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On the Convergence of the Quasi-Periodic

Approximations on a Finite Interval
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Abstract. We investigate the convergence of the quasi-periodic
approximations in different frameworks and reveal exact asymp-
totic estimates of the corresponding errors. The estimates fa-
cilitate a fair comparison of the quasi-periodic approximations
to other classical well-known approaches. We consider a special
realization of the approximations by the inverse of the Vander-
monde matrix, which makes it possible to prove the existence
of the corresponding implementations, derive explicit formulas
and explore convergence properties. We also show the applica-
tion of polynomial corrections for the convergence acceleration
of the quasi-periodic approximations. Numerical experiments re-
veal the auto-correction phenomenon related to the polynomial
corrections so that utilization of approximate derivatives surpris-
ingly results in better convergence compared to the expansions
with the exact ones.
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Introduction

We continue investigations of the reconstruction problem of a smooth but
non-periodic function f on [−1, 1] by the finite number of its Fourier coeffi-
cients

fn =
1

2

∫ 1

−1

f(x)e−iπnxdx, |n| ≤ N. (1)

It is well known that the solution of the problem by the truncated Fourier
series or trigonometric interpolation via corresponding Fourier coefficients
is ineffective for non-periodic functions due to slow pointwise convergence
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on (−1, 1) and the Gibbs phenomenon at the endpoints (see [1–5]). The
degraded convergence may imply an impression that the accurate recon-
struction of f from the knowledge of the coefficients is impossible. However,
many authors proved the opposite by showing that the spectral informa-
tion is sufficient even for non-periodic functions. There is ample literature
devoted to the resolution of the Gibbs phenomenon and convergence ac-
celerations. It is impossible to summarize such a great amount of work.
Individual articles include [6–56]. We will follow only the ideas related to
the current paper.

An efficient approach to convergence acceleration by subtracting a poly-
nomial representing the discontinuities (jumps) in the function and its deriva-
tives was suggested by Krylov [57] (see also [58]). Lanczos [59] independently
developed the same approach by introducing the basic system of 2-periodic
Bernoulli polynomials. We will refer to this approach as the Krylov-Lanczos
method. Jones and Hardy [60] and Lyness [61] considered convergence ac-
celeration of trigonometric interpolations by the polynomial subtraction (see
also [62, 63]).

The key problem in the Krylov-Lanczos method is approximation of the
jumps. In the case of interpolations, as the pointwise values of the function
are known, the finite difference formulas can be applied for approximation
of the derivatives in jumps. Approaches resembling this approach have been
attempted in a series of papers [59,61,64–66]. However, the approximation of
jumps via finite differences is not recommended due to numerical instability
(see for example [61]). Even in the case of a uniform grid, finite difference
approximations are notoriously unreliable. Moreover, in many applications,
the pointwise values are not explicitly available.

The first attempt towards a more robust approach was initiated in [67–
73]. The general approach was established by Eckhoff in a series of pa-
pers [74–76], showing that coefficients contain sufficient information to re-
construct the jump-values. We will refer to this approach as the Eckhoff
method, where the fundamental aspect is the approximation of the jumps
by the solution of a linear system of equations. A similar idea was used
in the Richardson extrapolation process [77]. Investigations and generaliza-
tions of the Krylov-Lanczos and the Eckhoff methods see also in [78–89].
Polynomial corrections applied to trigonometric expansions for the approxi-
mation/interpolation of the piecewise-smooth functions completely eliminate
the Gibbs phenomenon and accelerate convergence both away from the sin-
gularities and on the entire interval. The main difficulty of its realization
is the detection of singularities and the approximation of the corresponding
jumps.

Another approach that does not eliminate the Gibbs phenomenon but
mitigates its impacts utilizes expansions with trigonometric functions whose
periods are larger than the lengths of approximation or interpolation in-
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tervals. The idea of such expansions was introduced in [90]. It considered
trigonometric interpolation of a function f on [−1, 1] for the following basis-
functions

{eiπnσx}, |n| ≤ N, σ =
2N

2N +m+ 1
, m = 0, 1, 2, . . . ,

and for the grid xk ∈ [−1, 1],

xk =
k

N
, |k| ≤ N,

that includes the endpoints of the interval. All basis functions have the
period 2/σ, which tends to 2 (the length of the interval of interpolation) as
N tends to infinity.

That is why those expansions were called as quasi-periodic (QP-) inter-
polations. Let us introduce the idea of [90] in more details (see also [91]).
Consider a new function g(t) defined on [−σ, σ] by the following change of
variable

g(t) = f

(
t

σ

)
= f(x), x ∈ [−1, 1], t ∈ [−σ, σ], t = σx.

This implies interpolation of g(t) on the grid

tk = σxk =
2k

2N +m+ 1
, |k| ≤ N.

Thus, the QP-interpolation actually interpolates g(t) on the grid tk and is
exact for eiπnt, |n| ≤ N . It is important to note that form > 0, the 2-periodic
extension of the grid tk to the real line is non-uniform. This non-uniformity
should be one of the main reasons of better convergence properties of the
QP-interpolation compared to the classical trigonometric interpolation that
uses uniform grids.

Papers [91–95] investigated the pointwise convergence of the QP-inter-
polation and its convergence in the L2-norm. The application of polynomial
corrections to the QP-interpolation was considered in [95] for complete elim-
ination of the Gibbs phenomenon and additional convergence acceleration.
Similar ideas were applied to the truncated Fourier series in [96]. The cor-
responding expansions were named as QP-approximations. The main idea
was the extension of a function f from the interval [−1, 1] onto the larger
interval [−1/σ, 1/σ] and its approximation via truncated Fourier series with
quasi-periodic basis-functions. The main problem in the realization of the
idea is the determination of the coefficients on the extended interval, where
the function f was unknown. Paper [96] described three algorithms A, B,
and C that differently solved the problem. Moreover, it showed how the
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required coefficients could be approximated via classical Fourier coefficients
known for the interval [−1, 1].

The main goal of the current paper is the investigation of the conver-
gence of Algorithm C. The main benefit of the algorithm is its explicit re-
alization that allows us to perform theoretical investigations regarding the
existence of the solution and convergence properties. Further, we show how
the polynomial correction method can be applied for additional convergence
acceleration.

Approximations with non-periodic basis functions were also considered
in [97–99]. However, they were essentially different by using the classical
Fourier coefficients on [−1, 1] rather than the Fourier quasi-periodic coeffi-
cients on the extended interval.

Another approach that utilized non-periodic basis functions was intro-
duced in [100, 101]. Here, the truncated Fourier series by the following
modified trigonometric system was considered

H = {cosπnx : n ∈ Z+} ∪ {sinπ(n− 1
2
)x : n ∈ N}, x ∈ [−1, 1].

It was originally proposed by [102] without investigation of its properties.
System H is an orthonormal basis of L2[−1, 1] as it consists of the eigen-
functions of the Sturm-Liouville operator

L = −d2/dx2 (2)

with Neumann boundary conditions f ′(1) = f ′(−1) = 0. The corresponding
univariate and multivariate approximations were thoroughly investigated in
a series of papers [103–106]. Some of the basis functions sinπ(n−1

2
)x are non-

periodic on [−1, 1]. The rest of the basis functions cosπnx are 2-periodic.
The non-periodicity implies some slight improvements in convergence com-
pared to the classical Fourier series on [−1, 1]. However, the convergence rate
of the modified Fourier approximation remains relatively slow. If N is the
truncation parameter, the uniform error is O(N−1) on [−1, 1] and O(N−2)
away from the endpoints. Better convergence results were achieved only
via application of polynomial corrections [107,108] or rational trigonometric
functions [109–111]. Interpolations by the modified trigonometric system
were considered in [112]. Similarly, the convergence rate compared to the
classical trigonometric interpolation was improved. Overall, without addi-
tional convergence acceleration, the expansions via modified trigonometric
system have worse convergence compared to the QP-approximations and in-
terpolations. One of our future works will be application of the ideas of the
quasi-periodic expansions to the modified trigonometric system.

