On properties of fuzzy ideals in po-semigroup

Samit Kumar Majumder* and Sujit Kumar Sardar**

- * Tarangapur Nanda Kumar High School, Tarangapur, Uttar Dinajpur, West Bengal-733129, India samitmathalg@yahoo.co.in
- ** Department of Mathematics, Jadavpur University, Kolkata-700032 (Formerly of Department of Mathematics, University of Burdwan), India sksardarjumath@gmail.com

Abstract

In this paper some properties of fuzzy ideals and fuzzy ideal extensions in a po-semigroup have been investigated.

Key Words: Fuzzy left(right) ideal, Fuzzy semiprime, Fuzzy ideal extensions. Mathematics Subject Classification 2000: 20M12, 03F55, 08A72

1 Introduction

The important concept of fuzzy set has been introduced by Lofti Zadeh [8]. Since then many papers on fuzzy sets appeared showing its importance in different fields of mathematics. Rosenfeld [6] introduced the concept of fuzzy subgroups. Kuroki [2, 3] defined the fuzzy left and right ideals in a semigroup. The idea of fuzzy bi-ideals in a semigroup has been introduced by Liu [5]. N. Kehayopulu and M. Tsingelis [1] introduced the notion of fuzzy bi-ideals in po-semigroups(ordered semigroups). In this paper different properties of fuzzy ideals and its extensions in a po-semigroup have been investigated and in this connection different types of regularities in a po-semigroup have also been considered.

2 Some Preliminaries

Definition 2.1 [4] A po-semigroup(ordered semigroup) is an ordered set (G, \leq) which is a semigroup such that for $a, b \in G, a \leq b \Rightarrow xa \leq xb$ and $ax \leq bx$.

Definition 2.2 [4] Let G be a po-semigroup. A non-empty subset A of G is said to be right(resp. left) ideal of G if (i) $AG \subseteq A(resp. GA \subseteq A)$, (ii) $x \in A$ and $y \leq x$ imply that $y \in A$.

Definition 2.3 [4] A non-empty subset A of a po-semigroup G is said to be an ideal if is a right ideal as well as left ideal of G.

Definition 2.4 [4] A po-semigroup G is called left(right) regular if for every $a \in G$ there exists $x \in G$ such that $a \leq xa^2$ (resp. $a \leq a^2x$).

Definition 2.5 [4] A po-semigroup G is called regular if for every $a \in G$ there exists $x \in G$ such that $a \leq axa$.

Definition 2.6 [4] A po-semigroup G is called completely regular if for every $a \in G$ there exists $x \in G$ such that $a \leq a^2 x a^2$.

Definition 2.7 [4] A po-semigroup G is called intra regular if for every $a \in G$ there exist $x, y \in G$ such that $a \leq xa^2y$.

Definition 2.8 [4] A po-semigroup G is called left simple if for every $a, b \in G$ there exist $x, y \in G$ such that $b \leq xa$ and $a \leq yb$.

Definition 2.9 [4] A po-semigroup G is called simple if for every $a, b \in G$ there exist $x, y \in G$ such that $a \leq xby$.

Definition 2.10 [1] If $(G, ., \leq)$ be a po-semigroup, a fuzzy subset μ of G is called a fuzzy subsemigroup of G if $\mu(xy) \geq \min\{\mu(x), \mu(y)\} \ \forall x, y \in G$.

Definition 2.11 [1] A fuzzy subset μ of a po-semigroup G is called a fuzzy left ideal of G if

(i) $x \le y \Rightarrow \mu(x) \ge \mu(y) \ \forall x, y \in G.$ (ii) $\mu(xy) \ge \mu(y) \ \forall x, y \in G.$

Definition 2.12 [1] A fuzzy subset μ of a po-semigroup G is called a fuzzy right ideal of G if

(i)
$$x \le y \Rightarrow \mu(x) \ge \mu(y) \ \forall x, y \in G.$$

(ii) $\mu(xy) \ge \mu(x) \ \forall x, y \in G.$

Definition 2.13 [1] A fuzzy subset μ of a po-semigroup G is called a fuzzy ideal of G, if it is both fuzzy left ideal and fuzzy right ideal of G.

