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Abstract

In this note we derive the Monge-Ampère type equation in Euclidian coordinates de-

scribing the refraction phenomena of perfect lens. This simplifies the regularity issues of the

weak solutions on the problem.

Key Words: Monge-Ampere type equations, refracting surfaces, optimal mass transfer

Mathematics Subject Classification 2000: 35J60, 78A05

1 Introduction and main result

It is well-known that ellipse and hyperbola have simple refraction properties, namely if rays

of light diverge from one focus, then after refraction they pass parallel to the major axis

[4]. If the ellipse (resp. hyperbola) represents the boundary separating two medias, with

refractive indices n1, n2 then according to refraction law

n1 sinα = n2 sin β,

where α and β are the angles between normal and respectively the ray before and after

refraction. Let k = n1/n2, then one can verify that k = 1/ε, where ε is the eccentricity of

ellipse (resp. hyperbola) [4]. These properties are limiting cases of solutions to more general

problems of determining the surface required to refract rays of light diverging from one point

and after refraction covering a given set of directions on the unit sphere. More precisely let

us assume we are given two sets Ω,Ω∗ on unit sphere centered at origin, and nonnegative

integrable functions f, g defined respectively on Ω and Ω∗. Suppose that a point source of

light is centered at the origin O and for every X ∈ Ω we issue a ray from O passing through

X, which after refraction from the unknown surface Γ is another ray given by a unit direction
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Y = Y (X) ∈ Ω∗. It is clear that mapping Y is determined by Γ. Let f(X) be the input

intensity of light at X ∈ Ω and g(Y ) corresponding gain intensity after refraction at Y ∈ Ω∗.

Now the problem can be formulated as follows: given two pairs (Ω, f) and (Ω∗, g) satisfying

to energy balance condition ∫
Ω

f =

∫
Ω∗
g, (1.1)

find a surface Γ, such that for corresponding mapping Y (X) we have

Y (Ω) = Ω∗.

We seek a Γ as a radial graph of a unknown function ρ i.e. Γ = {Z ∈ Rn+1, Z = Xρ(X)},
then mathematically this problem is amount to solve a Monge-Ampère type equation

det(D2
ijρ− σij(x, ρ,Dρ)) = h(x, ρ,Dρ), (1.2)

subject to boundary condition

Y (Ω) = Ω∗. (1.3)

Here the derivatives are taken in some orthogonal coordinate system (see Theorem 1) and

Ω is a subset of upper half sphere. The solutions to (1.2), should be sought in the class of

functions such that the matrix D2
ijρ− σij(x, ρ,Dρ) ≥ 0. It is easy to see that if ρ ∈ C2 such

that D2
ijρ− σij ≥ 0 then equation (1.2) is elliptic with respect to ρ.

It turns out that ρ is a potential function to an optimal transfer problem with a loga-

rithmic cost function [1]

c(X, Y ) =

{
log 1

ε(X·Y )−1
, ε > 1, X · Y > k,

log 1
1−ε(X·Y )

, ε < 1, X · Y < k.

A similar cost function appears in the reflector problem introduced by X-J. Wang [8], [9].

The regularity of the solutions to optimal transfer problems is discussed in [3] and [5]. The

most important thing is the so-called A3 condition, imposed on matrix σij [3]. As soon as one

has it the rest of the regularity, both local and global will follow from the classical framework

established in [3], [5] and [6]. In [1] authors have verified the A3 condition, however without

using Euclidian coordinates.

In this note we give a simple way of verifying the A3 condition, for k < 1 without

invoking to covariant derivatives. It is also explicit, strict and straightforward (3.4). Main

idea is to find a simple formula for mapping Y (X) using a parametrization of upper unit

half sphere, used in [2]. Then the rest will follow along the arguments of [2]. This method

is very general and one can apply it to near-field problem. Indeed if one considers a map

z = ρx+ ty, where t is the stretch function, then detDz will give the equation for near-field

problem. However we don’t discuss this problem in the present note. It is worth noting that,

if support functions are ellipsoids, i.e. k > 1 the A3 condition is not fulfilled (see (3.4)).
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1.1 Notations

Let us consider the case of two homogeneous medias, with refractive constants n1 and n2. Ω

and Ω∗ are two domains on the unit sphere Sn = {X = (x1, . . . , xn+1), x2
1 + · · ·+ x2

n+1 = 1}.
For X ∈ Sn, x = (x1, . . . , xn, 0). We also suppose that Ω is a subset of upper unit sphere

Sn+ = Sn ∩ {xn+1 > 0}. In what follows we consider ρ as a function of x ∈ Ω0, with Ω0

as orthogonal projection of Ω on to hyperplane xn+1 = 0. By Dρ we denote the gradient

of function ρ with respect to x variable Dρ = (Dx1ρ, . . . , Dxnρ, 0). The reciprocal of ρ is

defined as u = 1/ρ. We also define two auxiliary functions b = u2 + |Du|2 − (Du · x)2 and

V =
√
u2 − σb+ u. In what follows σ = (k2 − 1)/k2 = 1− ε2.

