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Abstract

We consider Dirichlet type problem in upper half-plane for improperly elliptic equation

uzz̄2 = 0, with boundary functions from the class L1(ρ) (ρ = (1 + |x|)−α, α ≥ 0). The solu-

tions of the problem are obtained in explicit form.
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1. Introduction

Note that two of three roots of the characteristic equation, corresponding to uzz̄2 = 0 belong

to the upper half-plane and one to the lower. In this case the equation is called improperly

elliptic. The boundary value problems for improperly elliptic equations in Hölder classes

in bounded domains were studied in ([1] - [4]). In [5] in Hölder classes in half-plane the

boundary-value problems for homogeneous equation with constant coefficients were studied.

It should be noted that in these investigations the fact, that Cauchy type integral is a

bounded operator in these spaces is essential. It is well known that Cauchy type integral is

not bounded operator in L1 and moreover in L1(ρ). In cases, when the boundary functions

belong to L1 class, the boundary condition should be interpreted in L1–convergence sense

([6]-[9]).

Some results of this paper when α is noninteger where announced in [10]. In this paper

the solutions of the Dirichlet type problem are obtained in explicit form. We will see, that

the formula for the solution essentially depends on the fact that α integer or not.

13

http://www.flib.sci.am/eng/journal/Math/
mailto:hhairapet@seua.am
mailto:m.pavo@yahoo.com


2. Problem statement and preliminary lemmas

Let B1 be the class of the continuously differentiable functions in the upper half-plane Π+ =

{z : Imz > 0} of the complex plane, satisfying the conditions∣∣∣ ∂p+qu
∂zp∂z̄q

∣∣∣ < A|z|N , Imz > y0 > 0, p ≥ 0, q ≥ 0, p+ q ≤ 2,

where A is a constant depending on y0, and N is the natural number depending on u,

∂u

∂z
=

1

2

(∂u
∂x
− i∂u

∂y

)
,
∂u

∂z̄
=

1

2

(∂u
∂x

+ i
∂u

∂y

)
.

In the Π+ the following boundary value problem is considered: find the solution u ∈ B1 of

the equation
∂3u

∂z∂z̄2
= 0, (1)

which satisfies conditions

lim
y→+0

‖u (x, y)− f (x)‖L1(ρ) = 0 (2)

lim
y→+0

∥∥∥<∂u(x, y)

∂y
− f1(x)

∥∥∥
L1(ρ)

= 0, (3)

where ρ(x) = (1 + |x|)−α, α ≥ 0, f0(x), f ′0(x), f1(x) ∈ L1(ρ); L1(ρ) is the functional class

with the following norm

‖f‖L1(ρ) =

∫ ∞
−∞
|f(x)|ρ(x)dx <∞.

To study the problem (1)-(3) the following lemmas are needed

Lemma 1 Let δ ∈ (0, 1) and

I(x, y) = (x+ i)δ
∫ ∞
−∞

ydt

(t+ i)δ(t− x− iy)
, y > 0 (4)

then there exists a constant C, independent from x and y, such that

|I(x, y)| < C. (5)

Proof. Let I(x, y) = I1(x, y) + I2(x, y) + I3(x, y), where

I1(x, y) = (x+ i)δ
∫ ∞

1

ydt

(t+ i)δ(t− x− iy)
,

I2(x, y) = (x+ i)δ
∫ −1

−∞

ydt

(t+ i)δ(t− x− iy)
,

I3(x, y) = (x+ i)δ
∫ 1

−1

ydt

(t+ i)δ(t− x− iy)
.
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Replacing t by t−1 we get

I1(x, y) = (x+ i)δ
∫ 1

0

ydt

(1 + it)δt1−δ(1− (x− iy)t)

=
(x+ i)δ

x− iy

∫ 1

0

ydt

(1 + it)δt1−δ(t− 1
x−iy )

.

Using Muskhelishvili’s inquality ([11], p. 93) we get

∣∣∣ ∫ 1

0

ydt

(1 + it)δt1−δ(t− 1
x−iy )

∣∣∣ < A0|x− iy|1−δ.

Therefore, for |x| > 2−1

|I1(x, y)| ≤
∣∣∣ x+ i

x− iy

∣∣∣δ < C.

If |x| < 2−1, then |t− x− iy| > 2−1t and

|I1(x, y)| <
∫ ∞

1

dt

|t+ i|1+δ
.

In the same way it may be proved, that |I2(x, y)| < C. When |x| < 2 we get

|I3(x, y)| < 3

∫ 1

−1

ydt

|t− x− iy|
.

