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Introduction

Let f be a holomorphic function in the unit disc D and has (in a certain
sense) boundary values on the unit circle ∂D = {w ∈ C : |w| = 1}. Also,
denote by σ the Lebesgue measure on ∂D. According to the famous Cauchy
integral formula written for D,

f(z) =
1

2π

∫
∂D

f(w)

1− zw
dσ(w), z ∈ D. (1)

A generalization of the Cauchy′s formula for smooth functions (so-called
Cauchy-Green formula) was established in [1] and for the unit disc can
be formulated as follows:

Theorem 1 If f ∈ C1(D), then

f(z) =
1

2π

∫∫
∂D

f(w)

1− zw
dσ(w)− 1

π

∫∫
D

∂f(w)/∂w

w − z
dm(w), z ∈ D, (2)

where m is two-dimensional Lebesgue measure in the complex plane.
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Recall that

∂f(w)

∂w
=

1

2

(
∂f(w)

∂x
+ i

∂f(w)

∂y

)
(w = x+ iy) (3)

is the Cauchy-Riemann operator. Apparently, [2] (see also [3]) was the
first work, where the values of holomorphic functions inside of a domain
were reproduced by integration of functions over the whole domain.

Denote by H(D) the set of all holomorphic functions in the unit disc D.

Theorem 2 Each function f ∈ H(D) and satisfying the condition∫∫
D

|f(w)|2dm(w) < +∞, (4)

has the following integral representation:

f(z) =
1

π

∫∫
D

f(w)

(1− z · w)2
dm(w), z ∈ D. (5)

This result was essentially generalized in [4], [5]: For the spaces Hp(α) ≡
H(D) ∩ Lpα(D), 1 ≤ p < ∞, α > −1, of functions f holomorphic in the unit
disc D and satisfying the condition∫∫

D

|f(w)|p(1− |w|2)αdm(w) < +∞, (6)

the following assertion is true.

Theorem 3 Each function f ∈ Hp(α) has the integral representation

f(z) =
α + 1

π

∫∫
D

f(w)(1− |w|2)α

(1− z · w)2+α
dm(w), z ∈ D. (7)

This result has numerous applications (see, for example, [4], [5]) in the
theory of factorization of meromorphic functions in the unit disc as well as
to other problems of complex analysis.

A generalization of the formula (7) for smooth functions f (or, equiva-
lently, a weighted version of the formula (2)) has the following form
(Reβ > −1):

f(z) =
β + 1

π

∫∫
D

f(w)(1− |w|2)β

(1− zw)2+β
dm(w)

− 1

π

∫∫
D

∂f(w)/∂w

w − z
·
(

1− |w|2

1− zw

)β+1

dm(w), z ∈ D. (8)
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This result follows

• from [6] if f ∈ C1(D);

• from [7] if f ∈ C1(D), grad(f) ∈ L1(D), and β is real;

• from [8] if 1 ≤ p <∞, α > −1, f ∈ C1(D)∩Lpα(D), ∂f(w)/∂w ∈ Lpα(D),
and β = α;

• from [9] and [10] if 1 ≤ p < ∞, α > −1, f ∈ C1(D) ∩ Lpα(D),
∂f(w)/∂w ∈ Lpα+1(D), and Reβ ≥ α.

In [11] a further generalization of formula (8) was given by taking a
weight function of the type |w|2γ · (1− |w|2ρ) instead of (1− |w|2)α (ρ > 0,
α > −1 and γ > −1). The result was a formula of the type

f(z) =

∫∫
D

f(w)Sα,ρ,γ(z;w) · (1− |w|2ρ)α · |w|2γdm(w)

− 1

π

∫∫
D

∂f(w)/∂w

w − z
·Qα,ρ,γ(z;w)dm(w), z ∈ D, (9)

where f ∈ C1(D) and Sα,ρ,γ(z;w) and Qα,ρ,γ(z;w) admit integral represen-
tations with Mittag-Leffler type kernels.