The idea of non-periodic approximations or interpolations is not new.
Many authors considered similar ideas of approximation on extended do-
mains [−T, T ], T > 1. Thus, they sought an approximation FN(f) to f



ON THE CONVERGENCE OF THE QP-APPROXIMATIONS 5

from the set

GN := span{ϕn : |n| ≤ N}, ϕn(x) =
1√
2T

ei
πn
T
x. (3)

Papers [113–115] proposed to compute FN(f) as the best approximation to
f on [−1, 1] in a least squares sense (named as continuous extension):

FN(f) := argminφ∈GN‖f − φ‖, (4)

where ‖ · ‖ is the standard norm on L2(−1, 1). In [115–117] it was shown
that this approach leads to geometrically fast approximations for analytic
functions. Regarding parameter T , those papers recommended T = 2 as the
best choice, and also

T =
π

4

(
arctan

(
(etol)

1
2N

))−1

(5)

for oscillatory functions, where etol << 1. The latest resembles some similar-
ity to our approach as parameter 1/σ = T also tends to 1 as N →∞. How-
ever, the constructions are essentially different from the QP-approximations
by solving different linear systems of equations and utilizing different frame-
works for optimality. One of our future works will be devoted to the con-
vergence analysis of analytical functions and comparison with those known
results. Another important topic should be stability analysis of the QP-
approximations and comparison with the stabilities of known methods.

More general problem was considered in [118,119] dealing with the recon-
struction of piecewise-smooth functions on a finite interval via Fourier data.
This is the most general approach, where the points of discontinuities with
the corresponding jumps are unknown. Similar problem with combination
of the QP-approximations will be considered elsewhere. In the current pa-
per, we explore the simplest case with a discontinuity point at the endpoints
of the interval (the case of non-periodic function), where the only problem
is the determination of the corresponding jumps according to the ideas of
Eckhoff.

The paper is organized as follows. Section 1 introduces QP-approxi-
mations and specifically Algorithm C. Section 2 proves some preliminary re-
sults. Section 3 explores the pointwise convergence away from the endpoints
and at x = ±1. Section 4 deals with L2-convergence on the entire interval.
In both cases, we derive exact asymptotic estimates for the corresponding er-
rors. Section 5 considers convergence acceleration of the QP-approximations
via polynomial corrections. It also studies the methods of approximation of
function derivatives at the endpoints of the interval. It shows that appli-
cation of approximate derivatives improves the convergence properties com-
pared to the expansions that use the exact values of the derivatives. This
improvement is known as auto-correction phenomenon which was previously
detected and explained for polynomial corrections applied to trigonometric
approximations and interpolations [86, 87].
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1 Quasiperiodic Approximations

Let a function f be defined on [−1, 1]. The main idea of the QP-approxi-
mations [96] is the extension of f from [−1, 1] onto the larger interval
[−1/σ, 1/σ] and the application of the truncated Fourier series with the
quasi-periodic basis functions

SN,m(f, x) =
N∑

n=−N

Fn,me
iπnσx, x ∈ [−1, 1],

where

Fn,m =
σ

2

∫ 1
σ

− 1
σ

f ∗(x)e−iπnσxdx, (6)

and f ∗ stands for the extension of f . Note that m = −1 corresponds to the
truncated Fourier series of f on the interval [−1, 1]. It is essential to observe
that σ in Equation (6) depends on N and m. It means that the coefficients
Fn,m not only depend on m but also on N . For different values of N , the
entire set of coefficients {Fn,m}Nn=−N should be recomputed.

Calculation of the coefficients Fn,m requires the knowledge of f ∗ outside
of [−1, 1]. We put

f ∗(x) =


fleft(x), x ∈

[
− 1
σ
,−1

)
,

f(x), x ∈ [−1, 1],

fright(x), x ∈
(
1, 1

σ

]
,

and split the coefficients (6) into three terms

Fn,m =
σ

2

∫ −1

− 1
σ

fleft(t)e
−iπnσtdt + fn,m +

σ

2

∫ 1
σ

1

fright(t)e
−iπnσtdt, (7)

where

fn,m =
σ

2

∫ 1

−1

f(t)e−iπnσtdt.

We see that the main problem of the realization of the QP-approximations
is the calculation of the first and the third integrals in the right-hand side
of (7) as functions fleft and fright are unknown.

Paper [96] considered three different approaches (Algorithms A, B and C)
for the extensions. Algorithm A defines fleft and fright explicitly as a linear
combination of some ”supporting” functions with unknown coefficients and
considers a system of linear equations for their determination. Algorithms B
and C perform implicit extension and approximate the mentioned integrals
in (7) via some quadrature formulae. The unknown values of the left and
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right extensions on the corresponding grids of the quadratures can be found
as a solution to a system of linear equations. Algorithm B applies Gaussian
quadrature and Algorithm C uses the simplest rectangular quadrature.

Let us explain Algorithm C in more details. Let

x∗j = 1 +
j

2N
+

1

4N
, j = 0, . . . ,m

be the grid of the rectangular quadrature on [1, 1/σ], and

wj =
1

2N
, j = 0, . . . ,m

be the corresponding weights. The application of the rectangular rule to the
first and the third integrals in the right-hand side of (7) implies

Fn,m =
σ

2

1

2N

m∑
j=0

fleft(−x∗j)eiπnσx
∗
j + fn,m +

σ

2

1

2N

m∑
j=0

fright(x
∗
j)e
−iπnσx∗j . (8)

Denoting

cleftj (f) =
σ

2

1

2N
fleft(−x∗j), c

right
j (f) =

σ

2

1

2N
fright(x

∗
j),

we rewrite (8) as follows

Fn,m =
m∑
j=0

cleftj (f)eiπnσx
∗
j + fn,m +

m∑
j=0

crightj (f)e−iπnσx
∗
j . (9)

Paper [96] proposed determination of unknowns {cleftj }mj=0 and {crightj }mj=0

from the following system of linear equations

Fn,m = 0, |n| = N −m, . . . , N. (10)

We hoped that (10) would assure a smooth and periodic continuation outside
of [−1, 1] resulting in accelerated convergence of the corresponding truncated
Fourier series on the extended interval.

Throughout the paper, we only consider Algorithm C as it allows us
to solve explicitly the system (10) through the inverse of a Vandermonde
matrix. Let us derive it (see also [96]). For ` = 0, . . . ,m, we have


m∑
k=0

cleftk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

crightk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −fN−`,m,
m∑
k=0

cleftk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

crightk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −f−N+`,m.
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After changing the summation orders in the first sums, we get

2m+1∑
k=m+1

cleft2m+1−ke
− iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

crightk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −fN−`,m,

2m+1∑
k=m+1

cleft2m+1−ke
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

crightk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −f−N+`,m.

Denoting

ck = crightk , k = 0, . . . ,m, ck = cleft2m+1−k, k = m+ 1, . . . , 2m+ 1,

we rewrite the previous system as follows
2m+1∑
k=0

cke
− iπ(N−`)k

2N+m+1 = −e
iπ(N−`)(2N+1

2 )

2N+m+1 fN−`,m, ` = 0, . . . ,m

2m+1∑
k=0

cke
iπ(N−`)k
2N+m+1 = −e−

iπ(N−`)(2N+1
2 )

2N+m+1 f−N+`,m, ` = 0, . . . ,m,

(11)

with unknowns {ck}2m+1
k=0 and with the following Vandermonde matrix

V`,k = e−
iπ(N−`)k
2N+m+1 , ` = 0, . . . ,m; k = 0, . . . , 2m+ 1,

V`,k = e
iπ(N−`+m+1)k

2N+m+1 , ` = m+ 1, . . . , 2m+ 1; k = 0, . . . , 2m+ 1.

(12)

The solution of (11) can be derived explicitly through the inverse of the
Vandermonde matrix (12). Let

αk = e−
iπ(N−k)
2N+m+1 , βk = e

iπ(N−k)
2N+m+1 . (13)

The standard technique for the calculation of the inverse (see details in [81]
for a similar problem) implies

V −1
k,` = −

∑k
j=0 γjα

j
`

αk+1
`

m∏
i=0

(α` − βi)
m∏
i=0
i 6=`

(α` − αi)
,

` = 0, . . . ,m; k = 0, . . . , 2m+ 1,

V −1
k,` = −

∑k
j=0 γjβ

j
`−m−1

βk+1
`−m−1

m∏
i=0

i 6=`−m−1

(β`−m−1 − βi)
m∏
i=0

(β`−m−1 − αi)
,

` = m+ 1, . . . , 2m+ 1; k = 0, . . . , 2m+ 1,
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where γj are the coefficients of the following polynomial

m∏
i=0

(x− αi)
m∏
i=0

(x− βi) =
2m+2∑
j=0

γjx
j.

