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Saturation of finitely-generated submodules

of free modules over Prüfer domains

F. Ben Amor and I. Yengui

Abstract. We propose to give an algorithm for computing the
R-saturation of a finitely-generated submodule of a free module
E over a Prüfer domain R. To do this, we start with the local
case, that is, the case where R is a valuation domain. After
that, we consider the global case (R is a Prüfer domain) using
the dynamical method. The proposed algorithm is based on
an algorithm given by Ducos, Monceur and Yengui in the case
E = R[X]m which is reformulated here in a more general setting
in order to reach a wider audience. The last section is devoted
to the case where R is a Bézout domain. Particular attention is
paid to the case where R is a principal ideal domain (Z as the
main example).
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Introduction

We propose an algorithm for computing the R-saturation of a finitely-
generated submodule of a free module E over a Prüfer domain R. To do
this, we start with the local case, that is, the case where R is a valuation
domain. The proposed algorithm is based on an algorithm given in [3] with
E = R[X]m which is reformulated here in a more general setting in order to
reach a wider audience (i.e., not only those interested in polynomials over a
Prüfer domain). We also give a “compact” formula expressing a necessary
and sufficient condition for a finitely-generated submodule of a free module
over a valuation domain V to be V-saturated in terms of its dimensions as
a vector space over the quotient and residue fields of V. After that, we con-
sider the global case (R is a Prüfer domain) using the dynamical method [1]
and being inspired by the notion of dynamical Gröbner bases [4, 7]. The
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last section is devoted to the case where R is a Bézout domain. Particular
attention is paid to the case where R is a principal ideal domain (supposed
to be Z in order to lighten the notation). Our approach is based on the
solution of the problem over Q and also over a finite number of localizations
ZpZ, p being an “essential prime number” of considered module.

1 V-saturation with V being a valuation do-

main

Everywhere in this section we suppose V to be a valuation domain. Recall
that a valuation domain is an integral ring V equipped with a divisibility
test in which every two elements are comparable under division, i.e., given
a, b ∈ V, a | b or b | a. In particular, a valuation ring V is local with
maximal ideal Rad(V). A valuation domain does not need to be a principal
ideal domain (PID).

Let E be a free V-module with a countable basis (e1, e2, . . .). A vector
u =

∑
i uiei ∈ E is said to be primitive if it has an invertible coefficient

ui. Let u =
∑

i uiei be a primitive vector in E. The greatest i such that
ui ∈ V× will be called the index of u and will be denoted by index(u). We
also denote by primc(u) := uindex(u) (the primitive coefficient of u). For
example, if V = Z2Z = {a/b ∈ Q | (a, b) ∈ Z × Z and b is odd} and u =
−4e1 + 2e2 + 2e3 + 3e4 + 4e5, we have index(u) = 4, and primc(u) = 3.

For u =
∑

i uiei ∈ E \ {0}, denote by ui0 the right-most coefficient of
u dividing all the others. The primitive vector u/ui0 is called the primitive
version of u and denoted by Prim(u).

Let u =
∑

i uiei and v =
∑

i viei be two primitive vectors in E. By
the result of the reduction of v by u we mean the vector w = v + αu =∑

iwiei ∈ E where α ∈ V is chosen such that windex(u) = 0, that is, α =
−primc(u)−1vindex(u). For example, if u = −4e1 + 2e2 + 2e3 + 3e4 + 4e5 and
v = 4e1 + 5e4 + e5 then the term 5e4 in v disappears with α = −5/3 as
follows

v
u←− v − (5/3)u = (32/3)e1 − (10/3)e2 − (10/3)e3 − (17/3)e5.

By an operation of type 1, we mean the operation of type

v ← v − primc(u)−1vindex(u) u,

where u, v ∈ E and u is primitive. By an operation of type 2, we mean the
operation of type

v ← Prim(v),

for some v ∈ E \ {0}.
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Let L := [L1, L2, . . .] be a list of vectors in E where Lj =
∑

i Lj, iei,
Lj,i ∈ V. We say that L is primitive triangular if all the Lj’s are primitive
and for each 1 ≤ j < `, we have L`, index(Lj) = 0. We say that L is in an
echelon form if all the Lj’s are primitive and the index(Lj)’s are pairwise
different. It is not difficult to see that if L is primitive triangular then it is
in an echelon form.

Let R be a domain with quotient field K, and consider a family (sj)j≥1
of vectors in a free R-module E. By the R-saturation of M :=

∑∞
j=1 Rsj in

E we mean

Sat(M) := {s ∈ E | α s ∈ E for some α ∈ R \ {0}} = (E ⊗R K) ∩ E.

If Sat(M) = M , we say that M is R-saturated in E, or, if there is no
ambiguity, that M is saturated.

The following three lemmas are cornerstones in the saturation algorithm
we will give.

Lemma 1 Let E be a free V-module with a countable basis (e1, e2, . . .). For
any two primitive vectors u =

∑
i uiei and v =

∑
i viei ∈ E such that

index(u) 6= index(v), the result w =
∑

iwiei of the reduction of v by u is
primitive and index(w) = index(v).

Proof. In order to lighten the notation, let us consider the following two
cases.

If index(u) = 2 and index(v) = 1, then

w = (v1 + αu1)e1 + (v3 + αu3)e3 + (v4 + αu4)e4 + · · ·

for some α ∈ Rad(V). Thus, w1 ∈ V× and wi ∈ Rad(V) for i ≥ 2.
If index(u) = 1 and index(v) = 2, then

w = (v2 + β u2)e2 + (v3 + β u3)e3 + · · ·

for some β ∈ V. Hence, w1 = 0, w2 ∈ V×, and wi ∈ Rad(V) for i ≥ 3.
In general cases, the proof can be done analogously. �

Lemma 2 Let E be a free V-module with a countable basis (e1, e2, . . .). If
S = [s1, s2, . . .] is a primitive triangular list of vectors in E, then

∑
j≥1 Vsj

is V-saturated.

