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1 Introduction

In this article, R denotes an associative prime ring with center Z(R), unless
otherwise mentioned. For any x, y ∈ R, the symbol [x, y] (resp., x ◦ y)
denotes the commutator (resp., anti-commutator) xy − yx (resp., xy + yx).
If for any a, b ∈ R, aRb = (0) implies either a = 0 or b = 0, then R is said to
be a prime ring. For any n ∈ Z+, R is called n-torsion free if for any x ∈ R,
nx = 0 implies x = 0.

Let us recall that an involutive ring R is a ring with an additional unary
operation ∗, called involution, such that (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, and
(a∗)∗ = a for all a, b ∈ R. An element x ∈ R is called symmetric element if
x∗ = x and it is called skew symmetric if x∗ = −x. The sets of symmetric and
skew-symmetric elements in R are denoted by H(R) and S(R), respectively.
The involution ‘∗’ is called involution of the first kind if Z(R) ⊆ H(R),
otherwise it is of the second kind. Moreover, S(R)∩Z(R) 6= (0), in case the
involution is of the second kind. Further, if R is 2-torsion free, then for each
x ∈ R, we have a unique representation 2x = h + k, where h ∈ H(R) and
k ∈ S(R). In such case, x is normal, i.e., xx∗ = x∗x if and only if hk = kh.
A ring in which all elements are normal is called normal ring, e.g., the ring
of quaternions.
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An additive mapping d : R→ R is called a derivation if d(xy) = d(x)y+
xd(y) for all x, y ∈ R. An example of derivation is the so called inner
derivation, e.g., the mapping x 7→ [a, x] where a ∈ R is a fixed element.
By generalized inner derivation we mean an additive mapping F : R → R
such that for fixed elements a, b ∈ R, F (x) = ax + xb for all x ∈ R. More
generally, an additive mapping F : R→ R which is uniquely determined by
a derivation d : R → R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R,
is called generalized derivation (see [8]). In particular, if d = 0, then F is
called a left centralizer.

In [13], Herstein proved that if R is a 2-torsion free prime ring and d
is a non-zero derivation of R such that [d(x), d(y)] = 0 for all x, y ∈ R,
then R is commutative. Later, Daif [10] extended this result for two sided
ideals of a semiprime ring. In [7], Bell and Rehman generalized this classical
theorem to the class of generalized derivations of prime rings. Recently,
Dar and Ali [11] examined this situation on a 2-torsion free prime ring with
involution of the second kind. Precisely, they proved the following: Let R
be a 2-torsion free prime ring with involution of the second kind and d be a
non-zero derivation of R such that [d(x), d(x∗)] = 0 for all x ∈ R. Then R is
commutative. Motivated by these results, Ali et al. [5] proved the following:
Let R be a non-commutative 2-torsion free prime ring with involution of the
second kind. If R admits a non-zero generalized derivation F : R→ R such
that [F (x), F (x∗)] = 0 for all x ∈ R, then R is an order in a central simple
algebra of dimension at most 4 over its center and F (x) = ax + xb for all
x ∈ R for fixed a, b ∈ U such that a− b ∈ C.

A mapping f : R → R is called commutativity preserving on R if
[x, y] = 0 implies [f(x), f(y)] = 0 for all x, y ∈ R. More generally, f is
called strong commutativity preserving on R if [f(x), f(y)] = [x, y] for all
x, y ∈ R. In [16], Ma et al. described the structure of strong commutativity
preserving generalized derivations on ideals and right ideals of prime rings.
Ali et al. [4] studied strong commutativity preserving like derivations in
rings with involution. Recently, Dar and Khan [12] proved the following:
Let R be a non-commutative 2-torsion free prime ring with involution of the
second kind. If R admits a generalized derivation F : R→ R associated with
a derivation d : R → R such that [F (x), F (x∗)] − [x, x∗] = 0 for all x ∈ R,
then F (x) = x or F (x) = −x for all x ∈ R.

Bell and Daif [6] showed that if R is a prime ring admitting a non-zero
derivation d such that d([x, y]) = 0 for all x, y ∈ R, then R is commutative.
Ali et al. [3], studied the above mentioned result in the settings of prime
rings with involution by replacing y by x∗. Recently, Alahmadi et al. [2]
obtained this result with generalized derivations of prime rings. After that,
Idrissi and Oukhtite [14] considered this identity and proved the following:
Let R be a 2-torsion free prime ring with involution of the second kind. If R
admits a non-zero generalized derivation F associated with a derivation d,
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then R is commutative if and only if F ([x, x∗]) ∈ Z(R) for all x ∈ R.
Very recently, Abbasi et al. [1] introduced the notion of skew Lie product

in an involutive ring R and examined a list of identities involving skew
Lie product and left centralizers, by considering R a prime ring. In this
paper, we extend and unify several of their results to the class of generalized
derivations.

2 Preliminaries

We shall frequently use the following basic commutator and anti-commutator
identities:

[uv, w] = u[v, w] + [u,w]v, [u, vw] = v[u,w] + [u, v]w,

(uv) ◦ w = (u ◦ w)v + u[v, w] = u(v ◦ w) + [w, u]v,

u ◦ (vw) = (u ◦ v)w + v[w, u] = v(u ◦ w) + [u, v]w

which hold for all u, v, w ∈ R.
Let us bring some basic facts and extensions of several elementary results

of this subject, which will be used throughout the proofs.