Now, we get the following explicit form of the coefficients Fn,m in the terms
of the inverse {V −1

k,` }

Fn,m = fn,m −
2m+1∑
k=0

e−
iπn(2N+k+1

2 )

2N+m+1

×

(
m∑
`=0

V −1
k,` e

iπ(N−`)(2N+1
2 )

2N+m+1 fN−`,m

+
m∑
`=0

V −1
k,`+m+1e

− iπ(N−`)(2N+1
2 )

2N+m+1 f−N+`,m

)
. (14)

Algorithm C has several benefits. First and foremost, it provides the
existence and uniqueness of the solution to the corresponding system of linear
equations (see (10)). Second, practical solution can be achieved also by using
the well-known Björk-Pereyra algorithm [120] for the solution to systems
with Vandermonde matrices. This O((2m+ 2)2) algorithm has a number of
beneficial properties. In particular, under certain mild hypotheses [121], the
magnitude of the numerical errors depends only on the machine precision
used, and is independent of condition numbers of matrices. However, for the
theoretical purposes, we will use the explicit solution.

2 Preliminaries

We consider some preliminary statements and lemmas for the main theo-
rems.

Consider a sequence of complex numbers {ys}∞s=−∞ and denote

ŷ = {ys}∞s=−∞.

Let
δ0
n(ŷ) = yn,

δpn(ŷ) = δp−1
n+1(ŷ) + 2δp−1

n (ŷ) + δp−1
n−1(ŷ), p ≥ 1,

and
∆0
n(ŷ) = yn,

∆p
n(ŷ) = ∆p−1

n (ŷ) + ∆p−1
n−1(ŷ), p ≥ 1.
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It is easy to verify that
δpn(ŷ) = ∆2p

n+p(ŷ),

and

∆p
n(ŷ) =

p∑
k=0

(
p

k

)
yn−k.

Consequently,

δpn(ŷ) =

2p∑
k=0

(
2p

k

)
yn+p−k. (15)

Lemma 1 [91] Let

û =
{

(−1)se
iπβs

2N+m+1

}∞
s=−∞

, β ∈ R.

Then, for any n, the following estimate holds as N →∞

δpn (û) =
(−1)n(πβ)2p

(2N +m+ 1)2p
e

iπβn
2N+m+1 +O

(
N−2p−1

)
.

Lemma 2 LetBn(j) =
(−1)n

(iπn)j+1
e

iπβn
2N+m+1 , n 6= 0,

B0(j) = 0,
j ≥ 0, β ∈ R,

and
v̂j = {Bn(j)}∞n=−∞.

Then, the following estimate holds for |n| ≥ N as N →∞

δpn (v̂j) =
(−1)n+p

(iπn)j+1
e

iπβn
2N+m+1

∞∑
t=2p

ω2p,t(−iπβ)t

t!(2N +m+ 1)t
+O

(
n−j−2N−2p+1

)
,

where

ωp,t =

p∑
k=0

(
p

k

)
(−1)kkt.

Proof. We have

∆p
n(v̂j) =

(−1)ne
iπβn

2N+m+1

(iπn)j+1

p∑
k=0

(
p

k

)
(−1)ke−

iπβk
2N+m+1(

1− k
n

)j+1

=
(−1)ne

iπβn
2N+m+1

(iπn)j+1

∞∑
t=0

ωp,t

t∑
τ=0

(
τ + j

τ

)
(−iπβ)t−τ

(t− τ)!(2N +m+ 1)t−τ
1

nτ

=
(−1)ne

iπβn
2N+m+1

(iπn)j+1

∞∑
t=p

ωp,t(−iπβ)t

t!(2N +m+ 1)t
+O

(
n−j−2N−p+1

)
.

Relation δpn(v̂j) = ∆2p
n+p(v̂j) completes the proof. �
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Denote by AC[−1, 1] the set of all absolutely continuous functions on
[−1, 1].

Lemma 3 Let f (q+v) ∈ AC[−1, 1] for some q, v ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, for any N , the following estimate holds as n→∞

fn,m = (−1)n+1σ

2

q+v∑
j=q

1

N j+1
µj,m

(
f,

n

2N +m+ 1

)
+ o(n−q−v−1),

where

µj,m(f, x) =
f (j)(1)eiπ(m+1)x − f (j)(−1)e−iπ(m+1)x

(2iπx)j+1
. (16)

Proof. The proof is straightforward by means of integration by parts. �

The next lemma uses two-point Taylor expansions.

Theorem 1 [122] Let f(z) be an analytic function on an open set Ω ⊂
C and z1, z2 ∈ Ω with z1 6= z2. Then, f(z) admits the two-point Taylor
expansion

f(z) =
N−1∑
n=0

[an(z1, z2)(z − z1) + an(z2, z1)(z − z2)] (z − z1)n(z − z2)n

+ rN(z1, z2; z), (17)

where the coefficients an(z1, z2) and an(z2, z1) are given by Cauchy integral

an(z1, z2) ≡ 1

2πi(z2 − z1)

∫
C

f(ω)dω

(ω − z1)n(ω − z2)n+1
. (18)

The remainder term rN(z1, z2; z) is given by the Cauchy integral

rN(z1, z2; z) ≡ 1

2πi

∫
C

f(ω)dω

(ω − z1)N(ω − z2)N(ω − z)
(z − z1)N(z − z2)N . (19)

The contour of integration C is a simple closed loop which encircles the points
z1 and z2 (for an) and z, z1 and z2 (for rN) in the counterclockwise direction
and is contained in Ω. The expansion (17) is convergent for z inside the
Cassini oval

Oz1,z2 ≡ {z ∈ Ω, |(z − z1)(z − z2)| < r}, (20)

where
r ≡ Infω∈C\Ω{|(ω − z1)(ω − z2)|}. (21)
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Representation (18) is inappropriate for numerical computations. A more
practical formula to compute the coefficients of the above two-point Taylor
expansion is given in the following proposition.

Proposition 2 [122] Coefficients an(z1, z2) in expansion (17) are also given
by the formulas:

a0(z1, z2) =
f(z2)

z2 − z1

(22)

and, for n = 1, 2, 3, . . . ,

an(z1, z2) =
n∑
k=0

(n+ k − 1)!

k!(n− k)!

(−1)n+1nf (n−k)(z2) + (−1)kkf (n−k)(z1)

n!(z1 − z2)n+k+1
. (23)

Let

Φj (z) =
1

z
1
2 (ln z)j+1

, Ψj (z) =
z2m+ 3

2

(ln z)j+1
, j ≥ 0.

We denote by Φj,p (z) the (2p − 1)-th order two-point Taylor expansion of
Φj (z) at the points z = z1 and z = z2

Φj,p (z) =

p−1∑
n=0

(
φ

(n)
j (z1, z2)(z − z1) + φ

(n)
j (z2, z1)(z − z2)

)
(z − z1)n(z − z2)n,

where

φ
(0)
j (z1, z2) =

Φj(z2)

z2 − z1

,

and

φ
(n)
j (z1, z2)=

n∑
k=0

(n+ k − 1)!

k!(n− k)!

(−1)n+1nΦ
(n−k)
j (z2)+(−1)kkΦ

(n−k)
j (z1)

n!(z1 − z2)n+k+1
, n > 0.

Then, the remainder rp(Φj, z) of the corresponding Taylor expansion can be
written as

rp (Φj, z) = Φj (z)− Φj,p (z) = O ((z − zk)p) , z → zk, k = 1, 2. (24)

We use similar notations for Ψj (z) with Ψj,m−1 (z), ψ
(n)
j (z1, z2) and rp(Ψj, z).