Proof. Denote by K the quotient field of V, M :=
∑

j≥1 Vsj, and let
s ∈ Sat(M). Then there exist a1 . . . , ar ∈ K such that

s = a1s1 + · · ·+ arsr.
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For each 1 ≤ j ≤ r, by identifying the coefficient in index(sj) and denot-
ing cj = primc(sj), we obtain:

c1a1 ∈ V,
b2,1a1 + c2a2 ∈ V,
...
br,1a1 + br,2a2 + · · ·+ br,r−1ar−1 + crar ∈ V,

with bi,j ∈ V. Since c1, . . . , cr ∈ V×, this triangular system yields that
a1, . . . , ar ∈ V, as desired. �

Lemma 3 Let E be a free V-module with a countable basis (e1, e2, . . .) and
S = [s1, s2, . . .] be a list of primitive vectors in E which is in an echelon form.
Then we can transform S into a primitive triangular list S ′ = [s′1, s

′
2, . . .] of

vectors in E only by means of operations of type 1.

Proof. As in the gaussian algorithm, this can be done with operations of
type 1 and 2. But Lemma 1 guaranties that all vectors computed when
reducing S to S ′ are primitive, and thus, there is no need of operations of
type 2. �

Let E be a V-module, K be the quotient field of V, and k = V/Rad(V)
be the residue field of V. For a list S = [s1, . . . , sr] of vectors in E, denote
by 〈S〉V the V-module generated by s1, . . . , sr. We denote by 〈S〉K (respec-
tively, 〈S〉k) the K-vector space (respectively, the k-vector space) generated
by s1, . . . , sr in E ⊗V K (respectively, by s̄1, . . . , s̄r in E ⊗V k, where for
u =

∑
i uiei ∈ E, ū :=

∑
i ūiei, ūi denoting the class of ui modulo Rad(V)),

dimK S := dimK〈S〉K, and dimk S := dimk〈S〉k.

Now we reach the main result the proposed saturation algorithm will be
based on.

Proposition 1 Let E be a free V-module with a countable basis (e1, e2, . . .),
and let S = [s1, s2, . . .] be a list of primitive vectors in E. If S is in an
echelon form, then

∑∞
j=1 Vsj is V-saturated.

Proof. By virtue of Lemma 3, we can transform the list S into a primitive
triangular list S ′ = [s′1, s

′
2, . . .] only with the help of operations of type 1,

and, thus,
∑∞

j=1 Vsj =
∑∞

j=1 Vs′i. On the other hand, using Lemma 2, we
infer that

∑∞
j=1 Vs′j is V-saturated. �

Example 1 Let E be a free V-module with a countable basis (e1, e2, . . .),
and consider a primitive vector u =

∑
i≥1 uiei in E. Then, obviously, the

list [u(0) = u, u(1) =
∑

i≥1 uiei+1, . . . , u
(j) =

∑
i≥1 uiei+j, . . .] is in an echelon

form, and, thus,
∑∞

j=0 Vu(j) is V-saturated.
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The following algorithm will be the cornerstone of our saturation algo-
rithm.

Algorithm 1 (Algorithm for reduction modulo a list in an echelon form)
Input: A free V-module E with a countable basis (e1, e2, . . .), a nonzero
vector u ∈ E, and a finite list S = [s1, . . . , sn] of vectors in E in an echelon
form.
Output: A reduction v = PrimRed(u;S) = PrimRed(u; s1, . . . , sn) of u mod-
ulo S such that [S, v] becomes in an echelon form and Sat(〈s1, . . . , sn, u〉V) =
Sat(〈s1, . . . , sn, v〉V).

v := Prim(u)
FOR j FROM 1 TO n DO
v := Prim(v − primc(sj)

−1vindex(sj)sj)
(reduction of v by sj such that vindex(sj) becomes zero)

Now we give the following saturation algorithm for finitely-generated
sub-V-modules of a free V-module with a countable basis.

Algorithm 2 (Saturation Algorithm for a finitely-generated sub-V-module
of a free V-module with a countable basis)
Input: A free V-module E with a countable basis (e1, e2, . . .), a finite list
S = [s1, . . . , sn] of nonzero vectors in E.
Output: A generating list V = [v1, . . . , vr] = Echel(S) for Sat(Vs1 + · · · +
Vsn).

v1 := Prim(s1)
IF n ≥ 2 THEN FOR i from 2 to n DO

vi := PrimRed(Prim(si); v1, . . . , vi−1) (use Algorithm 1; disregard
zero vectors)

Example 2 Consider the list [s1 = 8e1+2e2+8e3+8e4, s2 = e2+2e3−2e4]
of vectors in a free Z2Z-module E with basis (e1, . . . , e4, . . .). Executing
Algorithm 2, we obtain

Sat(Z2Z s1 + Z2Z s2) = (Q s1 + Q s2) ∩ E = Z2Z v1 + Z2Z v2,

with

v1 := Prim(s1) =
1

2
s1 = 4e1 + e2 + 4e3 + 4e4, index(v1) = 2;

v2 := PrimRed(Prim(s2); v1) = PrimRed(s2; v1) = Prim(s2 − v1)

= Prim(−4e1 − 2e3 − 6e4) =
2

3
e1 +

1

3
e3 + e4.
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Remark 1 In fact, Algorithm 2 works in any free V-module (not necessary
with a countable basis). As a matter of fact, for any finite list S = [s1, . . . , sn]
of vectors in a free V-module with basis (ei)i∈I , the sj’s depend only on a
finite number of the ei’s.

Algorithm 2 allows us to give a new proof of the following classical result.

Theorem 1 A finitely-generated submodule of a free module over a valua-
tion domain V is V-saturated if and only if it is a direct summand.

Proof. The sufficiency is obvious. Let us prove the necessity. Let S =
[s1, . . . , sn] be a finite list of vectors in a free V-module E with basis (ei)i∈I ,
and suppose that M := 〈s1, . . . , sn〉V is V-saturated. First note that the
sj’s depend only on a finite number of the ei’s, say, ei1 , . . . , eit . Set J :=
{i1, . . . , it} ⊆ I, and let F be the free sub-V-module of E with basis (ei)i∈J .
Using Algorithm 2, we can compute a generating list [v1, . . . , vr] = Echel(S)
for the V-saturation M ′ of M in F . But since F is V-saturated in E and M
is V-saturated in E, we have M = M ′ = 〈v1, . . . , vr〉V. It remains to note
that v1, . . . , vr can be completed into a free basis of E by adding all the ei’s
with i ∈ I \ {index(v1), . . . , index(vr)}. �

The proof of Theorem 1 implies the following algorithm that, for a
finitely-generated submodule M of a free module E over a valuation do-
main V, computes a submodule N of E such that Sat(M)⊕N = E.