1.2 The main results

Our main result is contained in the following

Theorem 1 If ρ is the radial function defining Γ, and u = 1/ρ, then u is a weak solution

to

det

{
V − σ(u−Du · x)

σ

(
Id+

x⊗ x
1− |x|2

)
−D2u

}
= h, if k < 1, (1.4)

det

{
D2u− V − σ(u−Du · x)

σ
(Id+

x⊗ x
1− |x|2

)

}
= h, if k > 1,

h =
f(X)

g(Y )
k

√
u2 − σb
u

1

(1− |x|2)

(
V

k|σ|

)n
,

where b = u2 + |Du|2 − (Du · x)2, V =
√
u2 − σb+ u.

If we set F = σ−1(V − σ(u−Du · x)) and I = Id+ x⊗x
1−|x|2 , the first fundamental form of

the upper unit half sphere, then equation can be rewritten as det(IF −D2u) = h for k < 1.

The weak solutions for this equations can be defined through the theory of optimal transfers

[1] (see [7] for the discussion of such problems). The higher regularity of the weak solutions

depends on the properties of the function F . More precisely we have

Theorem 2 If k < 1 (i.e. when the support functions are hyperboloids of revolution touching

Γ from below) and (f,Ω) and (g,Ω∗) satisfy to the regularity assumptions as in [3], [5] and

[6] then F is strictly concave as a function of the gradient and the weak solutions are locally

(globally) smooth provided f, g are positive smooth functions and Ω,Ω∗ ⊂ Sn+.

If k > 1 (i.e. when the support functions are ellipsoids of revolution touching Γ from

above) then F is not convex in gradient and the weak solutions may not be C1 even for

smooth positive intensities f, g.

2 The main formulas

In this section we derive a simple and useful formula for Y . We use it to compute the

Jacobian determinant in the next section.
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Figure 1: The refraction law.

2.1 The mapping Y

Let Y be the unit direction of the refracted ray. First let us derive a formula for Y , using

angles α and β (see figure 1). Since X, Y and outward unit vector γ lie in the same plane,

we have

Y = C1X + C2γ

for two unknowns, C1 and C2 depending on X. If one takes the scalar product of Y with γ

and then with X, then {
cos β = C1 cosα + C2

cos (α− β) = C1 + C2 cosα.

Multiplying the first equation by cosα and subtracting from the second one we infer

C1 =
sin β

sinα
, C2 = cos β − C1 cosα.

Introduce k = n1/n2, hence we find that C1 = k and C2 = cos β − k cosα, that is

Y = kX + (cos β − k cosα)γ. (2.1)

We can further manipulate (2.1). Note that

n2
2 − n2

2 cos2 β = n2
2 sin2 β = n2

1 sin2 α = n2
1 − n2

1 cos2 α.

Dividing the both sides by n2
2 we obtain

k2 cos2 α = (k2 − 1) + cos2 β.
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Returning to (2.1) we get

Y = kX + (
√
k2 cos2 α− (k2 − 1)− k cosα)γ = (2.2)

= k
(
X + [

√
(X · γ)2 − σ −X · γ]γ

)
,

where σ = (k2 − 1)/k2. From [2] we have

γ = − Dρ−X(ρ+Dρ · x)√
ρ2 + |Dρ|2 − (Dρ · x)2

where X = (x,
√

1− |x|2), Dρ = (ρx1 , . . . , ρxn). It is convenient to work with a new function

u = ρ−1. By direct computation we have that

γ =
Du+X(u−Du · x)√
u2 + |Du|2 − (Du · x)2

.

Introduce b = u2 + |Du|2 − (Du · x)2, then

Y = k
(
X + [

√
(X · γ)2 − σ −X · γ]γ

)
= k

(
X + [

√
u2

b
− σ − u√

b
]γ

)
= k

(
X + b−1[

√
u2 − σb− u][Du+X(u−Du · x)]

)
,

where we used the fact that

X · γ =
u√

u2 + |Du|2 − (Du · x)2
> 0.

In particular it follows from the previous formula that

Yn+1 = kXn+1(1− σ

V
(u− (Du · x))). (2.3)

2.2 The Jacobian determinant

Let dX and dY be respectively the area elements corresponding to Ω and Ω∗. Then dx =

Xn+1dX. Recall that Y is a unit vector and denote y = (Y1, Y2, . . . , Yn, 0) ∈ Ω∗0, where Ω∗0
is the orthogonal projection of Ω∗ onto hyperplane xn+1 = 0 so we conclude dy = Yn+1dY .