Lemma 4 Let f (q+v+m) ∈ AC[−1, 1] for some q, v,m ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |n| ≤ N + c (c ∈ N is a constant)

Fn,m − fn,m =
σ

2
e
iπn(m+1

2)
2N+m+1

q+v∑
j=q

(−1)n+j+1

2j+1N j+1

×
(
f (j)(1)Yn(Φj)− f (j)(−1)Yn(Ψj)

)
+ o(N−q−v−1), N →∞,
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where

Yn(ϕj) = ϕj,m+1

(
e−

iπn
2N+m+1

)
+

2m+1∑
`=0

e−
iπn`

2N+m+1W`(ϕj),

and

W`(ϕj) =
m∑
k=0

V −1
`,k rm+1 (ϕj, αk) +

m∑
k=0

V −1
`,k+m+1rm+1 (ϕj, βk) .

Proof. Equation (14) implies

Fn,m − fn,m = −
2m+1∑
`=0

e−
iπn(2N+`+1

2)
2N+m+1

×

(
m∑
k=0

V −1
`,k β

2N+ 1
2

k fN−k,m +
m∑
k=0

V −1
`,k+m+1α

2N+ 1
2

k f−N+k,m

)
.

According to Lemma 3, we have

fN−k,m = (−1)N+k+1σ

2

q+v+m∑
j=q

f (j)(1)βm+1
k − f (j)(−1)αm+1

k

(iπσ(N − k))j+1
+o
(
N−q−v−m−1

)
,

and

f−N+k,m = (−1)N+k+1σ

2

q+v+m∑
j=q

f (j)(1)αm+1
k − f (j)(−1)βm+1

k

(−iπσ(N − k))j+1
+o
(
N−q−v−m−1

)
.

Taking into account that V −1
`,k = O (Nm), we get the following estimate

Fn,m − fn,m = I1 + I2 + o
(
N−q−v−1

)
, N →∞, (25)

where

I1 =
σ

2
e−

iπn(2N+1
2)

2N+m+1

q+v+m∑
j=q

(−1)j+1f (j)(1)

(2N)j+1
Zn(Φj),

and

I2 = −σ
2
e−

iπn(2N+1
2)

2N+m+1

q+v+m∑
j=q

(−1)j+1f (j)(−1)

(2N)j+1
Zn(Ψj),

with

Zn(ϕj) =
2m+1∑
`=0

e−
iπn`

2N+m+1

(
m∑
k=0

V −1
`,k ϕj (αk) +

m∑
k=0

V −1
`,k+m+1ϕj (βk)

)
. (26)

This completes the proof in view of the two-point Taylor expansions for
functions Φj and Ψj at the points −ı and ı. �
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Lemma 5 Let f (q+2m+1) ∈ AC[−1, 1] for some q,m ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimates hold for p ∈ Z

FN+p,m =
(−1)N+p+m

N q+m+2

(
m+ p

m+ 1

)
Cq,m(f) + o(N−q−m−2), N →∞, (27)

and

F−N−p,m =
(−1)N+p+m

N q+m+2

(
m+ p

m+ 1

)
Cq,m(f) + o(N−q−m−2), N →∞, (28)

where

Cq,m(f) =
(−1)q

√
ıπm+1(m+ 1)!

2q+1

×
(
f (q)(1)φ(m+1)

q (ı,−ı)− f (q)(−1)ψ(m+1)
q (ı,−ı)

)
. (29)

Proof. Lemma 3 , with v = 2m+ 1 and Equation (14), implies

FN+p,m =
σ

2

2m+1∑
`=0

e−
iπ(N+p)(2N+`+1

2)
2N+m+1

(
m∑
k=0

V −1
`,k hk(f) +

m∑
k=0

V −1
`,k+m+1hk(f)

)

− σ

2
e−

iπ(N+p)(2N+1
2)

2N+m+1 h−p(f) + o(N−q−m−2) = T1 + T2 + o(N−q−m−2), (30)

where

hk(f) = e
iπ(N−k)(2N+1

2)
2N+m+1

q+2m+1∑
t=q

f (t)(1)α2N
k − f (t)(−1)β2N

k

(iπσ)t+1(N − k)t+1

=

q+2m+1∑
t=q

(−1)t+1

(2N)t+1

(
f (t)(1)Φt (αk)− f (t)(−1)Ψt (αk)

)
, (31)

with

T1 = −σ
2
e−

iπ(N+p)(2N+1
2)

2N+m+1

q+2m+1∑
t=q

(−1)t+1

(2N)t+1
f (t)(1) (Φt (α−p)− ZN+p(Φt)) ,

and

T2 =
σ

2
e−

iπ(N+p)(2N+1
2)

2N+m+1

q+2m+1∑
t=q

(−1)t+1

(2N)t+1
f (t)(−1) (Ψt (α−p)− ZN+p(Ψt)) .
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First, we estimate T1

Φt (α−p)− ZN+p(Φt) = Φt (α−p)−
m∑
k=0

2m+1∑
`=0

α`−pV
−1
`,k Φt (αk)

−
m∑
k=0

2m+1∑
`=0

α`−pV
−1
`,k+m+1Φt (βk) =

m∑
k=0

res
z=αk

ω (α−p) Φt (z)

ω (z) (z − α−p)

+
m∑
k=0

res
z=βk

ω (α−p) Φt (z)

ω (z) (z − α−p)
+ res

z=α−p

ω (α−p) Φt (z)

ω (z) (z − α−p)
,

where

ω (z) =
m∏
k=0

(z − αk)
m∏
k=0

(z − βk) .

Hence,

Φt (α−p)− ZN+p(Φt) =
1

2iπ

∫
Γ

ω (α−p) Φt (z)

ω (z) (z − α−p)
dz,

where Γ contains the points {αk}mk=0, {βk}mk=0 and α−p. We have

Φt (α−p)− ZN+p(Φt) =
(i)m+1πm+1

2iπNm+1

m∏
k=0

(p+ k)

∫
Γ

Φt (z)

(z + i)m+2(z − i)m+1
dz

+O
(
N−m−2

)
=

2ımπm+1

Nm+1
φ

(m+1)
t (ı,−ı)

m∏
k=0

(p+ k) +O
(
N−m−2

)
,

which leads to the following estimate for T1 according to the definition of
the binomial coefficients

(
p
k

)
for all p ∈ Z (see [123])

T1 = (−1)N+p+q+m

√
ıf (q)(1)πm+1(m+ 1)!

2q+1N q+m+2

(
m+ p

m+ 1

)
φ(m+1)
q (ı,−ı)

+O
(
N−q−m−3

)
. (32)

Similarly,

T2 = −(−1)N+p+q+m

√
ıf (q)(−1)πm+1(m+ 1)!

2q+1N q+m+2

(
m+ p

m+ 1

)
ψ(m+1)
q (ı,−ı)

+O
(
N−q−m−3

)
. (33)

Equations (32) and (33), along with (30), yield

FN+p =
(
f (q)(1)φ(m+1)

q (ı,−ı)− f (q)(−1)ψ(m+1)
q (ı,−ı)

)
(−1)N+p+q+m

√
ıπm+1(m+ 1)!

2q+1N q+m+2

(
m+ p

m+ 1

)
+ o(N−q−m−2),

which completes the proof of (27).
Relation F−N−p = FN+p completes the proof of (28). �
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3 The Pointwise Convergence

The main results of this section are Theorems 3 and 4. They explore the
pointwise convergence of the QP-approximations and reveal the exact con-
stants of the corresponding asymptotic errors.

Let

RN,m(f, x) = f(x)− SN,m(f, x). (34)

Theorem 3 Let f (q+2m+2) ∈ AC[−1, 1] for some q,m ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |x| < 1

RN,m(f, x) = (−1)N+m+1DN,m(f, x)

N q+m+2
+ o(N−q−m−2), N →∞,

where

DN,m(f, x) =
(
Cq,m(f)eiπNσx + Cq,m(f)e−iπNσx

) ḿ∑
k=0

(−1)k
(
m−k+1

k

)
22k+2 cos2k+2 πσx

2

−
(
Cq,m(f)eiπ(N+1)σx + Cq,m(f)e−iπ(N+1)σx

) ḿ−1∑
k=0

(−1)k
(
m−k−1

k

)
22k+4 cos2k+4 πσx

2

,

with ḿ =

[
m+ 1

2

]
and Cq,m(f) defined by (29).

Proof. We extend f outside of [−1, 1] by f(x) ≡ 0 and consider its repre-
sentation by the Fourier series expansion on [−1/σ, 1/σ] via quasi-periodic
exponential functions. The function f is sufficiently smooth on (−1, 1) for
the pointwise convergence of the expansion

f(x) =
∞∑

n=−∞

fn,me
iπnσx, x ∈ (−1, 1).