Algorithm 3 (V-saturated finitely-generated submodule of a free module
as a direct summand)
Input: A free V-module E with basis (ei)i∈I , a finite list S = [s1, . . . , sn] of
nonzero vectors in E.
Output: A submodule N of E such that Sat(Vs1 + · · ·+ Vsn)⊕N = E.

Let ei1 , . . . , eit be the elements of the basis (ei)i∈I on which the sj’s
depend, and set F := Vei1 + · · · + Veit . Using Algorithm 2, compute a
generating list V = [v1, . . . , vr] = Echel(S) for the V-saturation of Vs1 +
· · ·+ Vsn in F .

Return N :=
∑

i∈I\{index(v1),...,index(vr)}Vei.

Example 3 For the case considered in Example 2, we have:

Sat(Z2Z s1 + Z2Z s2)⊕ (Z2Ze1 + Z2Ze3 +
∑
i≥5

Z2Zei) = E.

The characterization of saturated finitely generated sub-V-module of a
free module E over a valuation domain V given in Theorem 1 is “quite
satisfactory”, but not enough, because it is not easy to test whether a sub-
module of E is a direct summand. Our goal now is to give a “compact”
formula characterizing such submodules.
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Lemma 4 Let E be a V-module, where V is a valuation domain of quotient
field K and residue field k. If S is a finite list of vectors in E, then dimK S ≥
dimk S.

Proof. Let S = [s1, . . . , sr], d = dimk L, and suppose that s̄1, . . . , s̄d are
k-linearly independent. Then, necessarily, s1, . . . , sd are K-linearly indepen-
dent. To see this, let α1, . . . , αd ∈ V be such that α1s1 + · · · + αdsd = 0.
Since V is a valuation domain, there exists i0, 1 ≤ i0 ≤ d, such that αi0 di-
vides all the αi’s. Note, that if αi0 6= 0, then s̄i0 ∈

∑
1≤i≤d; i 6=i0 ks̄i and, thus,

α1 = · · · = αd = 0. Therefore, αi0 = 0, and hence, dimK L ≥ d = dimk L. �

Now we give a necessary and sufficient condition for a finitely-generated
submodule of a free V-module to be V-saturated using its corresponding
dimensions as K-vector space and k-vector space.

Theorem 2 Let S be a finite list of vectors in free V-module E, where V
is a valuation domain of quotient field K and residue field k. Then 〈S〉V is
V-saturated if and only if dimK S = dimk S.

Proof. Let S = [s1, . . . , sr] and let (ei)i∈I be a basis of E as a V-module.
Since the sj’s depend only on a finite number of the ei’s, we can suppose
that E has a finite rank.

To prove sufficiency, we proceed by induction on r. For r = 1, two cases
may arise. In the case dimK S = dimk S = 0, we have S = [0] and, of course,
{0} is V-saturated as V is a domain. If dimK S = dimk S = 1, then s1 is
necessarily primitive and, thus, Vs1 is V-saturated.

Suppose now that r > 1.
Case 1: s1 is not primitive. Denote S ′ = [s2, . . . , sr]. Necessarily, s1 ∈ 〈S ′〉K,
because otherwise we would have

dimk S
′ = dimk S = dimK S = 1 + dimK S

′ ≥ 1 + dimk S
′.

Since dimK S = dimK S
′, dimk S = dimk S

′, and dimK S = dimk S, we
infer that dimK S

′ = dimk S
′. The V-module 〈S ′〉V is V-saturated by the

induction hypothesis. Now, since s1 ∈ 〈S ′〉K, there exist β1 ∈ V \ {0} and
β2, . . . , βr ∈ V such that β1s1 = β2s2 + · · ·+ βrsr, and hence, s1 ∈ 〈S ′〉V. It
follows that 〈S〉V = 〈S ′〉V, and, thus, 〈S〉V is V-saturated as desired.
Case 2: s1 is primitive. For 2 ≤ j ≤ r, we set vj := sj + αj s1 =

∑
i vj,iei,

where αj ∈ V is such that vj,index(s1) = 0. Denoting by L := [v2, . . . , vr], we
have 〈S〉V = Vs1 ⊕ 〈L〉V, dimK S = dimK L+ 1, and dimk S = dimk L+ 1.
Since dimK S = dimk S, we have dimK L = dimk L. Since 〈L〉V is V-
saturated (by the induction hypothesis), Vs1 is saturated as well (by virtue
of the case r = 1).

Let us prove the necessity. We can put S in an echelon form by means
of operations of type 1 and 2. It is clear that an operation of type 1 does
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not affect the V-module generated by the current list. Also, so does an
operation of type 2 since 〈S〉V is V-saturated. Denoting by U the new list
obtained after putting S in an echelon form, we get dimK S = dimK U =
dimk U = dimk S. �

Example 4 Let E be a free Z2Z-module with basis (e1, . . . , e5, . . .). Con-
sider the list [s1 = e1+2e2+2e5, s2 = e1+2e3+2e4] of vectors in E. Clearly,
we have

dimQ(Q s1 + Q s2) = 2 > dimF2(F2 s̄1 + F2 s̄2) = 1.

Thus, by Theorem 2, the Z2Z-module Z2Z s1 + Z2Z s2 is not Z2Z-saturated.
From here it follows that {s1, s2} is not a generating set for Sat(Z2Z s1 +
Z2Z s2). Executing Algorithm 2, we find

Sat(Z2Z s1 + Z2Z s2) = Z2Z v1 + Z2Z v2,

with

v1 := Prim(s1) = s1, v2 := Prim(s2−s1) = −(1/2)(s2−s1) = e2−e3−e4+e5.

Finally, dimQ(Q v1 + Q v2) = 2 = dimF2(F2 v̄1 + F2 v̄2).

Theorem 2 implies an algorithm which, for a finitely-generated submod-
ule M of a free V-module E over a valuation domain V of quotient field K
and residue field k such that dimKM > dimkM , exhibits a vector u ∈ E
witnessing that M is not saturated, i.e., u ∈ Sat(M) \M .

Algorithm 4 (Saturation test over a valuation domain and a witness for
nonsaturation if so)
Input: A nonempty finite list S of nonzero vectors in a free V-module E
with basis (ei)i∈I .
Output: An answer to the question whether 〈S〉V is saturated or not, and,
in the case of negative answer, a vector u ∈ Sat(〈S〉V) \ 〈S〉V.