As it follows from [8], where multidimensional analogue of this result was
obtained, the restrictive condition f ∈ C1(D) in formula (9) can be replaced
by

f ∈ C1(D) ∩ Lpα,ρ,γ(D),
∂f(w)

∂w
∈ Lpα,ρ,γ(D), (10)

where ρ > 0, α > −1, γ > −1, and the spaces Lpα,ρ,γ(D) are naturally
generated by the “norm”

Mp
α,ρ,γ(f) =

∫∫
D

|f(w)|p · (1− |w|2ρ)α · |w|2γdm(w). (11)

Our goal is to obtain (for fixed α > −1, γ > −1) a family of integral rep-
resentations of type (9) with kernels Sβ,ρ,ϕ(z;w) and Qβ,ρ,ϕ(z;w) depending
on complex parameters β and ϕ with Reβ ≥ α, Reϕ ≥ γ (for holomorphic
f that was done in [12]). In comparison with [11] and [8], we write out the
kernels Qβ,ρ,ϕ(z;w) in a series form which admits to specify their certain
properties. Moreover, we weaken the second growth condition in (10) by
assuming that

∂f(w)

∂w
∈ Lpα+1,ρ,γ(D). (12)
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1 The kernel Qβ,ρ,ϕ(z;w) and its properties

In what follows we assume that Reβ > −1, Reϕ > −1, ρ > 0, and
µ = (ϕ+ 1)/ρ. For arbitrary z ∈ D, w ∈ D, put

Sβ,ρ,ϕ(z;w) =
ρ

π · Γ(β + 1)
·
∞∑
k=0

Γ(µ+ β + 1 + k
ρ
)

Γ(µ+ k
ρ
)

· zk · wk. (13)

This kernel was written out in [12] to generalize (9) for holomorphic
functions. To obtain the corresponding kernel Qβ,ρ,ϕ (i.e., to generalize (9)
for C1–functions) we use the relation between Q and S obtained in [11]
(formula (2.11)):

Qβ,ρ,ϕ(z;w) =

∫∫
D

Sβ,ρ,ϕ(z; ζ) · ζ − z
ζ − w

·
(
1− |ζ|2ρ

)β · |ζ|2ϕdm(ζ). (14)

Using the expansion (13), as well as the residue theorem, we have arrived at
the following formula for arbitrary z ∈ D (we omit some technical details):

Qβ,ρ,ϕ(z;w) = 1 +
(z − w)ρ

wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) zk

wk

|w|2∫
0

(1− tρ)β tϕ+kdt

≡ 1 +
z − w

w · Γ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·
|w|2ρ∫
0

(1− x)βxµ+
k
ρ
−1dx,

(15)

where w ∈ D\{0}, and
Qβ,ρ,ϕ(z; 0) ≡ 1. (16)

To simplify notation, in what follows, we will use the notations Q and S
instead of Qβ,ρ,ϕ and Sβ,ρ,ϕ, respectively.

To check whether the kernel Q is well-defined, we estimate the corre-
sponding series in (15) by absolutely convergent numerical series (the so-
called majorated convergence). We have

∞∑
k=0

∣∣∣∣∣∣∣
Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·
|w|2∫
0

(1− tρ)β tϕ+kdt

∣∣∣∣∣∣∣
≤

∞∑
k=0

Γ
(
Reµ+Reβ + 1 + k

ρ

)
Γ
(
Reµ+ k

ρ

) · |z|
k

|w|k
·

∣∣∣∣∣∣∣
|w|2∫
0

(1− tρ)β tϕ+kdt

∣∣∣∣∣∣∣
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≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|

k

|w|k
· |w|2k ·

|w|2∫
0

(1− tρ)Reβ tReϕdt

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|

k

|w|k
· |w|2k ·

1∫
0

(1− tρ)Reβ tReϕdt

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|k · |w|k

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|k = const(β, ρ, ϕ)

1

(1− |z|)Reβ+2
.

Hence, the following assertion is true.

Proposition 1 The kernel Q(z;w) is well-defined for z ∈ D and w ∈ D.
Moreover, Q(z;w) is continuous in D\{0} for fixed z and holomorphic in D
for fixed w.

Remark 1 In the estimation above we used the following consequence of the
Stirling’s formula:

|Γ(µ+R)|
|Γ(ν +R)|

� RReµ−Reν , R→ +∞. (17)

Proposition 2 Suppose 0 < |w| ≤ 1

2
. Then

|Q(z;w)−Q(z; 0)| ≡ |Q(z;w)− 1| = const(β, ρ, ϕ, z) ·

{
|w|2Reϕ+1, z 6= 0,

|w|2Reϕ+2, z = 0.