Hence if we consider y to be a mapping from Ω0 to Ω∗0 then dy = |detDy|dx.

For perfect refractor Γ we have the energy balance condition∫
E

f(X)dX =

∫
Y (E)

g(Y )dY, ∀ measurable E ⊂ Ω.

Thus we obtain fdX = gdY or

J =
Xn+1

Yn+1

|detDy| = f(X)

g(Y )
=
dX

dY
. (2.4)
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Thus to find the Jacobian determinant J it is enough to compute |detDy|.
Before starting our computations let us note, that if µ = Id+ Cξ ⊗ η for some constant

C and for any two vectors ξ, η ∈ Rn, then one has

µ−1 = Id− Cξ ⊗ η
1 + C(ξ · η)

, detµ = 1 + C(ξ · η). (2.5)

3 Proofs of Theorems 1-2

The main goal of this section is to prove the following

Proposition 1 If Y is given as above and

y = k
[
x− σ

V
(Du+ x(u−Du · x))

]
,

then

Dy = k
σ

V
µ[Id− x⊗ x]

{
(Id+

x⊗ x
1− |x|2

)
V − σ(u−Du · x)

σ
−D2u

}
,

where b = u2 + |Du|2 − (Du · x)2, V =
√
u2 − σb+ u and µ is defined by (3.2).

Proof. Introduce V =
√
u2 − σb+ u, z = Du+ x(u−Du · x). Using these notations one

can rewrite

y = k[x− σ

V
z].

By a direct computation we have

yij
k

= δij −
δ

V
(zij −

ziVj
V

).

Differentiating zi and V with respect xj yields

zij = uij − xixmum,j + δij(u−Du · x),

Vj = puj − q(um − (Du · x)xm)umj,

where

p =
V − σ(u−Du · x)

V − u
,

q =
σ

V − u
.
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Then

Dy

k
= Id− σ

V

[
(Id− x⊗ x)D2u+ Id(u−Du · x)− p

V
z ⊗Du (3.1)

+
q

V
z ⊗ (Du− (Du · x)x)D2u

]
= [1− σ

V
(u−Du · x)]

[
Id+ Az ⊗Du

−B
{

(Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)

}
D2u

]
,

where we set

A =
σp
V 2

1− σ
V

(u−Du · x)
=

σ

V (V − u)
,

B =
σ
V

1− σ
V

(u−Du · x)
=

σ

V − σ(u−Du · x)
.

Then using Lemma 1 (see below) we finally obtain

Dy

k
= [1− σ

V
(u−Du · x)]Bµ[Id− x⊗ x]

{
(Id+

x⊗ x
1− |x|2

)
1

B
−D2u

}
=

σ

V
µ[Id− x⊗ x]

{
(Id+

x⊗ x
1− |x|2

)
1

B
−D2u

}
=

σ

V
µ[Id− x⊗ x]

{
V − σ(u−Du · x)

σ
(Id+

x⊗ x
1− |x|2

)−D2u

}
.

Hence to finish the proof of Proposition 1 it remains to prove

Lemma 1 Let µ = Id+ Az ⊗Du, then

µ−1
{

(Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)

}
= Id− x⊗ x, (3.2)

detµ =
Yn+1

kXn+1

u√
u2 − σb

. (3.3)

Proof. First by (2.5)

µ−1 = Id− Az ⊗Du
1 + A(z ·Du)

.

Let N =
{

(Id− x⊗ x) + q
V
z ⊗ (Du− (Du · x)x)

}
, then by a direct computation we have

µ−1N = (Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)− Az ⊗Du

1 + A(z ·Du)

+
A

1 + A(z ·Du)
[(Du · x)z ⊗ x− q

V
(Du · z)z ⊗ (Du− (Du · x)x)].

34



Let us sum up all ⊗ products with z, the resulting vector is

q

V
(Du− (Du · x)x) +

A

1 + A(z ·Du)

{
−Du+ (Du · x)x− q

V
(Du · z)(Du− (Du · x)x)

}
=

{
q

V
− A

1 + A(z ·Du)
(1 +

q

V
Du · z)

}
(Du− (Du · x)x).

On the other hand

q

V
− A

1 + A(z ·Du)
(1 +

q

V
Du · z) =

1

1 + A(z ·Du)
[
q

V
− A].

Using definitions of q, p and A we obtain that

q

V
− A =

σ

V (V − u)
− σp

V (V − σ(u−Du · x))

=
σ

V

{
1

V − u
−

V−σ(u−Du·x)
V−u

V − σ(u−Du · x)

}
= 0.