Since the S[j]’s 1 depend only on a finite number of the ei’s, we can
suppose that E has a finite rank.

WHILE one of the entries of S is primitive and ](S) > 1 DO
Consider a primitive element S[j0] in S. Using Algorithm 1, for each j,

1 ≤ j ≤ ](S) and j 6= j0, compute vj := PrimRed(S[j];S[j0]), and replace S
with the list formed by the nonzero vectors among v1, . . . , vj0−1, vj0+1 . . . , v](S).

1. If none of the S[j]’s is primitive, then 〈S〉V is not saturated and
Prim(S[1]) ∈ Sat(〈S〉V) \ 〈S〉V.

2. If ](S) = 1 and S[1] is primitive, then 〈S〉V is saturated.

1 S[j] denotes the jth entry of S; S = [S[1], . . . , S[](S)]].
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Example 5 Denoting M := Z2Z s1 + Z2Z s2 in Example 4, we have

v2 ∈ Sat(M) \M.

Our goal now is, given a list [u, s1, . . . , sn] of vectors in a free V-module
E, to present an algorithm to test whether u ∈ Sat(〈s1, . . . , sn〉) or not, and,
in the case of positive answer, to express u as a linear combination of the
generators of Sat(〈s1, . . . , sn〉) computed with Algorithm 2.

Algorithm 5 (Saturation membership test over a valuation domain)
Input: A finite list [u, s1, . . . , sn] of vectors in a free V-module E with basis
(ei)i∈I , where V is a valuation domain of quotient field K.
Output: An answer to the question whether u is in Sat(〈s1, . . . , sn〉) or not;
and, in the case of positive answer, a finite list [v1, . . . , vr] of vectors in E
generating Sat(〈s1, . . . , sn〉) as a V-module and a list [α1, . . . , αr] of elements
in V such that u = α1v1 + · · ·+ αrvr.

Since the sj’s depend only on a finite number of the ei’s, we can suppose
that E has a finite rank.

1. Test if u ∈ Ks1 + . . . + Ksn. If the answer is NO, then return NO.
Else, continue.

2. Write u as a K-linear combination of the sj’s.
3. Use Algorithm 2 to compute a finite list [v1, . . . , vr] of vectors in E

generating Sat(〈s1, . . . , sn〉) as a V-module.
4. Write each sj’s (1 ≤ j ≤ n) as a K-linear combination of the vt’s

(1 ≤ t ≤ r) by tracing the computations done with Algorithm 2.
5. Write u as a K-linear combination u = α1v1 + · · · + αrvr of the

vt’s (using 2. and 4.). Note that, by virtue of the proof of Lemma 2,
the obtained K-linear combination is a V-linear combination if and only if
u ∈ Sat(〈s1, . . . , sn〉). Thus, αt ∈ V for 1 ≤ t ≤ r.

2 R-saturation with R being a Prüfer do-

main

We need first to recall the notion of comaximal monoids and Prüfer domains.
We say that S is a multiplicative subset (or a monoid) of a ring R if 1 ∈ S

and for any a, b ∈ S, a b ∈ S. For example, for a ∈ R, aN := {an; n ∈ N} is
a monoid of R. The localization of R at S will be denoted by S−1R or RS.
If S is generated by a ∈ R, we denote RS by Ra or R[1/a]. Note here that
Ra is isomorphic to the ring R[T ]/(aT − 1). We keep the same notation for
the localization of an R-module.

We say that elements a1, . . . , ak of a ring R are comaximal if 〈a1, . . . , ak〉 =
R. For example, for any a ∈ R, a and 1 − a are comaximal. We say that
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monoids S1, . . . , Sn of R are comaximal if any ideal of R meeting all the
Si’s contains 1. In other words, if for any a1 ∈ S1, . . . , an ∈ Sn there exist
b1, . . . , bn ∈ R such that

∑n
i=1 biai = 1, that is, a1, . . . , ak are comaximal

elements in R. For example, if a1, . . . , am are comaximal elements in R,
then the monoids aN1 , . . . , a

N
m are comaximal.

A ring R is Bézout if each finitely-generated ideal is principal. A ring R
is arithmetical if for any x, y ∈ R, there exist s, t, a, b ∈ R such that

s x = a y,
b x = t y,

s+ t = 1.
(1)

See [2] for detailed explanations about this characterization. Property (1)
amounts to saying that each finitely-generated ideal becomes principal after
localization at a finite family of comaximal monoids.

An integral domain is called a Prüfer domain if it is arithmetical. A
Noetherian Prüfer domain is called a Dedekind domain.

Let E be a free R-module over a Prüfer domain R, and consider a finite
list S = [s1, . . . , sn] of nonzero vectors in E. In this section, we give an
algorithm computing a generating list for Sat(Rs1 + · · ·+ Rsn).

As for dynamical Gröbner bases [4, 7], one can obtain a dynamical version
of Algorithm 2 for Prüfer domains. This algorithm works like Algorithm 2
for valuation domains. The only difference is when it has to handle two
incomparable (under division) elements a, b in R. In this situation, one
should first compute α, β, γ ∈ R such that{

αb = βa,
γb = (1− α)a.

Now, the computations are pursued in Rα (in which, a | b) and in R1−α
(in which, b | a). At the end of the dynamical computations with Algo-
rithm 2, we obtain a finite binary tree whose leaves are comaximal localiza-
tions S−11 R, . . . , S−1k R of R. Over each localization S−1j R, 1 ≤ j ≤ k, we
obtain a generating set Hj = {hj,1, ..., hj,pj} for Sat(〈s1, . . . , sn〉S−1

j R). For

each 1 ≤ i ≤ pj, there exists dj,i ∈ Sj such that dj,ihj,i ∈ E. Under these
hypotheses, we have:

Theorem 3 (Saturation over a Prüfer domain) For any R-module,

Sat(〈s1, . . . , sn〉R) = 〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pkhk,pk〉R.

Proof. It is clear that

〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pkhk,pk〉 ⊆ Sat(〈s1, . . . , sn〉R).
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To prove the converse, let h ∈ Sat(〈s1, . . . , sn〉R). It is also in
Sat(〈s1, . . . , sn〉S−1

j R) for each 1 ≤ j ≤ k. Hence, for some dj ∈ Sj, djh ∈
〈dj,1hj,1, . . . , dj,pjhj,pj〉R. On the other hand, since S1, . . . , Sk are comax-
imal multiplicative subsets of R, there exist α1, . . . , αk ∈ R such that∑k

j=1 αjdj = 1. From the fact that h =
∑k

j=1 αjdjh, we infer that

h ∈ 〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pkhk,pk〉R.

