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Abstract

In this note we derive the Monge-Ampere type equation in Euclidian coordinates de-
scribing the refraction phenomena of perfect lens. This simplifies the regularity issues of the

weak solutions on the problem.
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1 Introduction and main result

It is well-known that ellipse and hyperbola have simple refraction properties, namely if rays
of light diverge from one focus, then after refraction they pass parallel to the major axis
[4]. If the ellipse (resp. hyperbola) represents the boundary separating two medias, with

refractive indices ny, ny then according to refraction law
nysina = ng sin 3,

where o and [ are the angles between normal and respectively the ray before and after
refraction. Let k = ny/no, then one can verify that £k = 1/e, where ¢ is the eccentricity of
ellipse (resp. hyperbola) [4]. These properties are limiting cases of solutions to more general
problems of determining the surface required to refract rays of light diverging from one point
and after refraction covering a given set of directions on the unit sphere. More precisely let
us assume we are given two sets {2, Q2* on unit sphere centered at origin, and nonnegative
integrable functions f, g defined respectively on €2 and €2*. Suppose that a point source of
light is centered at the origin O and for every X € () we issue a ray from O passing through

X, which after refraction from the unknown surface I' is another ray given by a unit direction
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Y =Y(X) € Q. It is clear that mapping Y is determined by I'. Let f(X) be the input
intensity of light at X € Q and ¢g(Y") corresponding gain intensity after refraction at Y € Q*.
Now the problem can be formulated as follows: given two pairs (€2, f) and (Q*, g) satisfying

Li=] s (1.1

find a surface I, such that for corresponding mapping Y (X) we have

to energy balance condition

Y(Q) = Q.

We seek a I' as a radial graph of a unknown function pie. ' ={Z € R"", Z = Xp(X)},

then mathematically this problem is amount to solve a Monge-Ampere type equation

det(D;p — 04z, p, Dp)) = h(x, p, Dp), (1.2)

1,

subject to boundary condition
Y(Q)=Q". (1.3)

Here the derivatives are taken in some orthogonal coordinate system (see Theorem 1) and
2 is a subset of upper half sphere. The solutions to ([1.2)), should be sought in the class of
functions such that the matrix ijp —0yi(z,p, Dp) > 0. Tt is easy to see that if p € C? such
that ijp — 0i; > 0 then equation (1.2 is elliptic with respect to p.

It turns out that p is a potential function to an optimal transfer problem with a loga-

rithmic cost function [I]

e>1, XY >k,

1
(X,Y) = { CBEET
e<l, X Y <k

log —x7y-

A similar cost function appears in the reflector problem introduced by X-J. Wang [8], [9].
The regularity of the solutions to optimal transfer problems is discussed in [3] and [5]. The
most important thing is the so-called A3 condition, imposed on matrix o;; [3]. Assoon as one
has it the rest of the regularity, both local and global will follow from the classical framework
established in [3], [5] and [6]. In [I] authors have verified the A3 condition, however without
using Euclidian coordinates.

In this note we give a simple way of verifying the A3 condition, for £ < 1 without
invoking to covariant derivatives. It is also explicit, strict and straightforward . Main
idea is to find a simple formula for mapping Y (X) using a parametrization of upper unit
half sphere, used in [2]. Then the rest will follow along the arguments of [2]. This method
is very general and one can apply it to near-field problem. Indeed if one considers a map
2z = px + ty, where t is the stretch function, then det Dz will give the equation for near-field
problem. However we don’t discuss this problem in the present note. It is worth noting that,
if support functions are ellipsoids, i.e. k> 1 the A3 condition is not fulfilled (see (3.4)).
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1.1 Notations

Let us consider the case of two homogeneous medias, with refractive constants n; and ns. €2
and Q* are two domains on the unit sphere 8" = {X = (1,...,Zp41), 27 + -+ 22, = 1}.
For X € 8", x = (x1,...,2,,0). We also suppose that € is a subset of upper unit sphere
St =38"nN {zpy1 > 0}. In what follows we consider p as a function of = € g, with Qg
as orthogonal projection of €2 on to hyperplane x,.1 = 0. By Dp we denote the gradient
of function p with respect to x variable Dp = (D,,p,..., D, p,0). The reciprocal of p is
defined as u = 1/p. We also define two auxiliary functions b = u? + |Du|?> — (Du - z)? and
V = Vu? — ob+u. In what follows o0 = (k> —1)/k*> =1 — £,