Definition 2.14 [1] A fuzzy subsemigroup μ of a po-semigroup G is called a fuzzy bi-ideal of G if

(i) $x \le y \Rightarrow \mu(x) \ge \mu(y) \ \forall x, y \in G.$ (ii) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\} \ \forall x, y, z \in G.$

Definition 2.15 [1] Let G be a po-semigroup and μ, λ be two fuzzy subsets of G. Then the product $\mu \circ \lambda$ of μ and λ is defined as

$$(\mu \circ \lambda)(x) = \sup_{x=yz} [\min\{\mu(y), \lambda(z)\} : y, z \in G]$$

= 0, if for any $y, z \in G, x \neq yz$.

Definition 2.16 [1] A fuzzy subset μ of a po-semigroup G is called a fuzzy semiprime in G if $\mu(x) \ge \mu(x^2) \ \forall x \in G$.

Definition 2.17 [7] Let G be a po-semigroup, μ is a fuzzy subset of G and $x \in G$. The fuzzy subset $\langle x, \mu \rangle : G \to [0, 1]$ is defined by $\langle x, \mu \rangle (y) = \mu(xy)$ is called the extension of μ by x.

3 Fuzzy Ideals in a Po-semigroup

Theorem 3.1 Let I be a non-empty subset of a po-semigroup G and λ_I be the characteristic function of I. Then I is a subsemigroup of G if and only if λ_I is a fuzzy subsemigroup of G.

Proof. The proof is similar to that of po-group. So we omit it. \Box

Theorem 3.2 Let I be a non-empty subset of a po-semigroup G and λ_I be the characteristic function of I. Then I is a left ideal(right ideal, ideal) of G if and only if λ_I is a fuzzy left ideal(resp. fuzzy right ideal, fuzzy ideal) of G.

Proof. Let I be a left ideal of G. Let $x, y \in G$. Then $xy \in I$ if $y \in I$. It follows that $\lambda_I(xy) = 1 \ge \lambda_I(y)$. In the case when $y \notin I$, then $\lambda_I(xy) \ge \lambda_I(y) = 0$.

Let $x, y \in G$ be such that $x \leq y$. If $y \in I$, then $\lambda_I(y) = 1$. Since $x \leq y \in I$, we have $x \in I$, then $\lambda_I(x) = 1$. Thus $\lambda_I(x) \geq \lambda_I(y)$. If $y \notin I$, then $\lambda_I(y) = 0$. Hence we have $\lambda_I(x) \geq 0 = \lambda_I(y)$. So λ_I is a fuzzy left ideal of G.

Conversely, let λ_I be a fuzzy left ideal of G. Let $x, y \in G$ and $y \in I$. Then $\lambda_I(y) = 1$. Again $\lambda_I(xy) \geq \lambda_I(y)$. So, $\lambda_I(xy) = 1$. Consequently, $xy \in I$. Now if $x \leq y$ and $y \in I$, then $\lambda_I(y) = 1$ and $\lambda_I(x) \geq \lambda_I(y)$. So, $\lambda_I(x) = 1$. This implies that $x \in I$. \Box

Theorem 3.3 Let I be a non-empty subset of a po-semigroup G and λ_I be the characteristic function of I. Then I is a bi-ideal of G if and only if λ_I is a fuzzy bi-ideal of G.

Proof. Let I be a bi-ideal of G. Let $x, y, z \in G$. Then $xyz \in I$ if $x, z \in I$. It follows that $\lambda_I(xyz) = 1 = \min\{\lambda_I(x), \lambda_I(z)\}$. Let either $x \notin I$ or $z \notin I$. Then Case (i) : If $xyz \notin I$, then $\lambda_I(xyz) \ge 0 = \min\{\lambda_I(x), \lambda_I(z)\}$. Case (ii) : If $xyz \in I$, then $\lambda_I(xyz) = 1 \ge 0 = \min\{\lambda_I(x), \lambda_I(z)\}$. Again, let $x, y \in G$ be such that $x \le y$. If $y \in I$, then $\lambda_I(y) = 1$. Since $x \le y \in I$, we have $x \in I$, then $\lambda_I(x) \ge 1$. Thus $\lambda_I(x) \ge \lambda_I(y)$. If $y \notin I$, then $\lambda_I(y) = 0$. Since $x \in G$, we have $\lambda_I(x) \ge 0$. Thus $\lambda_I(x) \ge \lambda_I(y)$. Hence λ_I is a fuzzy bi-ideal of G.