Lemma 1 [18, Fact 1] Let R be a 2-torsion free prime ring with involution
of the second kind. If d(h) = 0 for all h ∈ H(R)∩Z(R), then d vanishes on
Z(R).

Lemma 2 Let R be a prime ring. For a ∈ Z(R) and b ∈ R, if ab ∈ Z(R),
then either b ∈ Z(R) or a = 0.

Proof. Suppose that ab ∈ Z(R). Then for each x ∈ R, 0 = [ab, x] = a[b, x].
Taking xu for x in the last relation, we get

0 = a[b, xu] = ax[b, u] + a[b, x]u = ax[b, u], x, u ∈ R.

It can be seen that aR[b, R] = (0). By using primness of R, we have either
a = 0 or b ∈ Z(R), as desired. �

Lemma 3 Let R be a prime ring and (0) 6= I be an ideal of R. If x2 ∈ Z(R)
for all x ∈ I, then R is commutative.

Proof. From the given condition, we have x2 ∈ Z(R) for all x ∈ I. By
polarizing x, we obtain [x ◦ y, r] = 0 for all x, y ∈ I, r ∈ R. Replacing y
by yr, we have y[[r, x], r] + [y, r][r, x] = 0. Replacing y by xy in the last
expression and then using it, we obtain [x, r]y[r, x] = 0 for all x, y ∈ I,
r ∈ R. It implies that [r, x]I[r, x] = (0) for all x ∈ I, r ∈ R, and hence,
I ⊆ Z(R). Thus, R is commutative. �



4 B. BHUSHAN, G. S. SANDHU AND D. KUMAR

Lemma 4 Let R be a 2-torsion free prime ring with involution of the second
kind and (0) 6= I be a ∗-ideal of R. If ∇[x, x∗] ∈ Z(R) for all x ∈ I, then R
is commutative.

Proof. By the given hypothesis, xx∗−x∗x∗ ∈ Z(R) for all x ∈ I. Replacing
x by xkc where 0 6= kc ∈ S(R)∩Z(R), we get that xx∗ ∈ Z(R). Polarizing we
obtain xy∗ + yx∗ ∈ Z(R). Replacing x by xkc, where 0 6= kc ∈ S(R)∩Z(R),
we get (xy∗−yx∗)kc ∈ Z(R). Since 0 6= kc, by Lemma 2, we get xy∗−yx∗ ∈
Z(R). In this view, it follows that 2xy∗ ∈ Z(R) for all x, y ∈ I, which
implies xy∗ ∈ Z(R). As I is a ∗-ideal, we find xy ∈ Z(R) for all x, y ∈ I.
Thus, I is commutative, and hence R is commutative. �

Lemma 5 Let R be a 2-torsion free prime ring with involution of the second
kind and (0) 6= I be a ∗-ideal of R. If [x, x∗] ∈ Z(R) for all x ∈ I, then R is
commutative.

Proof. Since ∗ is additive mapping, by using [9, Proposition 3.1], [x, x∗] = 0.
Replacing x by h+ k, where h ∈ H(R) ∩ I and k ∈ S(R) ∩ I, we have

hk = kh. (1)

Replacing k by x− x∗ in (1), we get

h(x− x∗)− (x− x∗)h = 0, x ∈ I, h ∈ H(R) ∩ I. (2)

For 0 6= kc ∈ S(R) ∩ Z(R) and x ∈ I, replacing k by kc(x + x∗) in (1), we
get kc(h(x+ x∗)− (x+ x∗)h) = 0. Using Lemma 2, we obtain

h(x+ x∗)− (x+ x∗)h = 0, h ∈ H(R) ∩ I. (3)

Adding (2) and (3) and then using torsion condition, we get

hx = xh, h ∈ H(R) ∩ I. (4)

For any y ∈ I, replace h by y + y∗ in (4) to obtain

(y + y∗)x = x(y + y∗). (5)

Let 0 6= kc ∈ S(R) ∩ Z(R). Replacing h by kc(y − y∗) in (4), we obtain
kc(y − y∗)x = xkc(y − y∗) for all x, y ∈ I. Using Lemma 2, we conclude

(y − y∗)x = x(y − y∗). (6)

Adding (5) and (6), we get [x, y] = 0 for all x, y ∈ I. Hence, R is commuta-
tive. �
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Lemma 6 Let R be a 2-torsion free prime ring with involution of second
kind and (0) 6= I be a ∗-ideal. If x ◦ x∗ ∈ Z(R) for all x ∈ I, then R is
commutative.