1.2 The main results

Our main result is contained in the following

Theorem 1 If p is the radial function defining ', and w = 1/p, then u is a weak solution

to
— o(u— Du -
det V —o(u u-x) Id+ TR — D*uy =h, ifk < 1, (1.4)
o 1 —|z[?
— o(u— Du -
det D2u—v olu . £E)(Id-I— x®x) =h, ifk > 1,
o 1 —|z[?

CfX) ViE—ob 1 V"
T P (Ma!)’

where b = u* + |Dul® — (Du - )%,V = Vu? — ob + u.
If weset F =0V —o(u—Du-z)) and [ = Id + 222, the first fundamental form of

1—z27
the upper unit half sphere, then equation can be rewritten as det(IF — D?*u) = h for k < 1.
The weak solutions for this equations can be defined through the theory of optimal transfers
[1] (see [7] for the discussion of such problems). The higher regularity of the weak solutions

depends on the properties of the function F'. More precisely we have

Theorem 2 Ifk < 1 (i.e. when the support functions are hyperboloids of revolution touching
I from below) and (f,Q2) and (g,$2*) satisfy to the regularity assumptions as in [3], [5] and
[6] then F' is strictly concave as a function of the gradient and the weak solutions are locally
(globally) smooth provided f, g are positive smooth functions and Q,Q* C St

If k > 1 (i.e. when the support functions are ellipsoids of revolution touching I from
above) then F is not conver in gradient and the weak solutions may not be C' even for

smooth positive intensities f,g.

2 The main formulas

In this section we derive a simple and useful formula for Y. We use it to compute the

Jacobian determinant in the next section.
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Figure 1: The refraction law.

2.1 The mapping Y

Let Y be the unit direction of the refracted ray. First let us derive a formula for Y, using

angles o and [ (see figure 1). Since X, Y and outward unit vector v lie in the same plane,

we have

Y = C’lX—I—C’Q'y

for two unknowns, C'; and C5 depending on X. If one takes the scalar product of Y with ~

and then with X, then

cos 3 = Cqcosa+ Cy
cos (v — ) = Cy + Cycos a.

Multiplying the first equation by cos a and subtracting from the second one we infer

C, = sin§ Cy =cos 3 — Cicosa.

sina’

Introduce k = n;/ns, hence we find that C; = k and Cy = cos f — k cos «v, that is

Y = kX + (cos 8 — kcosa)y.
We can further manipulate (2.1)). Note that
n3 — nj3cos® 3 = n3sin? B = nisin’ a = ni — njcos®a.
Dividing the both sides by n3 we obtain
k*cos® a = (k* — 1) + cos® 3.
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Returning to (2.1) we get

Y = kX4 (Vk2cos2a — (k2 —1) — kcosa)y = (2.2)
= k<X+[\/(X-7)2—0—X~7]7),
where o = (k? — 1)/k?. From [2] we have
_ Dp—X(p+Dp-x)
VP?+Dp]> = (Dp - x)?
where X = (z,v/1 —|z|?), Dp = (puy, - - - Pz, )- It is convenient to work with a new function
u = p~!. By direct computation we have that
~ Du+X(u—Du-x)
7 Vu2 + [Dul? — (Du - )%

’y:

Introduce b = u? + |Du|* — (Du - z)?, then

Y = k<X+[\/m—X-vh>

— K <X+b—1[\/M—u][Du+X(u—Du-9:)]),

where we used the fact that

- >0
Vu?+ |Dul? — (Du - z)?