�

Example 6 Let θ =
√
−5 andE be a free Z[θ]-module with basis (e1, e2, . . .).

Consider the list [s1 = 3e1 + (4 + 2θ)e2, s2 = θe1 + 3e3] of vectors in E.
Suppose that we want to compute a generating set for Sat(〈s1, s2〉Z[θ]).

Note that the ring Z[θ] is a Dedekind domain which is not a Bézout
domain (and, thus, nor principal). Since a := 3 and b := 4 + 2θ are not
comparable under division in Z[θ], we have to find α, β, γ ∈ Z[θ] such that{

αb = βa,
γb = (1− α)a.

Further, since the ring Z[θ] has a Z-basis (it is a rank 2 free Z-module),
α, β, γ can be computed by solving an underdetermined linear system over
the integers. A solution is given by α = 5 + 2θ, β = 6θ, γ = −3. Then we
can open two branches:

Z[θ]
↙ ↘

Z[θ]4+2θ Z[θ]5+2θ

Over Z[θ]5+2θ:

[s1, s2] =

[
3

(
e1 +

6θ

5 + 2θ
e2

)
, θe1 + 3e3

]
→
[
e1 +

6θ

5 + 2θ
e2,

10

5 + 2θ
e2 + e3

]
(the list is in an echelon form without additional branching).

Over Z[θ](4+2θ):

[s1, s2] =

[
(4 + 2θ)

(
3

4 + 2θ
e1 + e2

)
, θe1 + 3e3

]
→
[

3

4 + 2θ
e1 + e2, θe1 + 3e3

]
Since θ and 3 are not comparable under division in Z[θ](4+2θ), we have to
consider two comaximal localizations. We find α = 3(−3 + θ), β = −5− 3θ,
γ = −3(3 + 2θ) as solutions to the following system over the integers:{

αθ = 3β,
γθ = 3(1− α).
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We then split the ring Z[θ](4+2θ) as follows:
Z[θ]4+2θ

↙ ↘
Z[θ](4+2θ)(−9+3θ) Z[θ](4+2θ)(10−3θ)

Over Z[θ](4+2θ)(−9+3θ):[
3

4 + 2θ
e1 + e2, θe1 + 3e3

]
→
[

3

4 + 2θ
e1 + e2,

5 + 3θ

9− 3θ
e1 + e3

]
(the latter list is in an echelon).

Over Z[θ](4+2θ)(10−3θ):[
3

4 + 2θ
e1 + e2, θe1 + 3e3

]
→
[

3

4 + 2θ
e1 + e2, e1 +

−9 + 3θ

10− 3θ
e3

]
(the latter list is in an echelon).

Finally, over Z[θ]:

Sat(〈s1, s2〉Z[θ]) = 〈(5 + 2θ)e1 + 6θe2, 10e2 + (5 + 2θ)e3, 3e1 + (4 + 2θ)e2,

(5 + 3θ)e1 + (9− 3θ)e3, (10− 3θ)e1 + (−9 + 3θ)e3〉.

The dynamical evaluation of the problem of computing a generating set
for Sat(〈s1, s2〉Z[θ]) produced the following binary tree:

Z[θ]
↙ ↘

Z[θ]5+2θ Z[θ]4+2θ

↙↘
Z[θ](4+2θ)(−9+3θ) Z[θ](4+2θ)(10−3θ)

3 Z-saturation with Z being a Bézout domain

In this section we consider a Bézout domain Z. Let E be a free Z-module
with a countable basis (e1, e2, . . .). For u =

∑
i uiei ∈ E \ {0}, we denote by

gcd(u) the greatest common divisor of all the nonzero ui’s and Prim(u) :=
(1/gcd(u))u (we convene that Prim(0) = 0). To explain the dynamical
version of Algorithm 2 over Bézout domains, it suffices to give the dynamical
versions of type 1 and type 2 operations. This can be done as follows.

By a (dynamical) operation of type 2, we mean the operation of type

u ← Prim(u), u ∈ E \ {0}.
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Denoting by d1, . . . , ds the nonzero coefficients of Prim(u), we have
gcd(d1, . . . , ds) = 1. Note that Prim(u) is a primitive vector (i.e., with
one invertible coefficient) over each localization E[1/di] := E ⊗Z Z[1/di].
A Bézout identity between the di’s guarantees that the monoids dN1 , . . . , d

N
s

are comaximal. Such a vector will be simply called a primitive vector (a
vector whose coefficients generate the whole ring).

Let u =
∑

i uiei, v =
∑

i viei ∈ E and suppose that u is primitive. To
avoid redundancies, since the gcd of the elements of the set H formed by
nonzero coefficients of u is 1, one can consider a minimal (for inclusion) sub-
set {ui1 , . . . , uir} of H with i1 < i2 < · · · < ir such that gcd(ui1 , . . . , uir) = 1.
It is worth mentioning that the LLL method [6] provides an effective algo-
rithm for finding a short basis of a given lattice and can be used for finding
ui1 , . . . , uir [5].

By an operations of type 1, we mean the operation of type

v ← [ui1v − vi1u, . . . , uirv − viru].

At each localization Z[1/uij ], the vector

uijv − viju = uij

(
v −

vij
uij
u

)
is, up to a unit, equal to the reduction ṽ =

∑
i ṽiei ∈ E of v by u such that

ṽij = 0. Contrary to the local case (i.e., the case where the base ring is a
valuation domain), a type 1 reduction may produce more than one vector if
one wants to do all the reductions at once (i.e., globally over Z) instead of
doing them at each localization Z[1/uij ] separately.

In the particular case of two vectors, we infer the following result.

Proposition 2 Let E be a free Z-module with basis (ei)i∈I . Let S = [u =∑
i uiei, v =

∑
i viei] be a list formed by two vectors in E with u 6= 0. Then

SatZ(〈u, v〉Z) = 〈Prim(u), Prim(ui1v − vi1u), . . . ,Prim(uirv − viru)〉Z,

where ui1 , . . . , uir are nonzero coefficients of u.

