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On a family of weighted O-integral
representations in the unit disc
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Abstract. For weighted LP-classess of C''-functions in the
unit disc with weight function of the type |[w[** - (1 — |w]*)®,
we obtain a family of weighted O-integral representations of the

type f = P(f) = T(0f).
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Introduction

Let f be a holomorphic function in the unit disc D and has (in a certain
sense) boundary values on the unit circle D = {w € C : |w| = 1}. Also,
denote by o the Lebesgue measure on 0D. According to the famous Cauchy
integral formula written for D,

f(z)= Dy 1f_< ZiUdo(w), z € D. (1)
o

A generalization of the Cauchy’s formula for smooth functions (so-called
Cauchy-Green formula) was established in [I] and for the unit disc can
be formulated as follows:

Theorem 1 If f € CY(D), then

27r//1—zw //af /aw dm(w), zeD, (2)

where m s two-dimensional Lebesque measure in the complex plane.
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Recall that

U () o

is the Cauchy-Riemann operator. Apparently, [2] (see also [3]) was the

first work, where the values of holomorphic functions inside of a domain

were reproduced by integration of functions over the whole domain.
Denote by H (D) the set of all holomorphic functions in the unit disc D.

Theorem 2 Fach function f € H(D) and satisfying the condition
[ rtwpamw) < +o. (@)
D

has the following integral representation:

_%[/agg%aﬂm@m 2 eD. (5)

This result was essentially generalized in [4], [5]: For the spaces HP(a) =
HD)N LE(D),1 <p < oo, > —1, of functions f holomorphic in the unit
disc D and satisfying the condition

[ vrwira - wpydn() <+ ©)

the following assertion is true.

Theorem 3 FEach function f € HP(«) has the integral representation

:“+1//f =P ), zeD. (7)

1 —z-w)*te

This result has numerous applications (see, for example, [4], [5]) in the
theory of factorization of meromorphic functions in the unit disc as well as
to other problems of complex analysis.

A generalization of the formula for smooth functions f (or, equiva-
lently, a weighted version of the formula ) has the following form
(Ref > —1):

= [ A ant

// of (w /3w (11—_|iuw|2>/3+1 D ()




ON A FAMILY OF WEIGHTED J-INTEGRAL REPRESENTATIONS IN THE UNIT DISC 3

This result follows

e from [6] if f € C*(D);

e from [7] if f € CY(D), grad(f) € L*(D), and 3 is real;

o from [B]if 1 <p<oo,a>—1, feCYD)NLL(D), df(w)/0w € Lt (D),
and [ = «a;

e from [9] and [1I0] if 1 < p < o0, a > —1, f € CYD) N LE(D),
of(w)/ow € L? (D), and Ref > a.

In [II] a further generalization of formula was given by taking a
weight function of the type |w|? - (1 — |w|?’) instead of (1 — |w|?)* (p > 0,
a > —1 and 7 > —1). The result was a formula of the type

fle) = //f(w)sa,p,w(z; w) - (1= [w]*)* - [w]* dm(w)

L ([ 0f(w)/om e
_ %4/ﬁ-Qa7p,7(z,w)d (w), eD, (9)

where f € CY(D) and S, ,-(z;w) and Qa - (2;w) admit integral represen-
tations with Mittag-Leffler type kernels.

As it follows from [§], where multidimensional analogue of this result was
obtained, the restrictive condition f € C*(D) in formula ([©) can be replaced
by

of (w)
f € Ol (D) N Lg,p,'y(D% W € Lgm,”/(D)? (10)
where p > 0, @« > —1, v > —1, and the spaces LE (D) are naturally

a7p7’y
generated by the “norm”

M2, (f) = / / F@)? - (1= |w?)? - [P dimuw). (11)

Our goal is to obtain (for fixed &« > —1, v > —1) a family of integral rep-
resentations of type (9) with kernels Sg, ,(2;w) and Qg (z; w) depending
on complex parameters 5 and ¢ with Ref > «, Rep > ~ (for holomorphic
f that was done in [I2]). In comparison with [I1] and [8], we write out the
kernels 3, ,(z;w) in a series form which admits to specify their certain
properties. Moreover, we weaken the second growth condition in by
assuming that