X -v=

In particular it follows from the previous formula that

Yot = kX (1= Z(u = (Du- 2))). (2.3)

2.2 The Jacobian determinant

Let dX and dY be respectively the area elements corresponding to 2 and Q*. Then dx =
X,+1dX. Recall that Y is a unit vector and denote y = (Y1, Y5,...,Y,,0) € Qf, where Qf
is the orthogonal projection of {2* onto hyperplane x,,.; = 0 so we conclude dy = Y, 1dY.
Hence if we consider y to be a mapping from q to 2 then dy = |detDy|dz.

For perfect refractor I' we have the energy balance condition
/ f(X)dX = g(Y)dY, V¥ measurable £ C Q.
E Y (E)

Thus we obtain fdX = gdY or

Xn+1 f(X) dX
J= detDy| = ol = —. 24
Yot [det Dy g(Y) dy 24)
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Thus to find the Jacobian determinant J it is enough to compute |det Dy|.
Before starting our computations let us note, that if y = I'd + C'¢ ® n for some constant

C and for any two vectors £, € R", then one has

CéE®n

od-—— T
a 1+CE-n)

, detp=14+C(&-n). (2.5)

3 Proofs of Theorems 1-2

The main goal of this section is to prove the following

Proposition 1 IfY is given as above and
o
y==k [x— V(Du—l—x(u—Du-x)) ,

then

— — Du-
Dyzk%p[[d—x@x]{([d+ rer )V o(u 4 m)—DQU},

1 —|z? o
where b = u® + | Dul?> — (Du - )2,V = Va2 — ob+u and p is defined by (3.9).

Proof. Introduce V = Vu? — ob+u, 2z = Du+ x(u — Du - x). Using these notations one

can rewrite

y = klr — %z]
By a direct computation we have
Yis 0 i 2V
5 D :
k vE )

Differentiating z* and V' with respect x; yields

.

Zi = Uy — LTy Ui + 0i(u — Du - ),

<

N
Il

pu; — Q(um - (DU : :L‘)mm)umja

where

V—o(u— Du-x)
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Then

o p
=2 — I1d— Z|(Id - D?>u+ Id(u—Du-2)— —=2Q D 1
. d V[( d—z®x)Du+ Id(u— Du - x) 2 ® Du (3.1)

q 2
+Vz ® (Du — (Du - z)x)D u]

= _%@fjm.@ﬂM+Az®Du

—B{(Id—a:@x) + %z@ (Du — (Du-x)x)}D%},

where we set

A = v S —
1—%(u—Du-z) V(V—-u)

B = v - U .
1-%(u—-Du-z) V—o(u—Du-x)

Then using Lemma 1 (see below) we finally obtain

Dy

L D‘%(U—DU-IE)]BM[Id—x@x]{(]d+ﬂ 1 —Dgu}

yqﬂﬂﬁ

o r@x 1 9
= —p[ld— Id+ ——)=—-D
V,u[d $®x]{(d+1—\x]2)3 u}

— %M[Id—a:@)x]{V_O(U_Du'ﬂ(fd%— reT )—DQu}.

o 1—|z]?

Hence to finish the proof of Proposition 1 it remains to prove

Lemma 1 Let p = Id+ Az ® Du, then

M_I{(Id—x®x)+%z®(Du—(Du-x)x)}:Id—x®x, (3.2)
Yn—i—l U
dety = . 3.3
o kXni1 Vu? —ob (3:3)
Proof. First by (2.5
g Az @ Du
S TN

Let N = {(Id—2® )+ £z ® (Du— (Du - z)z)}, then by a direct computation we have

pN = Ud—x®xy+§z®UM—mpuwpg_Tf%%?%B
A q
1A pw P 028w = (Du-2)z @ (Du— (Du-2)a)]
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Let us sum up all ® products with z, the resulting vector is

q A q
—(Du — (Du - ——— < —D Du - — = (Du - z)(Du — (Du -
V( u— (Du x)x)+1+A(z~Du){ u+ (Du-x)x V( u-z)(Du— (Du x)x)}
D . _ (Du-
_{V 1+A(Z-Du)<1+VDu z)}(Du (Du - x)x).
On the other hand
q A q 1 q
== (1+=Du-2)=———[= — A
vV irAe Do PPy S A ooy A
Using definitions of ¢, p and A we obtain that
¢, _ o op
Vv  V(V-u) V(V-0o(u—Du-z))