We use it in (34) and write the error of the QP-approximation in the form

RN,m(f, x) =
N∑

n=−N

(fn,m − Fn,m) eiπnσx +
∑
|n|>N

fn,me
iπnσx, x ∈ (−1, 1).
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The application of the Abel transformation leads to the expansion

RN,m(f, x) =
FN+1,me

iπNσx − FN,meiπ(N+1)σx

(1 + e−iπσx) (1 + eiπσx)

+
F−N−1,me

−iπNσx − F−N,me−iπ(N+1)σx

(1 + e−iπσx) (1 + eiπσx)

+
1

(1 + e−iπσx) (1 + eiπσx)

N∑
n=−N

δ1
n ({fs,m − Fs,m}) eiπσnx

+
1

(1 + e−iπσx) (1 + eiπσx)

∑
|n|>N

δ1
n ({fs,m}) eiπσnx.

Reiteration of this transformation up to ḿ+ 1 times implies

RN,m(f, x) = R1 −R2 +R3 −R4 + r,

where

R1 = eiπNσx
ḿ∑
k=0

δkN+1 ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

,

R2 = eiπ(N+1)σx

ḿ∑
k=0

δkN ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

,

R3 = e−iπNσx
ḿ∑
k=0

δk−N−1 ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

,

R4 = e−iπ(N+1)σx

ḿ∑
k=0

δk−N ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

,

and

r =
1

(1 + e−iπσx)ḿ+1 (1 + eiπσx)ḿ+1

N∑
n=−N

δḿ+1
n ({fs,m − Fs,m}) eiπσnx

+
1

(1 + e−iπσx)ḿ+1 (1 + eiπσx)ḿ+1

∑
|n|>N

δḿ+1
n ({fs,m}) eiπσnx. (35)

We prove that

r = o
(
N−q−m−2

)
, N →∞, |x| < 1.

The application of similar transformation to (35) leads to the following ex-
pansion

r = r1 + r2 + r3 + r4,
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where

r1 =
δḿ+1
−N−1 ({Fs,m}) e−iπNσx − δḿ+1

N ({Fs,m}) eiπ(N+1)σx

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2
,

r2 =
δḿ+1
N+1 ({Fs,m}) eiπNσx − δḿ+1

−N ({Fs,m}) e−iπ(N+1)σx

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2
,

r3 =
1

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

N∑
n=−N

δḿ+2
n ({fs − Fs,m}) eiπσnx,

and

r4 =
1

(1 + e−iπσx)ḿ+2 (1 + eiπσx)ḿ+2

∑
|n|>N

δḿ+2
n ({fs}) eiπσnx.

Equation (15) shows that

δḿ+1
N ({Fs,m}) =

2ḿ+2∑
k=0

(
2ḿ+ 2

k

)
FN+ḿ+1−k,m. (36)

In view of the following identity (see [123])

2ḿ+2∑
k=0

(−1)k
(

2ḿ+ 2

k

)(
m+ ḿ+ 1− k

m+ 1

)
= 0,

Equation (36), and Lemma 5, we derive

δḿ+1
N ({Fs,m}) = Cq,m(f)

(−1)N+m+ḿ+1

N q+m+2

×
2ḿ+2∑
k=0

(−1)k
(

2ḿ+ 2

k

)(
m+ ḿ+ 1− k

m+ 1

)
+ o

(
N−q−m−2

)
= o

(
N−q−m−2

)
, N →∞.

Similarly,
δḿ+1
−N−1 ({Fs,m}) = o

(
N−q−m−2

)
, N →∞.

It means that
r1 = o

(
N−q−m−2

)
.

By the same arguments, we get

r2 = o
(
N−q−m−2

)
.

In view of Lemma 4 (with v = m+ 2) and Lemma 1, we have

δḿ+2
n ({Fs,m − fs,m}) = o

(
N−q−m−3

)
, N →∞.
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It shows that
r3 = o

(
N−q−m−2

)
.

Lemma 3 (with v = 2m+ 2) indicates that

fn,m =

q+2m+2∑
k=q

f (k)(1)(−1)n+1e
iπn(m+1)
2N+m+1 − f (k)(−1)(−1)n+1e−

iπn(m+1)
2N+m+1

2σk(iπn)k+1

+ o(n−q−2m−3), n→∞.

According to Lemma (2), we obtain

δḿ+2
n ({fs,m}) =

f (q)(1)(−1)n+ḿ+1e
iπ(m+1)n
2N+m+1

(iπn)q+1

∞∑
t=2ḿ+4

ω2ḿ+4,t(−iπ)t(m+ 1)t

t!(2N +m+ 1)t

+
f (q)(−1)(−1)n+ḿ+1e−

iπ(m+1)n
2N+m+1

(iπn)q+1

∞∑
t=2ḿ+4

ω2ḿ+4,t(iπ)t(m+ 1)t

t!(2N +m+ 1)t

+ o
(
n−q−2N−2ḿ−1

)
, |n| > N, N →∞.

It means that
r4 = o

(
N−q−m−2

)
.

Finally, we conclude that

RN,m(f, x) = R1 +R2 +R3 +R4 + o
(
N−q−m−2

)
, N →∞.

We continue with estimates of R1, R2, R3 and R4.
Let us start with R1. Equation (15) leads to the following equation

δkN+1 ({Fs,m}) =
2k∑
s=0

(
2k

s

)
FN+1+k−s,m,

and, therefore,

R1 = eiπNσx
ḿ∑
k=0

δkN+1 ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

= eiπNσx
ḿ∑
k=0

1

22k+2 cos2k+2 πσx
2

2k∑
s=0

(
2k

s

)
FN+1+k−s,m.

Then, Lemma 5 implies

R1 = Cq,m(f)
(−1)N+m+1

N q+m+2
eiπNσx

×
ḿ∑
k=0

(−1)k

22k+2 cos2k+2 πσx
2

2k∑
s=0

(−1)s
(

2k

s

)(
m+ 1 + k − s

m+ 1

)
+ o(N−q−m−2).
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The following identity (see [123])

2k∑
s=0

(−1)s
(

2k

s

)(
m+ 1 + k − s

m+ 1

)
=

(
m− k + 1

k

)
deduces

R1 = Cq,m(f)
(−1)N+m+1

N q+m+2
eiπNσx

×
ḿ∑
k=0

(
m− k + 1

k

)
(−1)k

22k+2 cos2k+2 πσx
2

+ o(N−q−m−2).

Now, we estimate R3. We have

δk−N−1 ({Fs,m}) =
2k∑
s=0

(
2k

s

)
F−N−1+k−s,m =

2k∑
s=0

(
2k

s

)
F−N−1−k+s,m,

and consequently,

R3 = e−iπNσx
ḿ∑
k=0

δk−N−1 ({Fs,m})
(1 + e−iπσx)k+1 (1 + eiπσx)k+1

= e−iπNσx
ḿ∑
k=0

1

22k+2 cos2k+2 πσx
2

2k∑
s=0

(
2k

s

)
F−N−1−k+s,m.

In view of Lemma 5,

R3 = Cq,m(f)
(−1)N+m+1

N q+m+2
e−iπNσx

×
ḿ∑
k=0

(
m− k + 1

k

)
(−1)k

22k+2 cos2k+2 πσx
2

+ o(N−q−m−2).

By summarizing, we get

R1 +R3 =
(−1)N+m+1

N q+m+2

(
Cq,m(f)eiπNσx + Cq,m(f)e−iπNσx

)
×

ḿ∑
k=0

(
m− k + 1

k

)
(−1)k

22k+2 cos2k+2 πσx
2

+ o(N−q−m−2).

Similarly,

R2 +R4 =
(−1)N+m+1

N q+m+2

(
Cq,m(f)eiπ(N+1)σx + Cq,m(f)e−iπ(N+1)σx

)
×

ḿ−1∑
k=0

(
m− k − 1

k

)
(−1)k

22k+4 cos2k+4 πσx
2

+ o(N−q−m−2),

which completes the proof. �
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Remark 1 The estimate of Theorem 3 is valid only for a fixed x 6= ±1 and
is not a uniform estimate on [−1, 1] (see Theorem 4).