W) ¢ 1p. (m). (12)

aw aJrl’Pa'Y




4 F. V. HAYRAPETYAN

1 The kernel @3, ,(7;w) and its properties

In what follows we assume that Re > —1, Rep > —1, p > 0, and
= (p+1)/p. For arbitrary z € D, w € D, put

+ ﬂ +14+5%)
Sgpp(23w) = 5+1 Z " ) AR T (13)

k=0

This kernel was written out in [I2] to generalize (9) for holomorphic
functions. To obtain the corresponding kernel Qs (i.e., to generalize (9)
for C'-functions) we use the relation between @ and S obtained in [11]
(formula (2.11)):

Qoo ) = /SW ) i (1= o) [ePedm(o). (1)

Using the expansion , as well as the residue theorem, we have arrived at
the following formula for arbitrary z € D (we omit some technical details):

k [wl?
F<u+ﬁ+1+;> ok

wl (B +1) & F(/Hr%) wk /

|w|??
F<u+ﬁ+1+@> k _
VAR / (1—x)5x“+%_1dx,
1

(15)

(1 —t7)  te+har

where w € D\{0}, and
Qpp(2;0) = 1. (16)
To simplify notation, in what follows, we will use the notations () and S
instead of Q3,,, and Sz, ,, respectively.
To check whether the kernel () is well-defined, we estimate the corre-

sponding series in by absolutely convergent numerical series (the so-
called majorated convergence). We have

|w]?

k
P(p+B+1+5) P

2y o
<R6u+Reﬁ+1+> 2|k

<Reu—|— ;) ' [w|®

0

|w]|?

: / (1 —t7)? ekt
0

S
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|w]?
T (k+ ReB +2 2| eB ,Re
< const (S, p, @) E ( O ). ||w||k - w] - / (1 — t7)fieP gRew gt
k=0 0

1

— I (k 2 §
Sconst(ﬁ,p,@)z ( + Ref + ) ‘Z| -’w’%'/(l—tp)ReﬁtRapdt

— ['(k+1) lw]* /
T (k+ Ref +2
< const(f, p, p) Z ( Tkt 1) ) 2]* - Jw]®
k=0
T (k+ Ref+2) | 1
< const (S, p, @) - |2]" = const(B, p, 90)—@'
2 T (1~ [

Hence, the following assertion is true.

Proposition 1 The kernel Q(z;w) is well-defined for 2 € D and w € D.
Moreover, Q(z;w) is continuous in D\{0} for fizred z and holomorphic in D
for fized w.

Remark 1 In the estimation above we used the following consequence of the
Stirling’s formula:

T(u+ R)

| — RReu—ReV

e R — . 17
Tw+R) - Ml 1
.- 1
Proposition 2 Suppose 0 < |w| < 3" Then
|w|2Retp+1, P 7é 0’
|Q(z;w) — Q(2;,0)] = |Q(z;w) — 1| = const(B, p, ¢, 2) - {‘wlmew’ 5 =0
Proof. Case 1: Let z # 0. Then
|Q(z;w) — 1]
w]?
['(k+ Ref+2) |z/F / ReB R
< t ~ | (1 =) Rty
~ cons (57;07 @) % F(]C + 1) |w|k+1 ( )
. 1
Since 0 <t < 7 we have
1 1
0<tr < — and 1——<1-¢t<1.
4p 4p

(1 )P < 1, s if Ref3 > 0,
-5, if —1<Rep<O.



6 F. V. HAYRAPETYAN

Therefore,
“Fk+RB+2) El& iy
e 2z
Q) 1 < coms(6,p. ) S R i /
g k+Reﬁ+2) |2|F [ | Eepthrl)
< t :
const(3, p, kzo ‘w‘k-i-l Rep +k+1
> I ( k+R€ﬁ+2) k k 2R
< t . . ep+1
const(B, p, ¢ T+ (k1) 2] w] - fwl
k 0
T (k+ Ref +2) .
= const(f, p, ¢) Z NOET) 2| Jwl]F - ) 2Reet
k=0
< const(B,p,p) SRR 2]t -l - fuf2RerH
k=0
D (k+ Ref +1) k k 2Rep+1
< const(f, p, ) Z 2T fw]® - Jw Pt
P L(k+1)
1

< const(8, p, )|w[*FeetL e

Case 2: Let z = 0. It is easy to see that in this case (2 —w)/w = —1,
that is why the power of |w| in our estimate increases by 1. [

Corollary 1 If 2 =0, then Q(z;w) is continuous at the point w = 0 (there-
fore, in D); and if z # 0, then Q(z;w) is continuous at w = 0 if and only if
Rep > —1/2.