Proof. Let us put “dynamically” the list [u, v] in an echelon form by execut-
ing the dynamical version of Algorithm 2 explained above. One has first to
replace u by its primitive version ũ = Prim(u) = (1/c)u, where c = gcd(u).
The obtained new list is then

[ũ, Prim((ui1/c)v − vi1ũ), . . . ,Prim((ui1/c)v − vir ũ)]

with

Prim
(uij
c
v − vij ũ

)
= Prim

(
1

c
(uijv − viju)

)
=

1

gcd1
c
(uijv − viju)

(
1

c
(uijv − viju)

)
= Prim(uijv − viju).

�
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Example 7 Consider the list

S = [u = 6e1 + 6e3 + 4e4, v = 4e1 + 3e2 + 3e3]

of vectors in a free Z-module Ze1 + · · ·+ Ze4. By Proposition 2, we obtain

SatZ(〈u, v〉Z) = 〈Prim(u), Prim(6v − 4u), Prim(4v − 0u)〉Z

= 〈Prim(6e1 + 6e3 + 4e4), Prim(9e2 − 3e3 − 8e4), Prim(4e1 + 3e2 + 3e3)〉Z

= 〈3e1 + 3e3 + 2e4, 9e2 − 3e3 − 8e4, 4e1 + 3e2 + 3e3〉Z.

Let A be a ring, a ∈ A, and M be a submodule of a free A-module E.
Denote by

(M : a) = {u ∈ E | a u ∈M}

a submodule of E containing M .

Proposition 3 Let R be a domain with quotient field K, and consider a
finite list S = [s1, . . . , sn] of nonzero vectors in a free R-module E with basis
(ei)i∈I . Let Echel(S) = [v1, . . . , vr] (r = dimK(K s1 + · · · + K sn) ≤ n) be
the list obtained after transforming S into a primitive triangular list over
the quotient field K with Algorithm 2 (E being replaced with the finite-rank
free R-module generated by the ei’s on which the sj’s depend). Then

Sat(R s1+· · ·+R sn) = ((Rw1+· · ·+Rwr) : δr) = ((Rw1+· · ·+Rwr) : δn),

where ui = (1/δi)wi, wi ∈ E, δi ∈ R\{0}, and δ = lcm(δ1, . . . , δr) =
∏r

i=1 δi.

Proof. Let u ∈ (K s1 + · · · + K sn) ∩ E = (K v1 + · · · + K vr) ∩ E. There
exist a1 . . . , ar ∈ K such that

u = a1v1 + · · ·+ arvr.

For each 1 ≤ i ≤ r, by identifying the index(vi)
th coefficient of u, we

obtain 
a1 ∈ R,
b2,1a1 + a2 ∈ R,
...
br,1a1 + br,2a2 + · · ·+ br,r−1ar−1 + ar ∈ R,

with bi,j ∈ (1/δ)R. It follows that a1 ∈ R, a2 ∈ (1/δ)R, a3 ∈ (1/δ2)R, . . . , ar ∈
(1/δr−1)R, and, thus,

u ∈ (1/δr−1)(R v1 + · · ·+ R vr) ⊆ (1/δr)(Rw1 + · · ·+ Rwr).
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Hence, Sat(R s1 + · · · + R sn) = ((Rw1 + · · · + Rwr) : δr). It remains to
note that

Sat(R s1 + · · ·+ R sn) = ((Rw1 + · · ·+ Rwr) : δr)

⊆ ((Rw1 + · · ·+ Rwr) : δn) ⊆ Sat(R s1 + · · ·+ R sn).

�

In the remainder of the paper, the ring Z can be replaced by any principal
ideal domain. The following result is a global version of Theorem 2.

Theorem 4 Let S = [s1, . . . , sn] be a finite list of nonzero vectors in a
free Z-module E with basis (ei)i∈I and let Echel(S) = [v1, . . . , vr] (r =
dimQ(Q s1 + · · · + Q sn) ≤ n) be the list obtained after transforming S into
a primitive triangular list over Q with Algorithm 2 (E being replaced with
the finite-rank free Z-module generated by the ei’s on which the sj’s depend).
Further, let ui = (1/δi)wi, where wi ∈ E, δi ∈ Z \ {0}, δ = lcm(δ1, . . . , δr),
and let {p1, . . . , pt} be the set of the prime numbers dividing δ. Then

(1) SatZ(Z s1 + · · ·+ Z sn) = SatZ(Zw1 + · · ·+ Zwr)
= ((Zw1 + · · ·+ Zwr) : δr) = ((Zw1 + · · ·+ Zwr) : δn).

(2) The following assertions are equivalent:

(i) Zw1 + · · ·+ Zwr is Z-saturated.

(ii) For all 1 ≤ i ≤ t, ZpiZw1 + · · ·+ ZpiZwr is ZpiZ-saturated.

(iii) dimQW = dimFp1
W = · · · = dimFpt

W ,
where W = [w1, . . . , wr], dimQW denotes the dimension of Qw1 +
· · · + Qwr as Q-vector space, and dimFpi

W denotes the dimension of
Fpiw̄1+· · ·+Fpiw̄r as Fpi-vector space, w̄j denoting wj seen in E⊗ZFpi.

(3) If for 1 ≤ i ≤ t, {(1/ai,1)εi,1, . . . , (1/ai,`i)εi,`i} is a generating set for
SatZpiZ

(ZpiZ s1 + · · ·+ ZpiZ sn) with εi,j ∈ E and ai,j ∈ Z \ piZ, then

SatZ(Z s1 + · · ·+ Z sn) = 〈w1, . . . , wr, ε1,1, . . . , ε1,`1 , . . . , εt,1, . . . , εt,`t〉.

Proof. (1) This is Proposition 3. The fact that SatZ(Z s1 + · · · + Z sn) =
SatZ(Zw1 + · · ·+ Zwr) is clear.