The next theorem reveals the convergence rate of the QP-approximations
exactly at the points x = ±1. Preliminary, we need the special case of
Lemma 4 with v = 0.

Lemma 6 Let f (q+m) ∈ AC[−1, 1] for some q, m ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |n| ≤ N + c (c ∈ N is a constant)

Fn,m − fn,m =
(−1)n

N q+1

σ

2
νq,m

(
f,

n

2N +m+ 1

)
+ o(N−q−1), N →∞, (37)

where

νq,m(f, x) =
(−1)q+1

2q+1
e
iπ(2m+1)x

2

×
(
f (q)(1)Φq,m+1

(
e−iπx

)
− f (q)(−1)Ψq,m+1

(
e−iπx

))
. (38)

Theorem 4 Let f (q+m) ∈ AC[−1, 1] for some q,m ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds as N →∞

SN,m(f,±1) =
f(±1)

2
+

1

N q

∫ 1/2

−1/2

e∓iπ(m+1)xνq,m (f, x) dx

+
1

N q

∫
|x|>1/2

e∓iπ(m+1)xµq,m (f, x) dx+ o
(
N−q

)
,

where µq,m(f, x) and νq,m(f, x) are defined by (16) and (38), respectively.

Proof. As in the proof of Theorem 3, we extend f outside of [−1, 1] by
f(x) ≡ 0 and consider its representation by the Fourier series expansion on
[−1/σ, 1/σ] via quasi-periodic exponential functions. Function f is smooth
on (−1, 1) but may have discontinuities at x = ±1 if f(±1) 6= 0. It means
that

f(±1)

2
=

∞∑
n=−∞

fn,me
±iπnσ

and

SN,m(f,±1)− f(±1)

2
=

N∑
n=−N

(Fn,m − fn,m) e±iπnσ −
∑
|n|>N

fn,me
±iπnσ.
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In view of Lemmas 3 and 6, we have

∑
|n|>N

fn,me
±iπnσ = − 1

N q+1

σ

2

∑
|n|>N

µq,m

(
f,

n

2N +m+ 1

)
e∓

iπn(m+1)
2N+m+1

+ o
(
N−q

)
= − 1

N q

∫
|x|>1/2

e∓iπ(m+1)xµq,m (f, x) dx+ o
(
N−q

)
,

and

N∑
n=−N

(Fn,m − fn,m) e±iπnσ

=
1

N q+1

σ

2

N∑
n=−N

νq,m

(
f,

n

2N +m+ 1

)
e∓

iπn(m+1)
2N+m+1 + o

(
N−q

)
=

1

N q

∫ 1/2

−1/2

e∓iπ(m+1)xνq,m (f, x) dx+ o
(
N−q

)
.

These conclude the proof. �

Remark 2 Theorem 4 shows convergence rate O(N−q) as N → ∞ at x =
±1. It means that the QP-approximations do not converge at the endpoints
for q = 0. Accelerated convergence can be achieved by the polynomial cor-
rection approach described in Section 5.

Let us compare the behaviors of the quasi-periodic approximations (Algo-
rithm C) and interpolations (see [94,95]). The QP-approximation is written
via Vandermonde matrix (12) of size (2m+ 2)× (2m+ 2), where (2m+ 2) is
the number of points outside of [−1, 1] used for extensions. Recall also that
m = −1 corresponds to the classical truncated Fourier series (without the
extension). Theorem 3 proves the convergence rate O(N−q−m−2). It means
that for each pair of points participating in a function extension (per point
for the left and right extensions), the QP-approximation gains additional
O(N−1) factor in the convergence rate compared to the Krylov-Lanczos ap-
proach.

The QP-interpolation is realized by the following Vandermonde matrix{
e

2iπ(`+N)(s−1)
2N+m+1

}m
`,s=1

of size m ×m, m ≥ 1. It means that m = 1 of the QP-interpolation corre-
sponds tom = 0 of the QP-approximation. The next theorem, proved in [91],
revealed the convergence rate of the QP-interpolation, where iN,m(f, x) cor-
responded to the error of the QP-interpolation.
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Theorem 5 [91] Let f (q+2m) ∈ AC[−1, 1] for some m ≥ 1, q ≥ 0 and

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |x| < 1

iN,m(f, x) = O
(
N−q−m−1

)
, N →∞.

We see that each additional m increases the convergence rate by the
factor O(N−1). In this sense, the QP-interpolation is twice more effective
compared to the QP-approximation.

4 The Convergence in the L2-norm

Theorem 6 is the main result of this section. It reveals the behavior of the
QP-approximation in the L2-norm.

Theorem 6 Let f (q+m) ∈ AC[−1, 1] for some q,m ≥ 0, q2 +m2 6= 0, and

f (k)(−1) = f (k)(1) = 0, k = 0, ..., q − 1. (39)

Then, the following estimate holds

lim
N→∞

N q+ 1
2 ||RN,m(f, x)||L2(−1,1) = cq,m(f),

where

c2
q,m(f) =

∫ 1/2

−1/2

|νq,m (f, x)|2 dx+

∫
|x|>1/2

|µq,m (f, x)|2 dx

− m+ 1

2

∫ 1

−1

∣∣∣∣∣
∫ 1/2

−1/2

νq,m(f, h)eiπ(m+1)xhdh

+

∫
|h|>1/2

µq,m(f, h)eiπ(m+1)xhdh

∣∣∣∣2 dx, (40)

and functions µq,m(f, x) and νq,m(f, x) are defined by (16) and (38), respec-
tively.

Proof. We proceed as in the proof of Theorem 3 and extend f outside of
[−1, 1] by f(x) ≡ 0:

RN,m(f, x) =
N∑

n=−N

(fn,m − Fn,m) eiπnσx+
∑
|n|>N

fn,me
iπnσx =

∞∑
n=−∞

cne
iπnσx,
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where {
cn = fn,m − Fn,m, |n| ≤ N,

cn = fn,m, |n| > N.
(41)

Then, we calculate the L2[−1, 1]-norm of the error:

||RN,m(f, x)||2L2(−1,1) =

∫ 1

−1

|RN,m(f, x)|2 dx =

∫ 1

−1

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx

=

∫ 1
σ

− 1
σ

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx−

∫ −1

− 1
σ

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx

−
∫ 1

σ

1

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx = I1 − I2 − I3,

where

I1 =

∫ 1
σ

− 1
σ

∞∑
n,s=−∞

cncs.e
iπ(n−s)σxdx =

2

σ

∞∑
n=−∞

|cn|2

=
2

σ

N∑
n=−N

|fn,m − Fn,m|2 +
2

σ

∑
|n|>N

|fn,m|2 ,

I2 =

∫ −1

− 1
σ

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx

=
m+ 1

2N

∫ 1

0

∞∑
n,s=−∞

(−1)n+scncse
iπ(n−s) m+1

2N+m+1
tdt,

and

I3 =

∫ 1
σ

1

∞∑
n,s=−∞

cncse
iπ(n−s)σxdx

=
m+ 1

2N

∫ 1

0

∞∑
n,s=−∞

(−1)n+scncse
−iπ(n−s) m+1

2N+m+1
tdt.

First, we estimate I1. Lemma 3 and Remark 6 lead to the estimate

I1 =
1

(2N +m+ 1)N2q+1

N∑
n=−N

∣∣∣∣νq,m(f, n

2N +m+ 1

)∣∣∣∣2
+

1

(2N +m+ 1)N2q+1

∑
|n|>N

∣∣∣∣µq,m(f, n

2N +m+ 1

)∣∣∣∣2 + o
(
N−2q−1

)
.
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By tending N to infinity and replacing the sums by the corresponding inte-
grals, we get

lim
N→∞

N2q+1I1 =

∫ 1/2

−1/2

|νq,m (f, x)|2 dx+

∫
|x|>1/2

|µq,m (f, x)|2 dx.

Second, we estimate I2. We rewrite it as follows

I2 =
m+ 1

2N

∫ 1

0

|S(t)|2 dt,

where

S(t) =
∞∑

n=−∞

(−1)ncne
iπ(m+1)t n

2N+m+1

=
N∑

n=−N

(−1)n (fn,m − Fn,m) eiπ(m+1)t n
2N+m+1

+
∑
|n|>N

(−1)nfn,me
iπ(m+1)t n

2N+m+1 .

