
- [4] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, pp. 647–702. https://doi.org/10.1214/aop/1176993220
- [5] V. V. Buzdalin, On infinitely divergent Fourier trigonometric series of continuous functions, Matem. Zametki 7 (1970), no. 1, pp. 7–18.
- [6] V. V. Buzdalin, Trigonometric Fourier series of continuous functions divergent on a given set (in Russian), Mathematics of the USSR-Sbornik **24** (1974), no. 1, pp. 79–102. http://dx.doi.org/10.1070/SM1974v024n01ABEH001906
- [7] U. Goginava, On the divergence of Walsh-Fejér means of bounded functions on sets of measure zero, Acta Math. Hung. 121 (2008), no. 4, pp. 359–369. https://doi.org/10.1007/s10474-008-7219-2
- [8] S. L. Gogyan, On greedy algorithm in $L^1(0,1)$ by regular Haar system, J. Contemp. Math. Anal. **46** (2011), no. 1, pp. 21–31. https://doi.org/10.3103/S1068362311010043
- [9] A. Haar, Zur theorie der orthogonalen funktionensysteme, Math. Ann.
 69 (1910), no. 3, pp. 331–371. https://doi.org/10.1007/BF01456326

- [10] J-P. Kahane and Y. Katznelson, Sur les ensembles de divergence des series trigonometriques, Studia Math. 26 (1966), no. 3, pp. 305–306. https://doi.org/10.4064/sm-26-3-305-306
- [11] A. Kamont, GeneralHaarsystemandGreedyapproximation. Studia Math. 145 (2001),no. 2, 165-184.pp. http://dx.doi.org/10.4064/sm145-2-5
- [12] G. A. Karagulyan, On the complete characterization of divergence sets of Fourier-Haar series. J. Contemp. Math. Anal. **45** (2010), no.6, pp. 334–347. https://doi.org/10.3103/S1068362310060051
- [13] B. S. Kashin and A. A. Sahakyan, *Orthogonal series* (in Russian), Nauka, Moscow, 1984.
- [14] Sh. V. Kheladze, On everywhere divergence of Fourier series in Vilenkin bounded systems (in Russian), Trudi Tbil. Mat. Inst. AN Gruz. SSR 58 (1978), pp. 225–242.
- [15] Sh. V. Kheladze, On everywhere divergence of Fourier-Walsh series (in Russian), Soobshch. AN Gruz. SSR 77 (1975), no 2., pp. 305–307.
- [16] A. Kh. Kobelyan, On a property of general Haar system, Proceedings of the YSU, Physical and Mathematical Sciences 3 (2013), pp. 23–28.
- [17] M. A. Lunina, The set of points of unbounded divergence of series in the Haar system (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh. **31** (1976), no. 4, pp. 13–20.
- [18] V. I. Prokhorenko, Divergent Fourier series with respect to Haar's system (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (1971) no. 1, pp. 62–68.
- [19] B. S. Stechkin, On convergence and divergence of trigonometric series (in Russian), Uspekhi Mat. Nauk 6 (1951), no. 2 (42), pp. 148–149.
- [20] L. V. Taikov, On the divergence of Fourier series in a re-arranged trigonometric system (in Russian), Uspekhi Mat. Nauk 18 (1963), no. 5 (113), pp. 191–198.
- [21] K. Zeller, Über konvergenzmengen von Fourierreihen, Arch. Math. 6 (1955), no. 4, pp. 335–340. https://doi.org/10.1007/BF01899414

Martin G. Grigoryan Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia. gmarting@ysu.am Artavazd A. Maranjyan Yerevan State University Alex Manoogian 1, 0025 Yerevan, Armenia. arto.maranjyan@gmail.com

Please, cite to this paper as published in Armen. J. Math., V. 13, N. 6(2021), pp. 1-10 https://doi.org/10.52737/18291163-2021.13.6-1-10