Proof. Let us assume that x ◦ x∗ ∈ Z(R) for all x ∈ I. We split the proof
into the following two parts:
Case 1. Let I ∩ Z(R) = (0). Since x ◦ x∗ ∈ I ∩ Z(R), we have

x ◦ x∗ = 0, x ∈ I. (7)

Polarizing (7), we obtain

x ◦ y∗ + y ◦ x∗ = 0, x, y ∈ I. (8)

Replacing y by ykc where 0 6= kc ∈ S(R) ∩ Z(R), we conclude that

− (x ◦ y∗) + y ◦ x∗ = 0, x, y ∈ I. (9)

Adding (8) and (9), we get y◦x∗ = 0 for all x, y ∈ I. It implies that y◦x = 0
for all x, y ∈ I. Replace x by xr where r ∈ R to get x[r, y] = 0. Thus, R is
commutative.
Case 2. Suppose that I ∩Z(R) 6= (0). By our hypothesis, we have x ◦ x∗ ∈
Z(R) for all x ∈ I. Polarizing this expression, we get x◦y∗+y◦x∗ ∈ Z(R) for
all x, y ∈ I. If we replace y by ykc where 0 6= kc ∈ S(R)∩Z(R), we find that
−x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ I. It follows that y ◦ x∗ ∈ Z(R) for all
x, y ∈ I. Now, replacing y by z where 0 6= z ∈ I ∩Z(R), we get 2x∗ ∈ Z(R)
for all x ∈ I. It implies that I ⊆ Z(R), and hence, R is commutative. �

Lemma 7 Let R be a 2-torsion free prime ring and (0) 6= I be an ideal of R.
If R admits a nonzero generalized derivation F with associated derivation d
such that [F (x), y] ∈ Z(R) for all x, y ∈ I, then R is commutative.

Proof. By the given hypothesis, [F (x), y] ∈ Z(R) for all x, y ∈ I. Replac-
ing y by y2 in given condition and using it, we conclude that 2[F (x), y]y ∈
Z(R). It implies y[F (x), y] ∈ Z(R), that is, for any s ∈ R, we have
sy[F (x), y] = y[F (x), y]s = ys[F (x), y]. Thus, [s, y][F (x), y] = 0 for all
x, y ∈ I, s ∈ R. Replacing s by sr where r ∈ R, we have either R is com-
mutative or [F (x), y] = 0 for all x, y ∈ I. Replace x by xy in the latter
case to obtain [x, y]d(y) + x[d(y), y] = 0 for all x, y ∈ I. Thereby, replacing
x by rx where r ∈ R, we have [r, y]xd(y) = 0 for all x, y ∈ I, r ∈ R. It
implies that for each y ∈ I, either [R, y] = (0) or d(y) = 0. Then, I is the
set theocratic union of the additive subgroups M = {y ∈ I : [R, y] = (0)}
and N = {y ∈ I : d(y) = 0}, which is not possible. Therefore, either I = M
or I = N . In other words, we have either I ⊆ Z(R), and hence, R is com-
mutative, or d(x) = 0 for all x ∈ I. Let us consider the case d(x) = 0 for all
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x ∈ I. It implies that 0 = d(xr) = xd(r) for all x ∈ I and r ∈ R. Since R is
prime and I is a non-zero ideal of R, we get d = 0.

Now, replace x by xt with t ∈ R in [F (x), y] = 0 to obtain F (I)[R, I] =
(0). In view of primeness of R, it follows that either R is commutative or
F (I) = (0). It is not difficult to see that the situation F (I) = (0) implies
F = 0, which is a contradiction. Hence, R is commutative. �

Lemma 8 Let R be a 2-torsion free prime ring and (0) 6= I be an ideal of
R. If there exists 0 6= a ∈ R such that [x, y]a ∈ Z(R) for all x, y ∈ I, then
R is commutative.

Proof. Let us assume that there exists a ∈ R, a 6= 0, such that [x, y]a ∈
Z(R) for all x, y ∈ I, that is, [[x, y]a, r] = 0 for all y ∈ I, r ∈ R. Then

[x, y][a, r] + [[x, y], r]a = 0, y ∈ I, r ∈ R. (10)

Replacing x by yx in (10), we obtain

y[x, y][a, r] + y[[x, y], r]a+ [y, r][x, y]a = 0. (11)

Using (10) and (11), we compute [y, r][x, y]a = 0. Replacing r by sr where
s ∈ R, we obtain [y, s]R[x, y]a = (0) for all x, y ∈ I and s ∈ R. Now it is
straight forward to conclude that R is commutative as a 6= 0. �

Lemma 9 Let R be a 2-torsion free prime ring and (0) 6= I be an ideal. If
there exists 0 6= a ∈ R such that a[x, y] ∈ Z(R) for all x, y ∈ I, then R is
commutative.

The proof is similar to that of Lemma 8.

Lemma 10 [17, Theorem 2] Let R be a 2-torsion free prime ring with
involution ∗, F be a non-zero generalized derivation associated with deriva-
tion d and I be a non-zero ∗-ideal. If F (x ◦ y) ∈ Z(R) for all x, y ∈ I, then
R is commutative.

Lemma 11 [19, Theorem 1] Let R be a 2-torsion free prime ring with
involution ∗, d be a non-zero derivation and I be a non-zero ∗-ideal. If
[d(x), x] ∈ Z(R) for all x ∈ I, then R is commutative.

Lemma 12 [15, Theorem 3] Let R be a left faithful ring. Then every
generalized derivation F on a dense right ideal of R can be extended to the
right Utumi quotient ring U of R and assumes the form F (x) = ax + δ(x)
for some a ∈ U and a derivation δ on U.
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3 Main results

Theorem 1 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If F and G are generalized
derivations of R with associated derivations d and δ, respectively, then R is
commutative if and only if [F (x), G(x∗)]±∇[x, x∗] ∈ Z(R) for all x ∈ I.

Proof. The non-trivial implication is to show that [F (x), G(x∗)]±∇[x, x∗] ∈
Z(R) for all x ∈ I implies commutativity of R. If either F = 0 or G = 0,
then the conclusion follows from Lemma 4. Therefore, both F and G are
non-zero onwards.