Conversely, let λ_I be a fuzzy bi-ideal of G. Let $x, y, z \in G$ be such that $x, z \in I$. Then $\lambda_I(x) = \lambda_I(z) = 1$. Also $\lambda_I(xyz) \ge \min\{\lambda_I(x), \lambda_I(z)\} = 1$. Hence $xyz \in I$. Again let $x \in I$ and $G \ni y \le x$. Then $\lambda_I(x) = 1$. Since λ_I is a fuzzy bi-ideal of G, then $1 = \lambda_I(x) \le \lambda_I(y)$. Since $y \in G$, we have $\lambda_I(y) \le 1$. Hence $\lambda_I(y) = 1$ whence $y \in I$. Consequently, I is a bi-ideal of G. \Box

Theorem 3.4 A fuzzy subset μ of a po-semigroup G is a fuzzy subsemigroup of G if and only if $\mu \circ \mu \subseteq \mu$.

Proof. If $\mu \circ \mu \subseteq \mu$, then for $x, y \in G$, we have $\mu(xy) \ge (\mu \circ \mu)(xy) \ge \min\{\mu(x), \mu(y)\}$. So μ is a fuzzy subsemigroup of G.

Conversely, suppose μ is a fuzzy subsemigroup of G. Then for $x \in G$, $(\mu \circ \mu)(x) = \sup_{x=yz}[\min\{\mu(y), \mu(z)\}]$. Since μ is a fuzzy subsemigroup, $\mu(yz) \ge \min\{\mu(y), \mu(z)\} \ \forall y, z \in G$. In particular, $\mu(yz) \ge \min\{\mu(y), \mu(z)\} \ \forall y, z \in G$, with x = yz.

Hence

$$\mu(x) \ge \sup_{x=yz} [\min\{\mu(y), \mu(z)\}] = (\mu \circ \mu)(x).$$

Theorem 3.5 In a po-semigroup G the following are equivalent. (i) μ is a fuzzy left ideal of G. (ii) $\tau \circ \mu \subseteq \mu$ and $x \leq y \Rightarrow \mu(x) \geq \mu(y) \ \forall x, y \in G$, where τ is the characteristic function of G.

Proof. Let us assume that (i) holds. Let $a \in G$. In the case when there exist elements $x, y \in G$ such that a = xy, then, since μ is a fuzzy left ideal of G, we have

$$(\tau \circ \mu)(a) = \sup_{a=xy} [\min\{\tau(x), \mu(y)\}]$$
$$\leq \sup_{a=xy} [\min\{1, \mu(xy)\}]$$
$$= \min\{1, \mu(a)\} = \mu(a)$$

Otherwise $(\tau \circ \mu)(a) = 0 \le \mu(a)$. Thus $\tau \circ \mu \subseteq \mu$. By the definition of fuzzy left ideal of G, we have $x \le y \Rightarrow \mu(x) \ge \mu(y) \ \forall x, y \in G$.

Conversely, let us assume that (ii) holds. Let $x, y \in G$. Since $\tau \circ \mu \subseteq \mu$, we have

$$\mu(xy) \ge (\tau \circ \mu)(xy) \ge \min\{\tau(x), \mu(y)\}$$
$$= \min\{1, \mu(y)\} = \mu(y)$$

Thus μ is a fuzzy left ideal of G. This completes the proof. \Box

Similarly we can deduce the following theorem.

Theorem 3.6 In a po-semigroup G the following are equivalent. (i) μ is a fuzzy right ideal of G. (ii) $\mu \circ \tau \subseteq \mu$ and $x \leq y \Rightarrow \mu(x) \geq \mu(y) \ \forall x, y \in G$, where τ is the characteristic function of G.

Now by combining the above two theorems we easily deduce the following theorem.

Theorem 3.7 In a po-semigroup G the following are equivalent. (i) μ is a fuzzy two-sided ideal of G. (ii) $\mu \circ \tau \subseteq \mu, \tau \circ \mu \subseteq \mu$ and $x \leq y \Rightarrow \mu(x) \geq \mu(y) \ \forall x, y \in G$, where τ is the characteristic function of G.

Theorem 3.8 In a po-semigroup G the following are equivalent. (i) μ is a fuzzy bi-ideal of G. (ii) $\mu \circ \mu \subseteq \mu$, $\mu \circ \tau \circ \mu \subseteq \mu$ and $x \leq y \Rightarrow \mu(x) \geq \mu(y) \ \forall x, y \in G$, where τ is the characteristic function of G.