Proof. Case 1: Let z 6= 0. Then

|Q(z;w)− 1|

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|

k

|w|k+1
·
|w|2∫
0

(1− tρ)Reβ tReϕ+kdt.

Since 0 ≤ t ≤ 1

4
, we have

0 ≤ tρ ≤ 1

4ρ
and 1− 1

4ρ
≤ 1− tρ ≤ 1.

Hence,

(1− tρ)Reβ ≤

{
1, if Reβ > 0,(
1− 1

4ρ

)Reβ
, if − 1 < Reβ ≤ 0.
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Therefore,

|Q(z;w)− 1| ≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|

k

|w|k+1
·
|w|2∫
0

tReϕ+kdt

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)
· |z|

k

|w|k+1
· |w|

2(Reϕ+k+1)

Reϕ+ k + 1

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 1)(k + 1)
· |z|k · |w|k · |w|2Reϕ+1

= const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ(k + 2)
· |z|k · |w|k · |w|2Reϕ+1

≤ const(β, ρ, ϕ)
∞∑
k=0

kReβ · |z|k · |w|k · |w|2Reϕ+1

≤ const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 1)

Γ(k + 1)
· |z|k · |w|k · |w|2Reϕ+1

≤ const(β, ρ, ϕ)|w|2Reϕ+1 · 1

(1− |z|)Reβ+1
.

Case 2: Let z = 0. It is easy to see that in this case (z − w)/w = −1,
that is why the power of |w| in our estimate increases by 1. �

Corollary 1 If z = 0, then Q(z;w) is continuous at the point w = 0 (there-
fore, in D); and if z 6= 0, then Q(z;w) is continuous at w = 0 if and only if
Reϕ > −1/2.

Lemma 1 If |z| < |w| ≤ 1, then

z − w
wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·

1∫
0

(1− x)βxµ+
k
ρ
−1dx = −1.

Proof. Note that

1∫
0

(1− x)βxµ+
k
ρ
−1dx = B

(
β + 1, µ+

k

ρ

)
=

Γ(β + 1)Γ
(
µ+ k

ρ

)
Γ
(
µ+ β + 1 + k

ρ

) .
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Hence

z − w
wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·

1∫
0

(1− x)βxµ+
k
ρ
−1dx

=
z − w

wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·

Γ(β + 1)Γ
(
µ+ k

ρ

)
Γ
(
µ+ β + 1 + k

ρ

)
=
z − w
w

∞∑
k=0

zk

wk
=
z − w
w
· 1

1− z
w

= −1.

�

Corollary 2 If z ∈ D and w ∈ ∂D, then Q(z;w) = 0.

The following assertion is evident.

Proposition 3 If w = z ∈ D, then Q(z;w) ≡ Q(z; z) ≡ 1.

Proposition 4 Let (1 + |z|)/2 ≤ |w| ≤ 1, K ⊂ D be a compact and let
z ∈ K. Then

|Q(z;w)| ≤ const(β, ρ, ϕ)
(1− |w|2ρ)Reβ+1

(1− |z|)Reβ+2

≤ const(β, ρ, ϕ,K) ·
(
1− |w|2ρ

)Reβ+1
. (18)

Proof. From (1 + |z|)/2 ≤ |w| ≤ 1 it follows that

|z| < |w|, |w| ≥ 1

2
, and |w| − |z| ≥ 1− |z|

2
.

According to Lemma 1 we have:

Q(z;w) = 1 +
z − w

wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk

·

 1∫
0

(1− x)βxµ+
k
ρ
−1dx−

1∫
|w|2ρ

(1− x)βxµ+
k
ρ
−1dx


=

w − z
wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · z
k

wk
·

1∫
|w|2ρ

(1− x)βxµ+
k
ρ
−1dx.
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Hence,

|Q(z;w)| ≤ const(β, ρ, ϕ)

|w|

·
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|

k

|w|k
·

1∫
|w|2ρ

(1− x)ReβxReµ+
k
ρ
−1dx.

If Reµ+
k

ρ
− 1 ≥ 0, then xReµ+

k
ρ
−1 ≤ 1, otherwise,

xReµ+
k
ρ
−1 ≤ |w|2ρ(Reµ+

k
ρ
−1) ≤ |w|2ρ(Reµ−1) ≤

(
1

2

)2ρ(Reµ−1)

= const(ρ, ϕ).