Lemma 1 If |z| < |w| < 1, then

wl'(B+1) e T (lH— ,%) S wk

B wr<g+5+1+@> ko)
S Z 7.2 -/(1—x)ﬁx”+ﬁ_1dx:—

0

Proof. Note that

1
/(1_I)%Hg_ldx:B(ﬁJrl,quE) _ I'(8+1)T (MJF%).
0

p F<u+5+1+%>
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Hence
mI(u+B+1+ /
Z 1—xﬁ“+ Ydx
ﬁ—i_l k=0 (u—i— 0
 a—w mr(u+ﬁ+1+§) K w+&)<u+§)
= A N e R (R A )
2 — W e 2F Z—w 1
- Z_: : = —1.
w wk w 1—2
k=0 w
]

Corollary 2 Ifz € D and w € ID, then Q(z;w) = 0.
The following assertion is evident.
Proposition 3 If w =2z € D, then Q(z;w) = Q(z;2) = 1.

Proposition 4 Let (1+ |z])/2 < |w| < 1, K C D be a compact and let
z€ K. Then

(1 . |w|2p)Re,3+1

Q)] < const(5, )

< const(B, p, ¢, K) - (1 — |w|2p)RijLl . (18)
Proof. From (1+ |z])/2 < |w| <1 it follows that

1— 2|

d — |z >
and  fw] = [z 2 —

2l <], |w| =
According to Lemma (1| we have:

p+B+1+ ) Sk

Y
Q(z;w):1+ 120

Plee)
1 1
/(1 — x)ﬁx’ﬁgfldx - / (1-— x)ﬁx’”%*ldx
0 |wl|2e

F<u+5+1+;> Jk

W Z — )Pt
wl'(B+1 )2:: F<M+%) wk |w4 (1—-2)x dx.
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Hence,
|Q(Z’lU)| < COTLSt(ﬁ?ﬂ? ()0)
ST |w
1
T (k+ReB+2) |z|F o8 Reutk_
> T(k+1)  Juwf / (1 — )Rl =y,
w2

k
If Rep+ ——12>0, then pRents =1 < 1, otherwise,
)

. . 1 (Rep—1)
:L,Re,qu;fl < |w|2p(Reu+;fl) < |w|2p(Reu—1) < (5) _ const(p, 90)

Thus, we can write

1
const(ﬁ, 0, ) =T (k + Ref + 2) Els / Ref3
: < : 1—2)""d
|Q(z;w)| < o] 2_% Tl Jwf (1 —2)"de
- e
= T( (k+ Ref +2) Ell 9\ Ref+1
— (1= P
= const(f, p, ¢ kzo NCES |w|k ( |wl )
1 — |y|20)BeBH1 1 — |q|20) e t1
= const(p, p, )< [wl™) ( [I)

< const(B, p, ¢)
(1 _ g)’w*z (Jw| — |2[) <+

(1 . |w|2p)Reﬁ+1

< const(f3, p, ) < const(B, p, ¢, K) (1 — |w|) .

(1 _ ’Z’)ReﬁJrZ
]

Remark 2 For real 8 and p, Propositions @ and 4| were formulated in [11),
where schemes of proofs were also given.