Proof. Let us assume that (i) holds. Since μ is a fuzzy bi-ideal of G, then it is obvious that $x \leq y \Rightarrow \mu(x) \geq \mu(y) \ \forall x, y \in G$. Since μ is a fuzzy subsemigroup of G, $\mu \circ \mu \subseteq \mu$ (cf. Theorem 3.4). Let $a \in G$. If there are no $x, y \in G$ such that a = xy then $(\mu \circ \tau \circ \mu)(a) = 0 \leq \mu(a)$.

On the other hand if there exist $x, y, p, q \in G$ such that a = xy and x = pq, then

$$(\mu \circ \tau \circ \mu)(a) = \sup_{a=xy} [\min\{(\mu \circ \tau)(x), \mu(y)\}]$$

=
$$\sup_{a=xy} [\min\{\sup_{x=pq} \{\min\{\mu(p), \tau(q)\}\}, \mu(y)\}]$$

=
$$\sup_{a=xy} [\min\{\sup_{x=pq} \{\min\{\mu(p), 1\}\}, \mu(y)\}].$$

=
$$\sup_{a=xy} [\min\{\mu(p'), \mu(y))\}].$$

$$a = xy$$

$$x = p'q$$

Now since μ is a fuzzy bi-ideal, $\min\{\mu(p'), \mu(y)\} \le \mu(p'qy)$. Hence

$$\sup_{\substack{a=xy\\x=p'q}} [\min\{\mu(p'), \mu(y))\}] \le \mu(p'qy) = \mu(xy) = \mu(a).$$

Hence $\mu \circ \tau \circ \mu \subseteq \mu$.

Conversely, let us assume that (*ii*) holds. Since $\mu \circ \mu \subseteq \mu$, μ is a fuzzy subsemigroup of G (cf. Theorem 3.4). Let $x, y, z \in G$. Since $\mu \circ \tau \circ \mu \subseteq \mu$, we see that

$$\mu(xyz) \ge (\mu \circ \tau \circ \mu)(xyz)$$

$$\ge \min\{(\mu \circ \tau)(xy), \mu(z)\}$$

$$\ge \min[\min\{\mu(x), \tau(y)\}, \mu(z)]$$

$$= \min[\min\{\mu(x), 1\}, \mu(z)]$$

$$= \min\{\mu(x), \mu(z)\}$$

Hence μ is a fuzzy bi-ideal of G. This completes the proof. \Box

Theorem 3.9 If μ is a fuzzy left ideal of a left regular po-semigroup G, then μ is fuzzy semiprime in G.

Proof. Let G be a left regular po-semigroup. Then for any $a \in G$ there exists some $x \in G$ such that $a \leq xa^2$. Now

$$\mu(a) \ge \mu(xa^2) \ge \mu(a^2)$$
(since μ is a fuzzy left ideal)

Hence μ is fuzzy semiprime in G. \Box

Theorem 3.10 If μ is a fuzzy right ideal of a right regular po-semigroup G, then μ is fuzzy semiprime in G.

Proof. Let G be a right regular semigroup. Then for any $a \in G$ there exists some $x \in G$ such that $a \leq a^2 x$. Now

 $\mu(a) \ge \mu(a^2 x) \ge \mu(a^2)$ (since μ is a fuzzy right ideal)

Hence μ is fuzzy semiprime in G. \Box

Theorem 3.11 If μ is a fuzzy ideal of an intra regular po-semigroup G, then μ is fuzzy semiprime in G.

Proof. Let G be an intra regular po-semigroup. Then for any $a \in G$ there exist some $x, y \in G$ such that $a \leq xa^2y$. Now

 $\mu(a) \ge \mu(xa^2y) \ge \mu(a^2y) \ge \mu(a^2)$ (since μ is a fuzzy ideal)

Hence μ is fuzzy semiprime in G. \Box

Theorem 3.12 If μ is a fuzzy ideal of an intra regular po-semigroup G, then $\mu(ab) = \mu(ba)$ $\forall a, b \in G.$

Proof. By Theorem 3.11,

$$\mu(ab) \ge \mu((ab)^2) = \mu(a(ba)b) \ge \mu(ba).$$

Again

$$\mu(ba) \ge \mu((ba)^2) = \mu(b(ab)a) \ge \mu(ab).$$

Hence $\mu(ab) = \mu(ba) \ \forall a, b \in G.$

Definition 3.13 [1] A po-semigroup G is said to be fuzzy left simple if every fuzzy left ideal of G is constant.