Let us assume that

[F (x), G(x∗)] +∇[x, x∗] ∈ Z(R), x ∈ I. (12)

Polarizing (12), we obtain

[F (x), G(y∗)]+[F (y), G(x∗)]+∇[x, y∗]+∇[y, x∗] ∈ Z(R), x, y ∈ I. (13)

For any hc ∈ H(R) ∩ Z(R), substituting yhc for y in (13), we get

[F (x), G(y∗)hc + y∗δ(hc)] + [F (y)hc + yd(hc), G(x∗)]+

∇[x, y∗]hc +∇[y, x∗]hc ∈ Z(R).
(14)

Using (13) in (14), we find

[F (x), y∗]δ(hc) + [y,G(x∗)]d(hc) ∈ Z(R), x, y ∈ I. (15)

Take 0 6= kc ∈ S(R) ∩ Z(R) and replace y by ykc in (15) to obtain

−[F (x), y∗]kcδ(hc) + [y,G(x∗)]kcd(hc) ∈ Z(R).

It implies that

− [F (x), y∗]δ(hc) + [y,G(x∗)]d(hc) ∈ Z(R) (16)

for all x, y ∈ I and hc ∈ H(R) ∩ Z(R). Adding (15) and (16), we get
[y,G(x∗)]d(hc) ∈ Z(R). It implies that either [y,G(x∗)] ∈ Z(R) for all
x, y ∈ I or d(hc) = 0 for all hc ∈ H(R) ∩ Z(R). In the former case, R
is commutative by Lemma 7. In the latter case, we have d(hc) = 0, and
by Lemma 1, we get d(Z(R)) = (0). Using this in (15) and then applying
the similar arguments, we obtain δ(Z(R)) = (0). Replace y by ykc where
0 6= kc ∈ S(R) ∩ Z(R) in (13) to get

−[F (x), G(y∗)]kc + [F (y), G(x∗)]kc −∇[x, y∗]kc + yx∗kc + y∗x∗kc ∈ Z(R).
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It implies

− [F (x), G(y∗)] + [F (y), G(x∗)]−∇[x, y∗] + yx∗ + y∗x∗ ∈ Z(R) (17)

for all x, y ∈ I. Adding (13) and (17), we get

2[F (y), G(x∗)] + 2yx∗ ∈ Z(R), x, y ∈ I. (18)

Replacing y by x in (18) and thereby comparing it with (12), we obtain
(x∗)2 ∈ Z(R). By Lemma 3, R is commutative.

By taking G = −G in the above proof, we get the same conclusion from
[F (x), G(x∗)]−∇[x, x∗] ∈ Z(R) for all x ∈ I. This completes the proof. �

Corollary 1 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If G is a generalized derivation
of R with associated derivation δ, then R is commutative if and only if
[x,G(x∗)]±∇[x, x∗] ∈ Z(R) for all x ∈ I.

Corollary 2 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If F is a generalized derivation
of R with associated derivation d, then R is commutative if and only if
[F (x), x∗]±∇[x, x∗] ∈ Z(R) for all x ∈ I.

Proposition 1 Let R be a 2-torsion free non-commutative prime ring and
(0) 6= I be an ideal of R. If G is a generalized derivation of R with associated
derivation δ such that G(x)x ∈ Z(R) for all x ∈ I, then G = 0.

Proof. Let us assume that G(x)x ∈ Z(R) for all x ∈ I. By polarizing, we
obtain

G(x)y +G(y)x ∈ Z(R). (19)

Note that G(x)y+G(y)x ∈ I for all x, y ∈ I. Thus, we divide the proof into
the following two parts:
Case 1. Let I ∩ Z(R) = (0). Then we have

G(x)y +G(y)x = 0, x, y ∈ I. (20)

Replacing y by yr where r ∈ R, we can write

G(x)yr +G(y)rx+ yδ(r)x = 0. (21)

From (20) and (21), we obtain

G(y)[r, x] + yδ(r)x = 0, x, y ∈ I, r ∈ R. (22)

Replacing x by xs in (22) and comparing the obtained relation with (22),
we compute G(y)x[r, s] = 0 for all x, y ∈ I and r, s ∈ R. It implies that
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G(y) = 0 for all y ∈ I. Replacing y by yr in the obtained expression where
r ∈ R, we get yδ(r) = 0. It forces that δ = 0. Thus, for any x ∈ R and
y ∈ I, we have 0 = G(xy) = G(x)y, that is, G(R)I = (0). It follows that
G = 0.
Case 2. Assume that I ∩ Z(R) 6= (0). Replace y and x by z where 0 6=
z ∈ I ∩ Z(R) in (19) to get G(z)z ∈ Z(R). It implies that for each z ∈
I ∩ Z(R), either G(z) ∈ Z(R) or z = 0. Therefore, G(z) ∈ Z(R) for
all z ∈ I ∩ Z(R). Replace y by z where 0 6= z ∈ I ∩ Z(R) in (19) to
obtain G(x)z + G(z)x ∈ Z(R). Commuting with x and using the fact that
G(z) ∈ Z(R), we get [G(x), x]z = 0 for all x ∈ I. By Lemma 2, we have
[G(x), x] = 0 for all x ∈ I. Replacing x by zx, we have [δ(x), x] = 0 for
all x ∈ I. According to Lemma 11, it implies δ = 0. By Lemma 12, we
have G(x) = ax. In particular, taking x = z where 0 6= z ∈ I ∩ Z(R), we
conclude that a ∈ Z(R). From the initial hypothesis, we find ax2 ∈ Z(R)
for all x ∈ I. It implies that either x2 ∈ Z(R) or a = 0. By Lemma 3, it
follows that the former case yields a contradiction, thus, we conclude that
a = 0, and hence, G = 0. �

The following result extends Theorem 10 of [1].