Proposition 5 For a fized z € D, Q(z;w) € C* (D\{0}).
Proof. For w € D\{0}, we formally have:

0Q(zw) _ (z—w)p
ow  T(B+1)
wr<u+6+1+§) k

Z F(u—i—%) LWkl

(1 ) e

k=0

(- w)p y < T(n+f+1+t)

R MR M e

.Zk.wk

k=0
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Making a majorating estimation for the expression above when 0 < ¢ <
|lw| <1—¢ < 1 we obtain

0Q(z; w) —~ L (k+ReB+2) |
— 1 < t . . .
| < comst(9.p.n2) S EEGEAT e
T(k+Ref+2) | 4
< t
const(8, p, p, ; Tt D) 2]
=0
1
= const(f,p,p,€) ————75-
(6 p 90 ) (1 N |Z|)Reﬂ+2
Now consider the formal expression
9Q(zw) _ Ay + Ay + A,
ow
where
|w|?
© T <u+ﬂ+ 142
A = Z — / (1 —7)7 t9+kar,
5+1 k=0 <M+;> w 9

| 2

p+B+1+ ) iy

)P tetka,
=) TN /

(2= w)p & F<u+5+1+§> o
r'(p+1) — F<M+%> wh+1

3 =

. (1 — ’w|2p)f3 Jw|PetR) g,

Let us majorate the series above under the same condition 0 < ¢ < |w| <
1 —¢e < 1. We can write

const 6 P, @) e=T'( k—I—R6B+2) _
4] < by T
k=0
T(k+Ref+2) | 4
< const(p, p, ¢, < +00,
(B, p, ¢.e ZE N
t o
’A2’ < cons ﬁ PP Z k'—f—l Ref3+2 |Z’k |w|k;
k=0
T ( k+Reﬁ+3) .
<
const(B,p,p.€) ) Fh D) 2fF < oo,

k=0
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5 o ~on I (k+ Ref +2 o
5] < const(B.p, @) (1 — )’ wpFee 3 1L Vet

prd I'(k+1)
~T(k+R 2
< const(B, p, p,€) Z +kj/81+) |2|F < +oo0.
k=0

Thus, we have shown that for a fixed z € D the derivatives 0Q(z; w)/0w
and 0Q(z; w)/0w exist and are continuous in D\{0}. Hence, the proposition
is proved. [J

Proposition 6 For z € D and w € D\{0}, the following relation holds:
0Q(z; w)

g = SGEw) w2 —w) - Jw - (1 - w[**)”. (19)
Proof. Indeed,
0Q(:iw) _ (z—w)p ST (nHAr1+]) DY (wim) e+
T CEnyP D r(ntt) 1= @Oy’ e
= P

i = T(u+pr1+y)

=S(zw) - (2 —w) - [wP* - (1 - [w*).

O

2 The main integral representation

In what follows, we assume that a > —1,v > —1, p > 0, Ref8 > a, Rep > 7,

and pu = (¢ +1)/p.
Recall that the “norms” ((L1]) generate the corresponding spaces L%, , (D),

where 1 < p < +oo. It is easy to check that L?, ,_(D) C L/, . (D).
Assume that f € LOCM( )N C(D) and put
27
M(t) = / |/ (te)|df, te0,1). (20)

0

Evidently, M (t) is continuous with respect to t.

In view of (20)), the condition f € L} , (D) can be written as

/M — )" 1t < to0, (21)
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and since f € C(D), (21) is equivalent to the following condition
/ M(t) (1 — %)% dt < 4o0. (22)

Lemma 2 If f € L} , (D) N C(D), then there exists a sequence {t}7>, C
(0;1) such that t, — 1 as k — oo and

I — 21" =,

Jim M (t) (1 =) 0

Proof. Assume the opposite. Suppose there exists € > 0 such that
M(t) (1 —20)**! > ¢ for every ¢ € (1 — 4,1). From here it follows that

9
1— 20

M(t) (1 —)" > €(1-9,1).
But the inequality above contradicts to . 0

Theorem 4 Let 1 < p < 400, a > —1,v > —1,p > 0, Re8 > «, and
Rep > ~. Also, let

felr, (D)ynCY(D) (23)
and
) € 1211,D). (24

Then for every z € D

— [[ Hw)stiw) (1= u)? [wPedm(w)

/ [ Geswyimt). - (25)

Proof. It is enough to prove the assertion only in the case p = 1. Let us
consider the differential form

dw, w € D\{0}. (26)

mi w—z
Case 1: z # 0. Denote (see Figure (1)
Dy ={|lw| <t}, k=12.3,...,

where the sequence {#;}5° is chosen as in Lemma [2]

Dy={lw|<ei}, Ds={lw—z<e}  G=D\{DUDs}.