According to Lemma 3 and Remark 6, we obtain

S(t) = − 1

(2N +m+ 1)N q

N∑
n=−N

νq,m

(
f,

n

2N +m+ 1

)
eiπ(m+1)t n

2N+m+1

− 1

(2N +m+ 1)N q

∑
|n|>N

µq,m

(
f,

n

2N +m+ 1

)
eiπ(m+1)t n

2N+m+1 + o(N−q).

By tending N to infinity and replacing the sums by the corresponding inte-
grals, we derive

lim
N→∞

N qS(t) = −
∫ 1/2

−1/2

νq,m(f, h)eiπ(m+1)thdh

−
∫
|h|>1/2

µq,m(f, h)eiπ(m+1)thdh.

Hence,

lim
N→∞

N2q+1I2 =
m+ 1

2

∫ 1

0

∣∣∣∣∣
∫ 1/2

−1/2

νq,m(f, h)eiπ(m+1)thdh

+

∫
|h|>1/2

µq,m(f, h)eiπ(m+1)thdh

∣∣∣∣2 dt.
We similarly estimate I3 and complete the proof. �
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Theorem 6 is not valid for q = m = 0. However, the same estimate can
be proved for q = m = 0 if f

′ ∈ L2[−1, 1]. The proof is identical to the one
of Theorem 6 and is omitted.

We see that the convergence rate of the QP-approximation in the L2-
norm is identical to the rates of the truncated Fourier series and QP-in-
terpolation (see [93]). The constants of the asymptotic errors are different.
Formally, cq,−1(f) corresponds to the classical Fourier series. Note that the
last negative term in (40) vanishes for m = −1. When m 6= −1, the nega-
tive term reduces the L2-constant corresponding to the QP-approximation
compared to the classical Fourier series.

Unfortunately, the rate of descent depends on the approximated func-
tion. Our experiments also reveal that the constant is decreasing as m is
increasing. However, the proof of this observation is still unspecified. Let us
show it for the following elementary function

f(x) = (x2 − 1)q sin(x− 1), q = 0, 1, 2, · · · .

Table 1 presents the corresponding values of cq,m for comparison.

m = −1 m = 0 m = 1 m = 2 m = 3

q = 0 0.289 0.109 0.051 0.03 0.021

q = 1 0.106 0.109 0.088 0.058 0.035

Table 1: Numerical values of cq,m(f) by the QP-approximation for different q and m.
The value m = −1 corresponds to the truncated Fourier series.

5 Polynomial Corrections

The conditions of Theorems 3, 4 and 6 show the importance of the derivative-
condition

f (k)(−1) = f (k)(1) = 0, k = 0, 1, 2...

for the accelerated convergence of the QP-approximations. If the exact val-
ues of f (k)(−1) and f (k)(1), k = 0, 1, 2, . . . are known, then the application
of the polynomial correction approach will tremendously improve the con-
vergence.

More specifically, consider the following representation of f (see also [95])
similar to the Lanczos representation

f(x) = h(x) +

q−1∑
k=0

A−k (f)Pk,q(x) +

q−1∑
k=0

A+
k (f)Qk,q(x), (42)
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where

A−k (f) = f (k)(1)− f (k)(−1), A+
k (f) = f (k)(1) + f (k)(−1),

and Pk,q, Qk,q, k = 0, . . . , q − 1 are 2-periodic polynomials satisfying the
following conditions

P
(s)
k,q (1)− P (s)

k,q (−1) = δk,s, P
(s)
k,q (1) + P

(s)
k,q (−1) = 0, k, s = 0, . . . , q− 1, (43)

and

Q
(s)
k,q(1) +Q

(s)
k,q(−1) = δk,s, Q

(s)
k,q(1)−Q(s)

k,q(−1) = 0, k, s = 0, . . . , q− 1. (44)

Let us show how polynomials Pk,q(x) and Qk,q(x) can be constructed
(see [95]). We put

Pq−1,q(x) =
x2(x2 − 1)q−1

2q(q − 1)!
, Qq−1,q(x) =

x(x2 − 1)q−1

2q(q − 1)!

if q is even, and

Pq−1,q(x) =
x(x2 − 1)q−1

2q(q − 1)!
, Qq−1,q(x) =

x2(x2 − 1)q−1

2q(q − 1)!

if q is odd. Then, the polynomials can be represented by the following
recurrent relations

Pk,q(x) = Pk,q−1(x)−
(
P

(q−1)
k,q−1 (1) + P

(q−1)
k,q−1 (−1)

)
Qq−1,q(x),

Qk,q(x) = Qk,q−1(x)−
(
Q

(q−1)
k,q−1(1)−Q(q−1)

k,q−1(−1)
)
Pq−1,q(x)

if q − k is even, and

Pk,q(x) = Pk,q−1(x)−
(
P

(q−1)
k,q−1 (1)− P (q−1)

k,q−1 (−1)
)
Pq−1,q(x),

Qk,q(x) = Qk,q−1(x)−
(
Q

(q−1)
k,q−1(1) +Q

(q−1)
k,q−1(−1)

)
Qq−1,q(x)

if q − k is odd.
Conditions (43) and (44) assure that the function h in (42) satisfies the

required derivative-conditions

h(k)(1) = h(k)(−1) = 0, k = 0, . . . , q − 1.

Then, the approximation of h by the QP-approximation leads to the follow-
ing quasi-periodic-polynomial (QPP-) approximation

SN,m,q(f, x) = SN,m(h, x) +

q−1∑
k=0

A−k (f)Pk,q(x) +

q−1∑
k=0

A+
k (f)Qk,q(x),
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with the error

RN,m,q(f, x) = f(x)− SN,m,q(f, x).

The Fourier quasi-periodic coefficients of h can be expressed by means of
the corresponding coefficients of the functions f , Pk,q and Qk,q.

Theorems 3, 4 and 6 can be reformulated for the QPP-approximations
by omitting the corresponding derivative-conditions. Let us consider only
the analog of Theorem 3 for the QPP-approximations.

Theorem 7 Let f (q+2m+2) ∈ AC[−1, 1] for some q,m ≥ 0. Then, the fol-
lowing estimate holds for |x| < 1

RN,m,q(f, x) = (−1)N+m+1DN,m(h, x)

N q+m+2
+ o(N−q−m−2), N →∞,

where DN,m(f, x) is defined in Theorem 3.

6 Implementation Notes

Practical realization of the QPP-approximations is feasible only by efficient
approximation of derivatives and calculation of Fourier quasi-periodic co-
efficients. In general, derivatives at the endpoints are unknown, especially
assuming that parameter q in the polynomial correction can tend to infinity.
Approximation of the Fourier quasi-periodic coefficients can be performed
either by some quadratures (see [124, 125]) if the values of f are known on
a grid or via known classical Fourier coefficients on [−1, 1] (see [96]).

Let us discuss an approach that leads to QPP-approximations with ap-
proximate derivatives with better convergence compared to the ones with the
exact derivatives. Similar phenomenon was observed and reported in [86,87]
for the Eckhoff method named as auto-correction phenomenon. Let us re-
turn to (9), where unknown coefficients cleftj (f) and crightj (f), j = 0, . . . ,m
should be found from the system (10). In particular, the latest is one of the
main reasons of the fast convergence of the QP-approximation compared to
the truncated Fourier series. We will exploit it for approximation of the
derivatives. Let us rewrite (10) for the function h in (42) as follows

Hn,m =
m∑
j=0

cleftj (h)eiπnσx
∗
j + hn,m +

m∑
j=0

crightj (h)e−iπnσx
∗
j .