Theorem 2 Let R be a 2-torsion free non-commutative prime ring with
involution of the second kind and (0) 6= I be a ∗-ideal of R. If F and G
are generalized derivations with associated derivations d and δ, respectively,
such that F (x ◦ x∗)±∇[x,G(x∗)] ∈ Z(R) for all x ∈ I, then F = G = 0.

Proof. Let us assume that

F (x ◦ x∗) +∇[x,G(x∗)] ∈ Z(R), x ∈ I. (23)

Polarize (23) to get

F (x◦y∗)+F (y ◦x∗)+∇[x,G(y∗)]+∇[y,G(x∗)] ∈ Z(R), x, y ∈ I. (24)

Replacing y by yhc in (24) where hc ∈ H(R) ∩ Z(R), we get

F (x ◦ y∗)hc + (x ◦ y∗)d(hc) + F (y ◦ x∗)hc + (y ◦ x∗)d(hc)

+∇[x,G(y∗)]hc +∇[x, y∗]δ(hc) +∇[y,G(x∗)]hc ∈ Z(R).
(25)

Using (24) in (25), we can write

(x ◦ y∗)d(hc) + (y ◦ x∗)d(hc) + xy∗δ(hc)− y∗x∗δ(hc) ∈ Z(R). (26)

Replacing y by ykc in (26) where 0 6= kc ∈ S(R) ∩ Z(R), we obtain

− (x ◦ y∗)d(hc) + (y ◦ x∗)d(hc)− xy∗δ(hc) + y∗x∗δ(hc) ∈ Z(R). (27)
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From (26) and (27), it follows that (y ◦ x∗)d(hc) ∈ Z(R). It implies that
either (y ◦x∗) ∈ Z(R) for all x, y ∈ I or d(hc) = 0 for all hc ∈ H(R)∩Z(R).
In the former case, R is commutative by Lemma 6, which is a contradiction.
Thus, we have d(hc) = 0. By Lemma 1, we have d(Z(R)) = (0). From (26),
we obtain

xy∗δ(hc)− y∗x∗δ(hc) ∈ Z(R). (28)

Now by replacing x by xkc in (28) where 0 6= kc ∈ S(R) ∩ Z(R), we find
that xy∗δ(hc) + y∗x∗δ(hc) ∈ Z(R) for all x, y ∈ I. Combining this relation
with (28), we get xy∗δ(hc) ∈ Z(R) for all x, y ∈ I. In view of Lemma 2,
it follows that either xy∗ ∈ Z(R) for all x, y ∈ I or δ(hc) = 0 for all hc ∈
H(R) ∩ Z(R). In the former case, R is commutative by Lemma 3, which is
a contradiction. Therefore, we have δ(hc) = 0, which implies δ(Z(R)) = (0)
by Lemma 1. Replace y by ykc where 0 6= kc ∈ S(R) ∩ Z(R) in (24) to
obtain

−F (x ◦ y∗)kc +F (y ◦ x∗)kc−∇[x,G(y∗)]kc + yG(x∗)kc +G(x∗)y∗kc ∈ Z(R).

It implies that for all x, y ∈ I,

− F (x ◦ y∗) + F (y ◦ x∗)−∇[x,G(y∗)] + yG(x∗) +G(x∗)y∗ ∈ Z(R). (29)

Comparing (24) and (29), we get 2F (y◦x∗)+2yG(x∗) ∈ Z(R) for all x, y ∈ I.
Hence,

F (y ◦ x∗) + yG(x∗) ∈ Z(R), x, y ∈ I. (30)

Replacing y by x in (30) and comparing the obtained expression with (23),
we find G(x∗)x∗ ∈ Z(R) for all x ∈ I. By Proposition 1, we get G = 0.
Thereby, using Lemma 10 in (30), we obtain F = 0.

By taking G = −G in the above proof, we get the same conclusion from
F (x ◦ x∗)−∇[x,G(x∗)] ∈ Z(R) for all x ∈ I. This completes the proof. �

Corollary 3 Let R be a 2-torsion free prime ring with involution of the
second kind. If F is a generalized derivation with associated derivation d of
R such that F (x◦x∗)±∇[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. Assume that R is non commutative. With G(x) = x for all x ∈ R
and I = R, the present situation becomes a particular case of Theorem 2, a
fortiori, F = G = 0, which is a contradiction. Hence, R is commutative. �

The following corollary from Theorem 1 is a generalization of [1, Theo-
rem 1].

Corollary 4 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If G is a non-zero generalized
derivation with associated derivation δ of R such that ∇[x,G(x∗)] ∈ Z(R)
for all x ∈ I, then R is commutative.
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We now give a generalization of [1, Theorem 11].