V—o(u—Du-x)
1 V—u
{V—u V—O‘(U—DU-I)}

To prove |D we notice that A = ﬁ Then using 1| and V = vu? — ob+ u we have

S <|q

o

detpy = 1+ mHDM2 +u(Du - 1) — (Du - x)?
= ﬁ[uv —u?0 + ou(Du - 7))
u o
- )
and follows from . O

3.1 Ellipsoids and hyperboloids of revolution

In this section we show that W = IF — D?u = 0 for u = £(1 — &(¢ - X)), that is when
p = 1/u is the radial graph of ellipsoid or hyperboloid of revolution. To fix ideas we assume
that ¢ = e,,1. Thus u = £(1 —eX,,41). It is enough to show that B = CX,,,/e. By direct

C
computation
1 2
2 g’ 2
u” —ob=—(Xnp1 — )"

C
Therefore V = (1 — £2)/C, which implies that

o o CXn+1

B:
V —o(u— Du-x) £
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3.2 Proof of Theorem 1

From Proposition 1, Lemma 1 and ([2.5)) we have that

detDy = (k%)” detpdet(Id — z ® x)detW

o\" Yn+l u 9
= (k= 1- det
( V> k’Xn+1 \/u2—ab( |1'| ) ¢ W

where W = I'F — D?u i.e.
V—J(U—Du-x)(ld+ TRT

o 1—|z]?

W= ) — D?u.

Notice that if I' is smooth and has support hyperboloids from inside at each point then
W >0 and W < 0 if I' has support ellipsoids from outside. Then from ([2.4) the Theorem 1

follows.

3.3 Proof of Theorem 2

The equation (|1.4) is generalized Monge-Ampere equation. To obtain smoothness of the

Voolu=Duz) strictly concave in gradient. This is

solution, one needs to show, that F' =
a necessary condition, called A3 and first introduced in [3], in order to obtain C* a priori
estimates. It turns out that if ¢ < 0, i.e. when support functions are hyperboloids of
revolution, then F is strictly concave in gradient. Recall that V = v/u2 — gb -+ u, hence it is
enough to show that v/u2 — ob is convex in gradient. Let & be the dummy variable for Du,

then we have

0 o
0_& u? —ob = —m(fk — (& 2)xy),
o2 o (& — (£ 2)ag)(§ — (£ 2)my)
606" " = e—a {5”“_“9”” k = l}'

On the other hand b = u? + [£]? — (£ - x)?, which is strictly convex function of £, provided
|z| < 1. For any n € R" we have

s O*F 31 0*°Vu? — ob
(u” = ob) 08,0¢ d ("~ ob) o Zk;z 08,0¢ gl (3.4)

= o)l — (- )+ ol — (€ ) EF
substituting the value of b = [£]* — (£ - 2)* 4+ u* we have
= w}(1—a)(In* = (n-2)*) +
o { =€l + €12 (n - ) + 0P (€ - ) + (€ - m)* = 2(& - ) (§-2)(n-2)} .

The first term is nonnegative since |z| < 1 and (- z) < |n||z| < |n|. Recall that o < 0.

Hence it is enough to show that
— [Pl + €7 (n - 2)* + (€ 2)* + (€ m)* = 2(6-m)(E-x)(n-2) <0. (3.5)
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This expression is homogeneous in 1 and £ thus we may assume that || = |n| = 1. Further-
more let 2’ be the orthogonal projection of x on the two dimensional space spanned by &

and n. Then (3.5)) is equivalent to

(n-2')? + (€ 2"+ (E-n)?=2(&-n)(E-2)(n-2") -1 <0.

If o, and v are the angles between respectively n and z’, £ and 2’ and n and & then
cosy = cos(a £ 3). Thus we have

|2’ |*(cos® a + cos® B — 2 cos acos Bcosy) + cos®y — 1 <

(cos? a + cos® B — 2cos acos B cosy) + cos’y — 1 = 0.

From here the proof of Theorem 1 follows from [3] and [6].
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