Taking into account that

h(x) = f(x)−
q−1∑
k=0

A−k (f)Pk,q(x)−
q−1∑
k=0

A+
k (f)Qk,q(x), (45)
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we get

Hn,m =
m∑
j=0

cleftj (f)eiπnσx
∗
j + fn,m +

m∑
j=0

crightj (f)e−iπnσx
∗
j

−
q−1∑
k=0

A−k (f)

[
m∑
j=0

cleftj (Pk,q)e
iπnσx∗j + (Pk,q)n,m +

m∑
j=0

crightj (Pk,q)e
−iπnσx∗j

]

−
q−1∑
k=0

A+
k (f)

[
m∑
j=0

cleftj (Qk,q)e
iπnσx∗j + (Qk,q)n,m +

m∑
j=0

crightj (Qk,q)e
−iπnσx∗j

]
,

(46)

where

(Pk,q)n,m =
σ

2

∫ 1

−1

Pk,q(t)e
−iπnσtdt, (Qk,q)n,m =

σ

2

∫ 1

−1

Qk,q(t)e
−iπnσtdt,

cleftj (Pk,q) =
σ

4N
Pk,q(−x∗j + 2), crightj (Pk,q) =

σ

4N
Pk,q(x

∗
j − 2),

cleftj (Qk,q) =
σ

4N
Qk,q(−x∗j + 2), crightj (νk,q) =

σ

4N
Qk,q(x

∗
j − 2),

and, we used 2-periodicity of polynomials Pk,q and Qk,q. Now, following the
idea behind (10), we consider the following system

Hn,m = 0, |n| = N −m− q, . . . , N (47)

for determination of unknowns A−k (f), A+
k (f), k = 0, . . . , q − 1 and cleftj (f),

crightj (f), j = 0, . . . ,m.
One of our future works will be the investigation of the system (47) for

its effective solutions. Now, let us numerically investigate its impact on the
QPP-approximations for a specific simple function. Let

f(x) = sin(x− 1) (48)

which does not accomplish the required derivative-conditions. Figure 1
shows the absolute values of the errors of the QPP-approximations with
the exact values of the derivatives. The left figures correspond to the inter-
val [−0.8, 0.8] and the right ones correspond to the entire interval [−1, 1].
Naturally, the accuracy increases with the values of parameter q. Figure 2
corresponds to the QPP-approximations with approximate derivatives from
the system (47). The comparison of the figures reveals the essence of the
auto-correction phenomenon. Inside the interval of approximation, QPP-
approximations with approximate jumps have better accuracies compared
to the QPP-approximations with the exact jumps. For m = 2 and q = 1,
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the maximum of the absolute error is 3, 5 · 10−7 versus 1, 4 · 10−6. For
m = 2 and q = 4, the maximum of the absolute error is 2 · 10−12 versus
1, 5 · 10−9. As larger is the value of q as bigger is the difference between
approximations via exact and numeric derivatives. It is important, that the
QPP-approximations with approximate derivatives have improved accuracy
on the entire interval as well. For example, we see 6 · 10−7 versus 1, 2 · 10−6

for m = 2 and q = 4. We did not observe it in the case of the Eckhoff
method. There, the improvements were observed only away from the singu-
larities x = ±1. However, it is easy to explain for the QPP-approximations
as interval [−1, 1] is an inside interval for the extended [−1/σ, 1/σ] interval
where the approximations are applied. One of our future works should be
theoretical investigation of the auto-correction phenomenon for the QPP-
approximations.

7 Conclusion

The paper continued investigations of the quasi-periodic (QP-) approxima-
tions initiated in [96]. The main goal was a detailed investigation of Al-
gorithm C proposed in [96], which led to the explicit realization of the ap-
proximations through the inverse of a Vandermonde matrix. We explored
the convergence of the approximations in different frameworks and derived
exact constants for the corresponding asymptotic errors.

The main results were revealed in Theorems 3, 4 and 6. The estimates
of those theorems showed that the convergence rates of the approximations
depended on the following derivative-conditions at the endpoints of [−1, 1]

f (k)(1) = f (k)(−1) = 0, k = 0, . . . , q − 1.

Those requirements were stricter compared to the classical requirements for
the Fourier expansions (actually meaning periodic and smooth continuation
of the function f from [−1, 1] onto the real line R)

f (k)(1) = f (k)(−1), k = 0, . . . , q − 1.

Theorem 3 revealed the pointwise behavior of the approximations away
from the endpoints. It showed convergence rate O(N−q−m−2) as N → ∞,
while for the truncated Fourier series (see [86], Theorem 2.4), the conver-
gence rate was O(N−q−1) which formally corresponded to the estimate of
Theorem 3 with m = −1. We observed improvement in the convergence
rate by factor O(Nm+1), although with different smoothness requirements
and derivative-conditions.

Theorem 4 estimated the convergence rate of the QP-approximations at
x = ±1. It showed O(N−q) as N → ∞. Hence, the QP-approximations
diverged for q = 0 at x = ±1.
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Figure 1: QPP-approximations with the exact values of the endpoint derivatives.

Theorem 6 explored the convergence in the framework of L2[−1, 1]-norm.

It showed identical convergence rate O(N−q−
1
2 ) as for the truncated Fourier

series. The benefit of the QP-approximation compared to the truncated
Fourier series was in smaller constant cq,m(f), m ≥ 0 compared to cq,−1(f)
which was based on experimental evidence without the theoretical proof.
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Figure 2: QPP-approximations with the approximated values of the endpoint deriva-
tives.

Additional convergence acceleration was achieved via application of the
well-known polynomial correction method (QPP-approximations). We showed
the system of linear equations (see (47)) for approximation of the coefficients
cleftj (f) and crightj (f) in (46) as well as for determination of derivatives A−k (f)
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and A+
k (f) in (42). The approach led to the improved convergence of the

QPP-approximations with approximated derivatives compared to the ones
that exploited the exact derivatives. Similar improvement was detected for
the Eckhoff method and was named as auto-correction phenomenon. In case
of the QPP-approximations, the improvement was noticed both on the entire
interval and much severe away from the endpoint-singularities.

8 Acknowledgement

We thank anonymous reviewers for careful and critical reading of our paper.
Their thoughtful comments tremendously helped to improve our manuscript.

References

[1] J. W. Gibbs, Fourier’s series, Letter in Nature, 59 (1899), pp. 200–200.
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[122] J. L. López and N. M. Temme, Two-point Taylor expansions of an-
alytic functions, Stud. Appl. Math., 109 (2002), no. 4, pp. 297–311.
https://doi.org/10.1111/1467-9590.00225

[123] J. Riordan, Combinatorial identities. New York: John Wiley & Sons
Inc., 1968.

[124] A. Iserles and S. P. Nø rsett, Efficient quadrature of highly os-
cillatory integrals using derivatives, Proc. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci., 461 (2005), no. 2057, pp. 1383–1399.
https://doi.org/10.1098/rspa.2004.1401

https://doi.org/10.1006/jcph.2002.7023
https://doi.org/10.1016/j.jcp.2007.08.029
https://doi.org/10.1137/090752456
https://doi.org/10.1016/j.cam.2013.09.069
https://doi.org/10.1007/s10208-013-9158-8
https://doi.org/10.1090/s0025-5718-2011-02539-1
https://doi.org/10.1090/s0025-5718-2015-02948-2
https://doi.org/10.1007/bf01408579
https://doi.org/10.1111/1467-9590.00225
https://doi.org/10.1098/rspa.2004.1401


44 A. POGHOSYAN, L. POGHOSYAN AND R. BARKHUDARYAN

[125] A. Deaño, D. Huybrechs, and A. Iserles, Computing highly oscilla-
tory integrals. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2018. https://doi.org/10.1137/1.9781611975123

Arnak V. Poghosyan
Institute of Mathematics,
National Academy of Sciences of Armenia
Bagramian ave. 24/5, 0019 Yerevan, Armenia.
arnak@instmath.sci.am

Lusine D. Poghosyan
Institute of mathematics,
National Academy of Sciences of Armenia
Bagramian ave. 24/5, 0019 Yerevan, Armenia.
lusine@instmath.sci.am

Rafayel H. Barkhudaryan
Institute of mathematics,
National Academy of Sciences of Armenia
Bagramian ave. 24/5, 0019 Yerevan, Armenia.
Yerevan State University,
Alex Manoogian 1, 0025 Yerevan, Armenia.
rafayel@instmath.sci.am

Please, cite to this paper as published in
Armen. J. Math., V. 13, N. 10(2021), pp. 1–44
https://doi.org/10.52737/18291163-2021.13.10-1-44

https://doi.org/10.1137/1.9781611975123
mailto: arnak@instmath.sci.am
mailto: lusine@instmath.sci.am
mailto: rafayel@instmath.sci.am
https://doi.org/10.52737/18291163-2021.13.10-1-44