Theorem 3 Let R be a 2-torsion free non-commutative prime ring with
involution of second kind and (0) 6= I be a ∗-ideal of R. If F and G are
generalized derivations with associated derivations d and δ, respectively, such
that F (∇[x, x∗])±∇[x,G(x∗)] ∈ Z(R) for all x ∈ I, then there exists λ ∈ C
such that F (x) = ∓λx and G(x) = λx for all x ∈ R.

Proof. Let us assume that

F (∇[x, x∗]) +∇[x,G(x∗)] ∈ Z(R), x ∈ I. (31)

Polarizing (31), for all x, y ∈ I, we can write

F (∇[x, y∗]) + F (∇[y, x∗]) +∇[x,G(y∗)] +∇[y,G(x∗)] ∈ Z(R). (32)

Replace y by yhc with hc ∈ H(R) ∩ Z(R) in (32) to obtain

F (∇[x, y∗])hc +∇[x, y∗]d(hc) + F (∇[y, x∗])hc +∇[y, x∗]d(hc)

+∇[x,G(y∗)]hc +∇[x, y∗]δ(hc) +∇[y,G(x∗)]hc ∈ Z(R).
(33)

By comparing (32) and (33), we conclude that

∇[x, y∗]d(hc) +∇[y, x∗]d(hc) +∇[x, y∗]δ(hc) ∈ Z(R) (34)

for all x, y ∈ I and hc ∈ H(R) ∩ Z(R). Replace y by ykc where 0 6= kc ∈
S(R) ∩ Z(R) in (34) to get

(−xy∗ + y∗x∗)kcd(hc) + (yx∗ + x∗y∗)kcd(hc) + (−xy∗ + y∗x∗)kcδ(hc) ∈ Z(R).

From Lemma 2, it follows that

(−xy∗ + y∗x∗)d(hc) + (yx∗ +x∗y∗)d(hc) + (−xy∗ + y∗x∗)δ(hc) ∈ Z(R). (35)

By adding (34) and (35), we obtain

2yx∗d(hc) ∈ Z(R), x, y ∈ I.

According to Lemma 2, we have either yx∗ ∈ Z(R) for all x, y ∈ I or
d(hc) = 0 for all hc ∈ H(R). In former case, R is commutative by Lemma 3,
which is a contradiction. Thus, we have d(hc) = 0 for all hc ∈ H(R)∩Z(R)
and by Lemma 1, d(Z(R)) = (0). From (34), we obtain∇[y, x∗]δ(hc) ∈ Z(R)
for all x, y ∈ I and hc ∈ H(R)∩Z(R). It implies that either ∇[y, x∗] ∈ Z(R)
or δ(hc) = 0. In former case, a contradiction follows by Lemma 4. Therefore,
we have δ(hc) = 0, which implies δ(Z(R)) = (0).
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Replace y by ykc with 0 6= kc ∈ S(R) ∩ Z(R) in (32) to obtain

F (−xy∗ + y∗x∗)kc + F (yx∗ + x∗y∗)kc + (−xG(y∗) +G(y∗)x∗)kc+

(yG(x∗) +G(x∗)y∗)kc ∈ Z(R).

It implies that for all x, y ∈ I and hc ∈ H(R) ∩ Z(R),

F (−xy∗ + y∗x∗) + F (yx∗ + x∗y∗) + (−xG(y∗) +G(y∗)x∗)+

(yG(x∗) +G(x∗)y∗) ∈ Z(R).
(36)

Adding (32) and (36), we get F (yx∗) + yG(x∗) ∈ Z(R). Therefore,

F (y)x+ yd(x) + yG(x) ∈ Z(R), x, y ∈ I. (37)

Case 1. Assume that I ∩ Z(R) = (0). Since F (y)x+ yd(x) + yG(x) ∈ I as
well as F (y)x+ yd(x) + yG(x) ∈ Z(R) for all x, y ∈ I, we find

F (y)x+ yd(x) + yG(x) = 0, x, y ∈ I. (38)

Replacing x by xr in (38) where r ∈ R, we get yxd(r) + yxδ(r) = 0. It
implies (d + δ)(x) = 0 for all x ∈ R. Using Lemma 12 in (38), we compute
F (y)x+ yd(x) + ybx+ yδ(x) = 0. It implies F (y) = −yb for all y ∈ I. Using
Lemma 12 once again, we obtain d(y) = −yb−ay. Replacing x by xy, we get
d(xy) = −xyb−axy = d(x)y+xd(y), which gives −xby−axy−xyb−xay =
−xyb − axy. It implies x(a + b)y = 0 for all x, y ∈ I. Thus, a = −b.
From (38), we obtain −ybx− yxb+ ybx+ yG(x) = 0. It implies G(x) = xb
for all x ∈ I. Using it in (31), we get −∇[x, x∗]b+∇[x, x∗b] ∈ Z(R), which
implies x∗[x∗, b] ∈ Z(R) for all x ∈ I. Replacing x by x∗ in the last relation,
we get x[x, b] ∈ Z(R) for all x ∈ I. Also, for each x ∈ I, x[x, b] ∈ I. Since
I ∩ Z(R) = (0), we have x[x, b] = 0. Polarizing above equation, we obtain

y[x, b] + x[y, b] = 0, x, y ∈ I. (39)

Replacing y by ry with r ∈ R, we can write

ry[x, b] + xr[y, b] + x[r, b]y = 0, x, y ∈ I, r ∈ R. (40)