(2) The equivalence of (ii) and (iii) follows from Theorem 2.
Let us show that (ii) follows from (i). Let v = (1/a)u, a ∈ Z \ piZ and

u ∈ E be such that α v ∈ ZpiZw1 + · · ·+ ZpiZwr for some α ∈ ZpiZ \ {0}. It
follows that there exists b ∈ Z \ {0} such that b u ∈ Zw1 + · · ·+ Zwr. But,
since Zw1 + · · · + Zwr is Z-saturated, we infer that u ∈ Zw1 + · · · + Zwr,
and, thus, v ∈ ZpiZw1 + · · ·+ ZpiZwr.
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Now, let us show that (i) follows from (ii). Let v ∈ SatZ(Zw1+· · ·+Zwr).
By virtue of (1),

δrv ∈ Zw1 + · · ·+ Zwr. (0)

Further, for all 1 ≤ i ≤ t, since ZpiZw1 + · · · + ZpiZwr is ZpiZ-saturated,
there exists αi ∈ Z \ piZ such that

αiv ∈ Zw1 + · · ·+ Zwr. (i)

Since gcd(δr, α1, . . . , αt) = 1, there exist β, β1, . . . , βt ∈ Z such that βδr +
β1α1 + · · ·+ βtαt = 1 (Z being a Bézout domain), and, thus, combining (0),
(1),. . .,(t), one gets v ∈ Zw1 + · · ·+ Zwr, as desired.

(3) We have SatA(A s1 + · · · + A sn) = SatA(Aw1 + · · · + Awr) with
A = Z or ZpiZ. It is clear that

SatZ(Z s1 + · · ·+ Z sn) ⊇ 〈w1, . . . , wr, ε1,1, . . . , ε1,`1 , . . . , εt,1, . . . , εt,`t〉 =: M.

Conversely, let v ∈ SatZ(Z s1 + · · ·+ Z sn). By virtue of (1), we have

δrv ∈ 〈w1, . . . , wr〉. (0)

Besides, for all 1 ≤ i ≤ t, there exists αi ∈ Z \ piZ such that

αiv ∈ 〈εi,1, . . . , εi,`i〉. (i)

Since gcd(δr, α1, . . . , αt) = 1, there exist β, β1, . . . , βt ∈ Z such that βδr +
β1α1 + · · ·+ βtαt = 1, and, thus, combining (0), (1),. . .,(t), one gets v ∈M ,
as desired. �

Theorem 4 implies the following algorithm for computing the Z-saturation
of a finitely-generated submodule of a free Z-module via prime factorization.

Algorithm 6
Input: A finite list S = [s1, . . . , sn] of nonzero vectors in a free Z-module E
with basis (ei)i∈I .
Output: A finite generating set H ⊆ E of SatZ(Z s1 + · · ·+ Z sn).

1. Compute a finite list Echel(S) = [v1, . . . , vr] by transforming S into a
primitive triangular list over Q with Algorithm 2 (E being replaced
with the finite-rank free Z-module generated by the ei’s on which the
sj’s depend). Denote by vi = (1/δi)wi, where wi ∈ E, δi ∈ Z \ {0},
take δ = lcm(δ1, . . . , δr), and compute the set {p1, . . . , pt} of the prime
numbers dividing δ.
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2. For 1 ≤ i ≤ t, using Algorithm 2, compute a finite generating set{
1

ai,1
εi,1, . . . ,

1

ai,`i
εi,`i

}
for SatZpiZ

(ZpiZ s1 + · · ·+ ZpiZ sn), with εi,j ∈ E and ai,j ∈ Z \ piZ.

3. H := {w1, . . . , wr, ε1,1, . . . , ε1,`1 , . . . , εt,1, . . . , εt,`t}.

Example 8 (Example 7 revisited) Keeping the notation of Algorithm 6,
consider the list

S = [s1 = 6e1 + 6e3 + 4e4, s2 = 4e1 + 3e2 + 3e3]

of vectors in a free Z-module Ze1 + · · ·+Ze4. Since applying Algorithm 2 we
use different rings, we write EchelR(U) when we consider the vectors in the
list U as elements of E ⊗Z R. The first call of Algorithm 2 is with R = Q.
We obtain

EchelQ(S) =

[
1

4
s1,

1

3
s2

]
=

[
3

2
e1 +

3

2
e3 + e4,

4

3
e1 + e2 + e3

]
=

[
1

2
(3e1 + 3e3 + 2e4),

1

3
(4e1 + 3e2 + 3e3)

]
,

δ = lcm(δ1, δ2) = 2∨3 = 6, W = [w1, w2] = [3e1 +3e3 +2e4, 4e1 +3e2 +3e3],

EchelZ2Z(W ) =

[
1

3
w1, w2 − w1

]
,

and, hence
SatZ2Z(Z2Zw1 + Z2Zw2) = Z2Zw1 + Z2Zw2,

and

EchelZ3Z(W ) =

[
1

2
w1,

1

4
w2

]
,

and, hence,
SatZ3Z(Z3Zw1 + Z3Zw2) = Z3Zw1 + Z3Zw2.

Therefore,

SatZ(Z v1 + Z v2) = Zw1 + Zw2 = Z (3e1 + 3e3 + 2e4) + Z (4e1 + 3e2 + 3e3).

The following algorithm is a global version of Algorithm 5. Our goal now
is, given a list [u, s1, . . . , sn] of vectors in a free Z-module E, to present an
algorithm to test whether u is in Sat(〈s1, . . . , sn〉) or not, and, in the case
of positive answer, to express u as a linear combination of the generators of
Sat(〈s1, . . . , sn〉) computed using Algorithm 6.
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Algorithm 7 (Saturation membership test over the integers)

Input: A finite list [u, s1, . . . , sn] of vectors in a free Z-module E with basis
(ei)i∈I .
Output: An answer to the question whether u ∈ Sat(〈s1, . . . , sn〉) or not,
and, in the case of positive answer, a finite list [v1, . . . , vm] of vectors in E
generating Sat(〈s1, . . . , sn〉) as a Z-module and a list [c1, . . . , cm] of elements
in Z such that u = c1v1 + · · ·+ cmvm.

Since the sj’s depend only on a finite number of the ei’s, we can suppose
that E has a finite rank.

1. Compute a finite list Echel(S) = [v1, . . . , vr] by transforming S into
a primitive triangular list over Q using Algorithm 2. Denote by vi =
(1/δi)wi, where wi ∈ E, δi ∈ Z \ {0}, take δ = lcm(δ1, . . . , δr). Test
if u ∈ Qw1 + . . . + Qwr. If the answer is NO, then return NO. Else,
continue. By clearing the denominators, find α0 ∈ Z \ {0} such that

α0u ∈ Zw1 + . . .+ Zwr (0).

Compute the set {p1, . . . , pt} of the prime numbers dividing δ which is
also the set of the prime numbers dividing α0.

2. For 1 ≤ i ≤ t, using Algorithm 2, compute a finite generating set{
1

ai,1
εi,1, . . . ,

1

ai,`i
εi,`i

}
for SatZpiZ

(ZpiZ s1 + · · ·+ ZpiZ sn), with εi,j ∈ E and ai,j ∈ Z \ piZ.