To prove (3.3) we notice that A = σ
V (V−u)

. Then using (2.5) and V =
√
u2 − σb+ u we have

detµ = 1 +
σ

V (V − u)
[|Du|2 + u(Du · x)− (Du · x)2]

=
1

V (V − u)
[uV − u2σ + σu(Du · x)]

=
u

V − u

{
1− σ

V
(u− (Du · x))

}
and (3.3) follows from (2.3).

3.1 Ellipsoids and hyperboloids of revolution

In this section we show that W = IF − D2u ≡ 0 for u = 1
C

(1 − ε(` · X)), that is when

ρ = 1/u is the radial graph of ellipsoid or hyperboloid of revolution. To fix ideas we assume

that ` = en+1. Thus u = 1
C

(1− εXn+1). It is enough to show that B = CXn+1/ε. By direct

computation

b =
1

C2
(1− 2εXn+1 + ε2)

u2 − σb =
ε2

C2
(Xn+1 − ε)2.

Therefore V = (1− ε2)/C, which implies that

B =
σ

V − σ(u−Du · x)
=
CXn+1

ε
.
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3.2 Proof of Theorem 1

From Proposition 1, Lemma 1 and (2.5) we have that

detDy =
(
k
σ

V

)n
detµdet(Id− x⊗ x)detW

=
(
k
σ

V

)n Yn+1

kXn+1

u√
u2 − σb

(1− |x|2)detW

where W = IF −D2u i.e.

W =
V − σ(u−Du · x)

σ
(Id+

x⊗ x
1− |x|2

)−D2u.

Notice that if Γ is smooth and has support hyperboloids from inside at each point then

W ≥ 0 and W ≤ 0 if Γ has support ellipsoids from outside. Then from (2.4) the Theorem 1

follows.

3.3 Proof of Theorem 2

The equation (1.4) is generalized Monge-Ampère equation. To obtain smoothness of the

solution, one needs to show, that F = V−σ(u−Du·x)
σ

is strictly concave in gradient. This is

a necessary condition, called A3 and first introduced in [3], in order to obtain C2 a priori

estimates. It turns out that if σ < 0, i.e. when support functions are hyperboloids of

revolution, then F is strictly concave in gradient. Recall that V =
√
u2 − σb+ u, hence it is

enough to show that
√
u2 − σb is convex in gradient. Let ξ be the dummy variable for Du,

then we have

∂

∂ξk

√
u2 − σb = − σ√

u2 − σb
(ξk − (ξ · x)xk),

∂2

∂ξk∂ξl

√
u2 − σb = − σ√

u2 − σb

{
δlk − xkxl + σ

(ξk − (ξ · x)xk)(ξl − (ξ · x)xl)

u2 − σb

}
.

On the other hand b = u2 + |ξ|2 − (ξ · x)2, which is strictly convex function of ξ, provided

|x| < 1. For any η ∈ Rn we have

− (u2 − σb)
3
2
∂2F

∂ξk∂ξl
ηkηl = −(u2 − σb)

3
2

1

σ

∑
k,l

∂2
√
u2 − σb

∂ξk∂ξl
ηkηl (3.4)

= (u2 − σb)(|η|2 − (η · x)2) + σ[ξ · η − (ξ · η)(η · ξ)]2

substituting the value of b = |ξ|2 − (ξ · x)2 + u2 we have

= u2(1− σ)(|η|2 − (η · x)2) +

+σ
{
−|ξ|2|η|2 + |ξ|2(η · x)2 + |η|2(ξ · x)2 + (ξ · η)2 − 2(ξ · η)(ξ · x)(η · x)

}
.

The first term is nonnegative since |x| < 1 and (η · x) ≤ |η||x| < |η|. Recall that σ < 0.

Hence it is enough to show that

− |ξ|2|η|2 + |ξ|2(η · x)2 + |η|2(ξ · x)2 + (ξ · η)2 − 2(ξ · η)(ξ · x)(η · x) < 0. (3.5)
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This expression is homogeneous in η and ξ thus we may assume that |ξ| = |η| = 1. Further-

more let x′ be the orthogonal projection of x on the two dimensional space spanned by ξ

and η. Then (3.5) is equivalent to

(η · x′)2 + (ξ · x′)2 + (ξ · η)2 − 2(ξ · η)(ξ · x′)(η · x′)− 1 < 0.

If α, β and γ are the angles between respectively η and x′, ξ and x′ and η and ξ then

cos γ = cos(α± β). Thus we have

|x′|2(cos2 α + cos2 β − 2 cosα cos β cos γ) + cos2 γ − 1 <

(cos2 α + cos2 β − 2 cosα cos β cos γ) + cos2 γ − 1 = 0.

From here the proof of Theorem 1 follows from [3] and [6].
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