Comparing (39) and (40), we obtain

[x, r][y, b] + x[r, b]y = 0. (41)

Replacing x by sx with s ∈ R in (41) and comparing the obtained relation
with (41), we compute [r, s]x[y, b] = 0 for all x, y ∈ I, r, s ∈ R. It implies
b ∈ C. Thus, F (x) = −bx and G(x) = bx for all x ∈ R. Therefore, we get
the desired result.
Case 2. Let I ∩ Z(R) 6= (0). Then, replacing x by z where 0 6= z ∈
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Z(R) in (37), we obtain F (y)z + yG(z) ∈ Z(R). By Lemma 12, we have
F (y)z + ybz ∈ Z(R) for all y ∈ I. By Lemma 2, we find

F (y) + yb ∈ Z(R), y ∈ I. (42)

From (37), we get

F (y)x+ yd(x) + ybx+ yδ(x) ∈ Z(R), x, y ∈ I. (43)

Commuting with x and using (42) and (43), we get [yd(x) + yδ(x), x] = 0
for all x, y ∈ I. It implies y[d(x) + δ(x), x] + [y, x](d(x) + δ(x)) = 0 for all
x, y ∈ I. Replacing y by sy where s ∈ R, we find

d(x) = −δ(x), x ∈ I. (44)

Using (44) in (43), we obtain (F (y)+yb)x ∈ Z(R) for all x, y ∈ I. From (42)
and Lemma 2, we have F (y) = −yb or I ⊆ Z(R). The latter case leads to a
contradiction. Therefore, we have F (y) = −yb for all y ∈ I. Using Lemma
12, we have ay + d(y) = −yb. In particular, for y ∈ Z(R), we get a = −b.
Thus, we have d(y) = by − yb. By (44), we have δ(y) = −by + yb. Also,
we have G(y) = by + δ(y). It implies G(y) = yb for all y ∈ R. From (31),
we obtain −∇[x, x∗]b + ∇[x, x∗b] ∈ Z(R), which implies x∗[x∗, b] ∈ Z(R).
Replacing x by x∗, we have x[x, b] ∈ Z(R) for all x ∈ I. Polarize above
equation to obtain

y[x, b] + x[y, b] ∈ Z(R), x, y ∈ I.

In particular, if we take 0 6= y ∈ I ∩ Z(R) and use Lemma 2, we get
[x, b] ∈ Z(R) for all x ∈ I. Thus, b ∈ Z(R). Therefore, we have F (x) = −bx
and G(x) = bx for all x ∈ R.

By taking G = −G in the above proof, we get the same conclusion from
F (∇[x, x∗]) − ∇[x,G(x∗)] ∈ Z(R) for all x ∈ I. This completes the proof.
�

Corollary 5 Let R be a 2-torsion free non-commutative prime ring with in-
volution of second kind. If G is a generalized derivation of R with associated
derivation δ such that (∇[x, x∗]) ± ∇[x,G(x∗)] ∈ Z(R) for all x ∈ I, then
G(x) = ∓x for all x ∈ R.

The following result is a generalization of [1, Theorem 2].

Corollary 6 Let R be a 2-torsion free prime ring with involution of second
kind and (0) 6= I be a ∗-ideal of R. If F is a non-zero generalized derivation
of R with associated derivation d such that F (∇[x, x∗]) ∈ Z(R) for all x ∈ I,
then R is commutative.
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Theorem 4 Let R be a 2-torsion free non-commutative prime ring with
involution of the second kind and (0) 6= I be a ∗-ideal of R. If F and G are
generalized derivations of R with associated derivations d and δ, respectively,
such that F (x) ◦ x∗ ±∇[x,G(x∗)] ∈ Z(R) for all x ∈ I, then F = G = 0.

Proof. Let us assume that

F (x) ◦ x∗ +∇[x,G(x∗)] ∈ Z(R), x ∈ I. (45)

Polarize (45) to obtain

F (x)◦y∗ +F (y)◦x∗ +∇[x,G(y∗)]+∇[y,G(x∗)] ∈ Z(R), x, y ∈ I. (46)

Replacing y by yhc with hc ∈ H(R) ∩ Z(R) in (46), we obtain

(F (x) ◦ y∗)hc + (F (y) ◦ x∗)hc + (y ◦ x∗)d(hc) +∇[x,G(y∗)]hc

+∇[x, y∗]δ(hc) +∇[y,G(x∗)]hc ∈ Z(R).
(47)

Comparing (46) and (47), we get

(y ◦ x∗)d(hc) +∇[x, y∗]δ(hc) ∈ Z(R), (48)

x, y ∈ I, hc ∈ H(R)∩Z(R). Replacing y by ykc where 0 6= kc ∈ S(R)∩Z(R),
we obtain (y ◦x∗)kcd(hc) + (−xy∗ + y∗x∗)kcδ(hc) ∈ Z(R). It implies that for
all x, y ∈ I and hc ∈ H(R) ∩ Z(R),

(y ◦ x∗)d(hc) + (−xy∗ + y∗x∗)δ(hc) ∈ Z(R). (49)

Adding (48) and (49), we obtain

(y ◦ x∗)d(hc) ∈ Z(R).