Thus, we can write

|Q(z;w)| ≤ const(β, ρ, ϕ)

|w|

∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|

k

|w|k
·

1∫
|w|2ρ

(1− x)Reβdx

= const(β, ρ, ϕ)
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|

k

|w|k
·
(
1− |w|2ρ

)Reβ+1

= const(β, ρ, ϕ)
(1− |w|2ρ)Reβ+1(

1− |z|
|w|

)Reβ+2
≤ const(β, ρ, ϕ)

(1− |w|2ρ)Reβ+1

(|w| − |z|)Reβ+2

≤ const(β, ρ, ϕ)
(1− |w|2ρ)Reβ+1

(1− |z|)Reβ+2
≤ const(β, ρ, ϕ,K)

(
1− |w|2ρ

)Reβ+1
.

�

Remark 2 For real β and ϕ, Propositions 2 and 4 were formulated in [11],
where schemes of proofs were also given.

Proposition 5 For a fixed z ∈ D, Q(z;w) ∈ C1 (D\{0}).

Proof. For w ∈ D\{0}, we formally have:

∂Q(z;w)

∂w
=

(z − w)ρ

Γ(β + 1)

·
∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · zk

wk+1
·
(
1− |w|2ρ

)β · |w|2(ϕ+k) · w
=

(z − w)ρ

Γ(β + 1)
·
(
1− |w|2ρ

)β · |w|2ϕ ∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · zk · wk.
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Making a majorating estimation for the expression above when 0 < ε ≤
|w| ≤ 1− ε < 1 we obtain∣∣∣∣∂Q(z;w)

∂w

∣∣∣∣ ≤ const(β, ρ, ϕ, ε) ·
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k · |w|k

≤ const(β, ρ, ϕ, ε) ·
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k

= const(β, ρ, ϕ, ε) · 1

(1− |z|)Reβ+2
.

Now consider the formal expression

∂Q(z;w)

∂w
= A1 + A2 + A3,

where

A1 = − ρ

Γ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · zk

wk+1
·
|w|2∫
0

(1− tρ)β tϕ+kdt,

A2 =
(z − w)ρ

Γ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · zk

wk+2
(−k − 1)

|w|2∫
0

(1− tρ)β tϕ+kdt,

A3 =
(z − w)ρ

Γ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) · zk

wk+1
·
(
1− |w|2ρ

)β · |w|2(ϕ+k) · w.
Let us majorate the series above under the same condition 0 < ε ≤ |w| ≤
1− ε < 1. We can write

|A1| ≤
const(β, ρ, ϕ)

|w|

∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k · |w|k

≤ const(β, ρ, ϕ, ε)
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k < +∞,

|A2| ≤
const(β, ρ, ϕ)

|w|2
∞∑
k=0

(k + 1)Reβ+2 · |z|k · |w|k

≤ const(β, ρ, ϕ, ε)
∞∑
k=0

Γ (k +Reβ + 3)

Γ (k + 1)
· |z|k < +∞,



10 F. V. HAYRAPETYAN

|A3| ≤ const(β, ρ, ϕ) ·
(
1− |w|2ρ

)β · |w|2Reϕ ∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k · |w|k

≤ const(β, ρ, ϕ, ε)
∞∑
k=0

Γ (k +Reβ + 2)

Γ (k + 1)
· |z|k < +∞.

Thus, we have shown that for a fixed z ∈ D the derivatives ∂Q(z;w)/∂w
and ∂Q(z;w)/∂w exist and are continuous in D\{0}. Hence, the proposition
is proved. �

Proposition 6 For z ∈ D and w ∈ D\{0}, the following relation holds:

∂Q(z;w)

∂w
= S(z;w) · π · (z − w) · |w|2ϕ · (1− |w|2ϕ)β. (19)

Proof. Indeed,

∂Q(z;w)

∂w
=

(z − w)ρ

wΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) zk

wk
(1− (ww)ρ)β (ww)ϕ+kw

= π(z − w)|w|2ϕ (1− (w · w)ρ)β
ρ

πΓ(β + 1)

∞∑
k=0

Γ
(
µ+ β + 1 + k

ρ

)
Γ
(
µ+ k

ρ

) zkwk

= S(z;w) · π · (z − w) · |w|2ϕ · (1− |w|2ρ)β.

�

2 The main integral representation

In what follows, we assume that α > −1, γ > −1, ρ > 0, Reβ ≥ α, Reϕ ≥ γ,
and µ = (ϕ+ 1)/ρ.