3. For 1 ≤ i ≤ t, using Algorithm 7, compute αi ∈ Z \ piZ such that
αiu ∈ Zεi,1 + · · ·+ Zεi,`i (i).

4. Since gcd(α0, α1, . . . , αt) = 1, use a Bézout identity between α0, α1, . . .,
αt to transform expressions (0), (1), . . . , (t) into an expression asserting
that

u ∈ 〈w1, . . . , wr, ε1,1, . . . , ε1,`1 , . . . , εt,1, . . . , εt,`t〉Z = Sat(〈s1, . . . , sn〉).

Now we give a global version of Theorem 2. The set of prime numbers
will be denoted by P. If S is a list of vectors in a Z-module and p ∈ P, we
denote by dimFp S the dimension of 〈S〉Z ⊗Z Fp as Fp-vector space.

Theorem 5 Let S be a finite list of vectors in free Z-module E with basis
(ei)i∈I . Let U := Echel(S) = [u1, . . . , ur] (r = dimQ S) be the list obtained
after transforming S into a primitive triangular list over Q using Algorithm 2
(as the sj’s depend only on a finite number of the ei’s, we can suppose that
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E has a finite rank). Further, let uj = (1/δj)wj, where wj ∈ E, δi ∈ Z\{0},
δ = lcm(δ1, . . . , δr), and let {p1, . . . , pt} be the set of the prime numbers
dividing δ (we call them the essential prime numbers of S or of 〈S〉Z). Then
the following assertions are equivalent:

(i) 〈S〉Z is Z-saturated.

(ii) dimQ S = dimFp1
S = · · · = dimFpt

S.

(iii) The map rk(S) : P → N defined by rk(S)(q) = dimFq S, is constant
equal to dimQ S.

(iv) The map rk(S) : P→ N defined by rk(S)(q) = dimFq S, is constant.

Proof. The equivalence of (i) and (ii) is given by Theorem 4. It is clear
that (ii) follows from (iii) and (ii) follows from (iv). To see that (ii) implies
(iii), note that if p is a prime number which does not divide δ then we have
dimFp S = dimQ S. Finally, to see that (iv) implies (iii), it suffices to consider
a prime number which does not divide δ. �

Next we give a global version of Algorithm 4.

Algorithm 8 (Saturation test over Z and a witness for nonsaturation if so)

Input: A nonempty finite list S = [s1, . . . , sn] of nonzero vectors in a free
Z-module E.

Output: An answer to the question whether 〈S〉Z is saturated or not, and,
in the case of negative answer, a vector v ∈ Sat(〈S〉Z) \ 〈S〉Z.

1. Let (ei)i∈I be a basis for E. Using Algorithm 2 over Q (as the entries
of S depend only on a finite number of the ei’s, we can suppose that
E has a finite rank), compute the essential prime numbers p1, . . . , pt
of S.

2. For 1 ≤ ` ≤ t, use Algorithm 4 with V = Zp`Z to test whether 〈S〉Zp`Z

is saturated.

3. If for some 1 ≤ ` ≤ t, 〈S〉Zp`Z
is not saturated with u = (1/α)v ∈

Sat(〈S〉Zp`Z
) \ 〈S〉Zp`Z

as witness (α ∈ Z \ p`Z and v ∈ E), then 〈S〉Z is
not saturated, and v ∈ Sat(〈S〉Z) \ 〈S〉Z.

4. If for all 1 ≤ ` ≤ t, 〈S〉Zp`Z
is Zp`Z-saturated, then 〈S〉Z is Z-saturated.
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Example 9 Consider the list

S = [s1 = 3e1 + 3e3 + 2e4, s2 = 4e1 + 3e2 + 3e3]

of vectors in a free Z-module E = Ze1+· · ·+Ze4. The first call of Algorithm 2
is with R = Q. We obtain

EchelQ(S) =

[
1

2
s1,

1

3
s2

]
,

EchelZ2Z(S) =

[
1

3
s1, s2 − s1

]
, SatZ2Z(Z2Z s1 + Z2Z s2) = Z2Z s1 + Z2Z s2,

and

EchelZ3Z(S) =

[
1

2
s1,

1

4
s2

]
, SatZ3Z(Z3Z s1 + Z3Z s2) = Z3Z s1 + Z3Z s2.

Therefore, 〈S〉Z is Z-saturated (dimQ S = dimF2 S = dimF3 S = 2).

Example 10 Consider the abelian group

G = 〈a, b, c, d〉 with ab2d3 = e, a3c4 = d, a2bc = e.

We want to answer the question whether G is torsion-free or not, and, in
the case of negative answer, to give a torsion-element in G (6= e). In terms
of Z-modules, considering the list

S = [s1 = e1 + 2e2 + 3e4, s2 = 3e1 + 4e3 − e4, s3 = 2e1 + e2 + e3]

of vectors in a free Z-module E = Ze1 + · · · + Ze4, we want to answer
the question whether 〈S〉Z is saturated or not, and, in the case of negative
answer, to give a vector v ∈ Sat(〈S〉Z) \ 〈S〉Z.

Executing Algorithm 2 with V = Q, we obtain

EchelQ(S) =

[
1

3
e1 +

2

3
e2 + e4,

5

6
e1 +

1

6
e2 + e3,

7

5
e1 + e2

]
,

and, thus, 2, 3, 5 are the essential prime numbers of S and dimQ S = 3.
Executing Algorithm 4 with V = Z2Z, the list S progresses as follows:

[e1 + 2e2 + 3e4, 3e1 + 4e3 − e4, 2e1 + e2 + e3]

→
[

10

3
e1 +

2

3
e2 + 4e3, 2e1 + e2 + e3

]
→
[
−14

3
e1 −

10

3
e2

]
=

[
−2

3
(7e1 + 5e2)

]
.

It follows that 〈S〉Z2Z is not Z2Z-saturated (dimF2 S = 2) with −(1/3)(7e1 +
5e2) ∈ Sat(〈S〉Z2Z) \ 〈S〉Z2Z as witness, and, thus, 〈S〉Z is not saturated and
7e1 + 5e2 ∈ Sat(〈S〉Z) \ 〈S〉Z.

Therefore, G is not torsion-free with x = a7b5 6= e as a torsion-element.
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