Theorem 3.14 If a po-semigroup G is left simple, then G is fuzzy left simple.

Proof. Let μ be a fuzzy left ideal of the po-semigroup G and $a, b \in G$. Since G is left simple, then there exist $x, y \in G$ such that $a \leq yb, b \leq xa$. Now

$$\mu(a) \ge \mu(yb) \ge \mu(b)$$
(since μ is a fuzzy left ideal)

Again,

$$\mu(b) \ge \mu(xa) \ge \mu(a)$$
(since μ is a fuzzy left ideal)

Thus μ is a constant function. Hence G is fuzzy left simple. \Box

Theorem 3.15 If a po-semigroup G is simple, then every fuzzy interior ideal of G is constant.

Proof. Let μ be a fuzzy interior ideal of the po-semigroup G and $a, b \in G$. Since G is simple, then there exist $x, y \in G$ such that $a \leq xby$. Now

 $\mu(a) \ge \mu(xby) \ge \mu(b)$ (since μ is a fuzzy interior ideal)

It can be seen in a similar way that $\mu(b) \ge \mu(a)$.

Since a and b are arbitrary elements, we conclude that μ is a constant function. \Box

4 Fuzzy Ideal Extensions in a Po-semigroup

Theorem 4.1 Let G be a right regular po-semigroup and μ be a fuzzy right ideal of G. Then the fuzzy ideal extension $\langle x, \mu \rangle$ is fuzzy semiprime in G, for all $x \in G$.

Proof. Let μ be a fuzzy right ideal of G and $a \in G$. Since G is right regular, then there exists $y \in G$ such that $a \leq a^2 y$. Now

$$\langle x, \mu \rangle (a) = \mu(xa) \ge \mu(xa^2y)$$

 $\ge \mu(xa^2) = \langle x, \mu \rangle (a^2)$

Hence $\langle x, \mu \rangle$ is fuzzy semiprime in G. \Box

In a similar way we can deduce the following theorem.

Theorem 4.2 Let G be a commutative regular po-semigroup and μ be a fuzzy ideal of G. Then the fuzzy ideal extension $\langle x, \mu \rangle$ is fuzzy semiprime in G, for all $x \in G$.

Theorem 4.3 Let G be an intra regular commutative po-semigroup and μ be a fuzzy ideal of G. Then the fuzzy ideal extension $\langle x, \mu \rangle$ is fuzzy semiprime in G, for all $x \in G$.

Proof. Let μ be a fuzzy ideal of the po-semigroup G and $a \in G$. Since G is intra regular, there exist $z, y \in G$ such that $a \leq za^2y$. Now

$$\langle x, \mu \rangle (a) = \mu(xa) \ge \mu(xza^2y) = \mu(zxa^2y) \ge \mu(xa^2) = \langle x, \mu \rangle (a^2).$$

Hence the fuzzy ideal extension $\langle x, \mu \rangle$ is fuzzy semiprime in G. \Box

References

- Kehayopulu. N and Tsingelis. M; Regular ordered semigroups in terms of fuzzy sets, Information Sciences 176(2006), pp. 3675-3693.
- [2] Kuroki. N; Fuzzy semiprime ideals in semigroups, Fuzzy Sets Syst. 5(1981), pp. 203-215.
- [3] Kuroki. N; Fuzzy generalized bi-ideals in semigroups, Inform. Sci. 66(1992), pp. 235-243.
- [4] Lee S. K and Jung J. H; On left regular po-semigroups, Comm. Korean Math. Soc. 13(1998), No.1, pp. 1-5.
- [5] Liu W. J; Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst. 8(1982), pp. 133-139.
- [6] Rosenfeld. A; Fuzzy groups, J. Anal. Math. Appl.35(1971), pp. 512-517.
- [7] Xie. Xiang-Yun; Fuzzy ideal extensions of semigroups, Soochow Journal of Mathematics, Vol.27, No.2, April 2001, pp. 125-138.
- [8] Zadeh. L. A; *Fuzzy Sets*, Inform. Control 8(1965), pp. 338-353.