Recall that the “norms” (11) generate the corresponding spaces Lpα,ρ,γ(D),
where 1 ≤ p < +∞. It is easy to check that Lpα,ρ,γ(D) ⊂ L1

α,ρ,γ(D).
Assume that f ∈ L1

α,ρ,γ(D) ∩ C(D) and put

M(t) ≡
2π∫
0

∣∣f (teiθ)∣∣ dθ, t ∈ [0, 1). (20)

Evidently, M(t) is continuous with respect to t.
In view of (20), the condition f ∈ L1

α,ρ,γ(D) can be written as

1∫
0

M(t)
(
1− t2ρ

)α
t2γ+1dt < +∞, (21)
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and since f ∈ C(D), (21) is equivalent to the following condition

1∫
0

M(t)
(
1− t2ρ

)α
dt < +∞. (22)

Lemma 2 If f ∈ L1
α,ρ,γ(D) ∩ C(D), then there exists a sequence {tk}∞k=1 ⊂

(0; 1) such that tk → 1 as k →∞ and

lim
k→∞

M(tk)
(
1− t2ρk

)α+1
= 0.

Proof. Assume the opposite. Suppose there exists ε > 0 such that
M(t) (1− t2ρ)α+1 ≥ ε for every t ∈ (1− δ, 1). From here it follows that

M(t)
(
1− t2ρ

)α ≥ ε

1− t2ρ
, t ∈ (1− δ, 1).

But the inequality above contradicts to (22). �

Theorem 4 Let 1 ≤ p < +∞, α > −1, γ > −1, ρ > 0, Reβ ≥ α, and
Reϕ ≥ γ. Also, let

f ∈ Lpα,ρ,γ(D) ∩ C1(D) (23)

and
∂f(w)

∂w
∈ Lpα+1,ρ,γ(D). (24)

Then for every z ∈ D

f(z) =

∫∫
D

f(w)S(z;w)
(
1− |w|2ρ

)β |w|2ϕdm(w)

− 1

π

∫∫
D

∂f(w)/∂w

w − z
Q(z;w)dm(w). (25)

Proof. It is enough to prove the assertion only in the case p = 1. Let us
consider the differential form

τz(w) =
1

2πi
· f(w)Q(z;w)

w − z
dw, w ∈ D\{0}. (26)

Case 1: z 6= 0. Denote (see Figure 1)

D1 = {|w| ≤ tk}, k = 1, 2, 3, . . . ,

where the sequence {tk}∞1 is chosen as in Lemma 2,

D2 = {|w| ≤ ε1}, D3 = {|w − z| ≤ ε2}, G = D1\{D2 ∪D3}.
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Figure 1: z 6= 0 case

Using Stokes formula we get

1

2πi
·
∫

|w|=tk

f(w)Q(z;w)

w − z
dw

− 1

2πi
·
∫

|w−z|=ε2

f(w)Q(z;w)

w − z
dw − 1

2πi
·
∫

|w|=ε1

f(w)Q(z;w)

w − z
dw

=
1

2πi

∫∫
G

∂f(w)/∂w

w − z
Q(z;w)dw ∧ dw +

1

2πi

∫∫
G

f(w)

w − z
∂Q(z;w)

∂w
dw ∧ dw,

which can be symbolically written as follows

I1 − I2 − I3 = I4 + I5.

Now let us estimate Ii, i = 1, ..., 5, as tk → 1, ε1 → 0, ε2 → 0.
We can suppose that (1 + |z|)/2 < tk < 1. Then

|I1| ≤
1

2π

2π∫
0

∣∣f (tkeiθ)∣∣ · ∣∣Q (z; tke
iθ
)∣∣

|tkeiθ − z|
· tkdθ

≤ const(β, ρ, ϕ, z)

π

2π∫
0

∣∣f (tkeiθ)∣∣ · (1− t2ρk )α+1

1− |z|
dθ

= const(β, ρ, ϕ, z)
(
1− t2ρk

)α+1

2π∫
0

∣∣f (tkeiθ)∣∣ dθ
≡ const(β, ρ, ϕ, z)

(
1− t2ρk

)α+1 ·M(tk).
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But from Lemma 2 it follows that
(
1− t2ρk

)α+1 ·M(tk)→ 0 as tk → 1. Hence,
I1 → 0 as tk → 1.