Lemma 2 yields that either x ◦ y ∈ Z(R) for all x, y ∈ I or d(hc) = 0 for all
hc ∈ H(R) ∩ Z(R). The former case leads to a contradiction by Lemma 6.
Thus, we have d(hc) = 0, which implies d(Z(R)) = (0). From (49), we obtain
∇[x, y∗]δ(hc) ∈ Z(R) for all x, y ∈ I, hc ∈ H(R) ∩ Z(R). Lemma 2 implies
either ∇[x, y∗] ∈ Z(R) or δ(hc) = 0. In the former case, a contradiction
follows from Lemma 4. Therefore, we have δ(hc) = 0, and then by Lemma
1, δ(Z(R)) = (0). Replacing y by ykc where 0 6= kc ∈ S(R) ∩ Z(R) in (46),
we obtain

−(F (x) ◦ y∗)kc + (F (y) ◦ x∗)kc + (−xG(y∗)

+G(y∗)x∗)kc + (yG(x∗) +G(x∗)y∗)kc ∈ Z(R).

It implies

−F (x) ◦ y∗ + F (y) ◦ x∗ − xG(y∗) +G(y∗)x∗

+yG(x∗) +G(x∗)y∗ ∈ Z(R)
(50)
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for all x, y ∈ I and hc ∈ H(R)∩Z(R). Combining (46) and (50), we obtain
2F (y) ◦ x∗ + 2yG(x∗) ∈ Z(R) for all x, y ∈ I, which implies

F (y) ◦ x+ yG(x) ∈ Z(R), x, y ∈ I. (51)

Case 1. If I ∩ Z(R) = (0), then

F (y) ◦ x+ yG(x) = 0, x, y ∈ I. (52)

Replacing x by xr in (52), where r ∈ R, we have

(F (y) ◦ x)r + x[r, F (y)] + yG(x)r + yxδ(r) = 0, x, y ∈ I, r ∈ R. (53)

Comparing (52) and (53), we obtain

x[r, F (y)] + yxδ(r) = 0. (54)

Replacing x by sx where s ∈ R in (54), we have

sx[r, F (y)] + ysxδ(r) = 0. (55)

Comparing (54) and (55), we obtain [y, s]xδ(r) = 0 for all x, y ∈ I, r ∈ R,
which implies δ = 0. Using it in (54), we get x[r, F (y)] = 0 for all x, y ∈ I
and r ∈ R. In particular, we have x[z, F (y)] = 0 for all x, y, z ∈ I. Using
primeness of I, we get [z, F (y)] = 0 for all y, z ∈ I, and hence, the result
follows from Lemma 7.
Case 2. Let us suppose that I ∩Z(R) 6= (0). Then we replace x by z where
0 6= z ∈ I ∩ Z(R) in (51) to obtain 2F (y)z + yG(z) ∈ Z(R). In view of
Lemma 12, it follows that

2F (y) + yb ∈ Z(R), y ∈ I. (56)

Replacing y by yr in (56)), where r ∈ R, we find 2F (y)r + 2yd(r) + yrb ∈
Z(R) for all x, y ∈ I, r ∈ R, which implies (2F (y) + yb)r+ y[r, b] + 2yd(r) ∈
Z(R). From (56), we compute [y[r, b] + 2yd(r), r] = 0, which implies

y[[r, b] + 2d(r), r] + [y, r]([r, b] + 2d(r)) = 0, y ∈ I, r ∈ R. (57)

Replace y by sy, where s ∈ R, in the above relation and then compare it
with (57) to get [s, r]y([r, b] + 2d(r)) = 0 for all y ∈ I, r ∈ R. It implies
2d(r) = [b, r], applying which with Lemma 12 in (56), we obtain 2ay + by−
yb+yb ∈ Z(R) for all y ∈ I. Thus, 2a = −b and hence 2F (y) = 2ay+[b, y] =
−yb. Using it in (51), we compute −ybx− xyb+ 2ybx+ 2yδ(x) ∈ Z(R) for
all x, y ∈ I. In particular, taking z instead of y in the last expression,
we compute (2δ(x) + [b, x])z ∈ Z(R). Since z 6= 0, by Lemma 2, we have
2δ(x) = [x, b] for all x ∈ I. It implies 2G(x) = 2bx + xb − bx = bx + xb.
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From (51), we get 2F (y) ◦ x + y2G(x) ∈ Z(R) for all x, y ∈ I. In view of
the above computations, it implies that (−yb) ◦ x + y(bx + xb) ∈ Z(R) for
all x, y ∈ I. On simplifying it, we get [y, x]b ∈ Z(R) for all x, y ∈ I. By
Lemma 8, we obtain b = 0, which implies F = G = 0, as desired.

By taking G = −G in the above proof, we get the same conclusion from
F (x) ◦ x∗ −∇[x,G(x∗)] ∈ Z(R) for all x ∈ I. This completes the proof. �

The following statement is a generalization of [1, Theorem 4].

Corollary 7 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If G is a generalized derivation
of R with associated derivation δ such that x ◦ x∗ ±∇[x,G(x∗)] ∈ Z(R) for
all x ∈ I, then R is commutative.

The following result is a generalization of [1, Theorem 5].

Corollary 8 Let R be a 2-torsion free prime ring with involution of the
second kind and (0) 6= I be a ∗-ideal of R. If F is a generalized derivation
of R with associated derivation d such that F (x) ◦ x∗ +∇[x, x∗] ∈ Z(R) for
all x ∈ I, then R is commutative.
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