11
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Figure 1: 2 # 0 case

Using Stokes formula we get

/ f(w)Q_(Z;w)dw

|w| 12

s e [

|w—z|=¢2 |w|=¢1

27m//af w)/ 0w zw)dw/\dw—{—Qm//f_Zanw)d_/\dw

which can be symbolically written as follows

L =1, —Is =1+ Is.

Now let us estimate I;, 1 =1,...,5, as t, — 1,61 — 0,69 — 0.
We can suppose that (1 + |z|)/2 < ¢, < 1. Then

T
|I|< /’f tke’t |Q(ztke )l-tkdé?
k

e? — 7|

do

< const 6,/),90, /’f e)| - (1=
1—|z]

o
= const(f, p, ¢, 2) (1 - tzp)wrl / |f (tk€i0)| do

)aJrl

= const(3, p,p,z) (1 — ;" - M(ty,).
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But from Lemma it follows that (1 — t2p )Oé+1

I, - 0ast, — 1.
Since f(w) - Q(z;w) is continuous in the neighborhood of z,

I — f(2)-Q(z;2) = f(2) asey — 0.

M(ty) — 0 asty — 1. Hence,

Further,
1 2 2Rep+1
|I3] < — - — - max |f(w)] - <1—|—const(ﬁ,p,gp,z)~51 > 2me; — 0
2m  |z] <]
as 1 — 0.

Thus, in view of ,

// OTCITE e

1 (w) 208 1wl2# - S(2: w)dm(w
+;.4/w_z.7r.<z_w>.(1_ywy )" [l - S (2 w)dm(w),

or, equivalently,

= [ ) (= o) ol (s wimt)

/ [ ey

To make the above passage to the limit correct, we need to make sure
that both plane integrals converge. For I the correctness follows from [12].
Let us consider I,. It is easy to see that

of (w)/ow

Q(z;w)

is integrable in the neighborhood of z (since 1/(w—z) has integrable singular-
ity) and in the neighborhood of 0 (in view of Proposition [2)). To check the in-

1
tegrability near the boundary of the unit disc, put D* = % < |w| <1 }

Then, due to the estimate , we have
af(w)/0w
[PV Qs

jw — 2|

QConst (B, p, Ref+1
< Reﬁ+3 //’ ‘ ’2p) dm(w)

—|2])

QConst (B, pyp
— |Z| Re,3+3

D*

[w[?) ! dm(w) < +oo.

13
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Case 2: z = 0. Denote (see Figure [2))
Dy ={|lw| <t}, k=1,2,3,...,
where the sequence {t;}5° is chosen as in Lemma [2]

= {|w| < e}, G = D\ Ds.

Figure 2: 2 =0 case

Again, using Stokes formula we get

/ fw)QOsw) , 1 / f(w)Q(O;w)dw
w 271

|w| tk |lw|=¢

//af W/ 0 wrdmie //f @@O%m(w),

or, symbolically

Ji— Jo = J3+ Jy.

In the same way as in Case 1, J; — 0 as t; — 1. Further,

%/%( Q) ~ Vdw + o - /f w= DB+ B,
|w|=¢ lw|=e

Here
ma);: |f(w)\ . g2Rep+2

]_ w|<
’BHS—'H_Q 2me = 0
27 €
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and
By — f(0)

as e — 0.

Finally, we need to make sure that integrals J; and J; are convergent.
For the convergence of Jy see [12]. The estimation of integral J; near the
boundary of D can be done in the same way we did it in Case 1. In the
neighborhood of 0, in view of Proposition [2| we have

BARS // max 3f(w)‘ Lt const(Bop, @) PR
—JJ wi<i| 0w |wl
lw|<3
3
< max 0f(w) - 27 - / 1+ const(ﬁ,p, 90) e -rdr < 400
T w<i| Ow r '

0

This concludes the proof of the theorem. [
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