Since f(w) ·Q(z;w) is continuous in the neighborhood of z,

I2 → f(z) ·Q(z; z) ≡ f(z) as ε2 → 0.

Further,

|I3| ≤
1

2π
· 2

|z|
· max
|w|≤ 1

2

|f(w)| ·
(

1 + const(β, ρ, ϕ, z) · ε2Reϕ+1
1

)
· 2πε1 → 0

as ε1 → 0.
Thus, in view of (19),

− f(z) =
1

π
·
∫∫
D

∂f(w)/∂w

w − z
Q(z;w)dm(w)

+
1

π
·
∫∫
D

f(w)

w − z
· π · (z − w) ·

(
1− |w|2ρ

)β · |w|2ϕ · S(z;w)dm(w),

or, equivalently,

f(z) =

∫∫
D

f(w) ·
(
1− |w|2ρ

)β · |w|2ϕ · S(z;w)dm(w)

− 1

π
·
∫∫
D

∂f(w)/∂w

w − z
Q(z;w)dm(w).

To make the above passage to the limit correct, we need to make sure
that both plane integrals converge. For I5 the correctness follows from [12].
Let us consider I4. It is easy to see that

∂f(w)/∂w

w − z
·Q(z;w)

is integrable in the neighborhood of z (since 1/(w−z) has integrable singular-
ity) and in the neighborhood of 0 (in view of Proposition 2). To check the in-

tegrability near the boundary of the unit disc, putD? =

{
1 + |z|

2
< |w| < 1

}
.

Then, due to the estimate (18), we have∫∫
D?

|∂f(w)/∂w|
|w − z|

· |Q(z;w)|dm(w)

≤ 2const(β, ρ, ϕ)

(1− |z|)Reβ+3

∫∫
D?

∣∣∣∣∂f(w)

∂w

∣∣∣∣ (1− |w|2ρ)Reβ+1
dm(w)

≤ 2const(β, ρ, ϕ)

(1− |z|)Reβ+3

∫∫
D?

∣∣∣∣∂f(w)

∂w

∣∣∣∣ (1− |w|2ρ)α+1
dm(w) < +∞.
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Case 2: z = 0. Denote (see Figure 2)

D1 = {|w| ≤ tk}, k = 1, 2, 3, . . . ,

where the sequence {tk}∞1 is chosen as in Lemma 2,

D2 = {|w| ≤ ε}, G = D1\D2.

Figure 2: z = 0 case

Again, using Stokes formula we get

1

2πi
·
∫

|w|=tk

f(w)Q(0;w)

w
dw − 1

2πi
·
∫
|w|=ε

f(w)Q(0;w)

w
dw

=
1

π
·
∫∫
G

∂f(w)/∂w

w
·Q(0;w)dm(w) +

1

π
·
∫∫
G

f(w)

w
· ∂Q(0;w)

∂w
dm(w),

or, symbolically
J1 − J2 = J3 + J4.

In the same way as in Case 1, J1 → 0 as tk → 1. Further,

J2 =
1

2πi
·
∫
|w|=ε

f(w)

w
(Q(0;w)− 1)dw +

1

2πi
·
∫
|w|=ε

f(w)

w
dw ≡ B1 + B2.

Here

|B1| ≤
1

2π
·

max
|w|≤ 1

2

|f(w)| · ε2Reϕ+2

ε
· 2πε→ 0



ON A FAMILY OF WEIGHTED ∂-INTEGRAL REPRESENTATIONS IN THE UNIT DISC 15

and
B2 → f(0)

as ε→ 0.
Finally, we need to make sure that integrals J3 and J4 are convergent.

For the convergence of J4 see [12]. The estimation of integral J3 near the
boundary of D can be done in the same way we did it in Case 1. In the
neighborhood of 0, in view of Proposition 2, we have

|J3| ≤
∫∫
|w|≤ 1

2

max
|w|≤ 1

2

∣∣∣∣∂f(w)

∂w

∣∣∣∣ · 1 + const(β, ρ, ϕ) · |w|2Reϕ+2

|w|
dm(w)

≤ max
|w|≤ 1

2

∣∣∣∣∂f(w)

∂w

∣∣∣∣ · 2π ·
1
2∫

0

1 + const(β, ρ, ϕ) · r2Reϕ+2

r
· rdr < +∞.

This concludes the proof of the theorem. �
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