Therefore |I3(x, y)| < C. Taking into account that the function

K(z) =

∫ 1

−1

dt

(t+ i)(t− z)

is holomorphic in the infinity and K(∞) = 0, then representing it by the Laurent series, we

get

K(z) =
A1

x− iy
+

A2

(x− iy)2
+ ... =

1

x− iy

(
A1 +

A2

x− iy
+ ...

)
and

|K(x− iy)| < A

|x− iy|
, |x| > 2,

where A is some constant. For |x| > 2 we have

|I3(x, y))| < |x+ i|δ B

|x− iy|
< C.

The lemma is proved. �

Lemma 2 Let f ∈ L1(ρ), α be a noninteger, n = [α] and

Φ(f, z) =
(z + i)n

2πi

∫ ∞
−∞

f(t)dt

(t+ i)n(t− z)
, (6)

then

lim
y−→+0

y‖Φ(f, x+ iy)‖L1(ρ) = 0. (7)
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Proof. Let f ∈ Cδ(−∞, ∞), δ > 0 be a finite function with support in [−A, A]. Out of

segment [−A, A] the function Φ(f, z) is holomorphic and |Φ(f, z)| = O(|z|n−1) in infinity.

y

∫
|x|>2A

|Φ(f, x+ iy)|ρ(x)dx < A0y

∫
|x|>2A

|x+ iy|n−1ρ(x)dx <

< A0y

∫
|x|>2A

dx

|x+ i|1+{α}

The last integral converges ({α} > 0) and

lim
y−→+0

y

∫
|x|>2A

|Φ(f, x+ iy)|ρ(x)dx = 0.

Taking into account that x ∈ [−A, A] the function Φ(f, z) is uniformly bounded [11] we get

lim
y−→+0

y

∫
|x|<2A

|Φ(f, x+ iy)|ρ(x)dx = 0.

Thus, when f ∈ Cδ(−∞, ∞), the finite function (7) has been proved. To prove the

lemma we need the following inequality

y‖Φ(f, x+ iy)‖L1(ρ) < C‖f‖L1(ρ). (8)

In fact

‖Φ(f, x+ iy)‖L1(ρ) =

∫ ∞
−∞

∣∣∣(x+ iy)n

2πi

∫ ∞
−∞

f(t)dt

(t+ i)n(t− z)

∣∣∣ dx

|x+ i|α
<

<
1

2π

∫ ∞
−∞

f(t)

|t+ i|α−{α}

∫ ∞
−∞

dx

|x+ i|{α}|t− x− iy|
dt.

According to lemma 1

|t+ i|{α}
∫ ∞
−∞

ydx

|x+ i|{α}|t− x− iy|
< C

so the validity of estimation (8) follows. Let now f ∈ L1(ρ) and ε > 0 be arbitrary number,

and a finite function f1 ∈ Cδ(−∞, ∞) satisfy inequality ‖f − f1‖ < ε. Then

y‖Φ(f, x+ iy)‖L1(ρ) ≤ y‖Φ(f − f1, x+ iy)‖L1(ρ) + y‖Φ(f1, x+ iy)‖L1(ρ) ≤

≤ Cε+ y‖Φ(f, x+ iy)‖L1(ρ),

and so as

lim
y−→+0

y‖Φ(f1, x+ iy)‖L1(ρ) = 0

and ε > 0 is an arbitrary number, the lemma is proved. �

Lemma 3 Let f ∈ L1(ρ). Then

lim
y−→+0

y‖Φ′(f, x+ iy)‖L1(ρ) = 0, (9)

where Φ(f, x+ iy) is the function defined by (6).
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Proof. Let′s begin with the proof of inequality

sup
y>0

y‖Φ′(f, x+ iy)‖L1(ρ) ≤ C‖f‖L1(ρ). (10)

Note that Φ′(f, z) = I1(f, z) + I2(f, z), where

I1(f, z) =
n(z + i)n−1

2πi

∫ ∞
−∞

f(t)dt

(t+ i)n(t− z)
, (11)

I2(f, z) =
(z + i)n

2πi

∫ ∞
−∞

f(t)dt

(t+ i)n(t− z)2
. (12)

From (11) we have

y

∫ ∞
−∞
|I1(f, x+ iy)|ρ(x)dx =

=
ny

2π

∫ ∞
−∞

∣∣∣(x+ iy + i)n−1

∫ ∞
−∞

f(t)

(t+ i)n
dt

t− x− iy
dx

|x+ i|α
∣∣∣ ≤

≤ Cny

∫ ∞
−∞

f(t)

|t+ i|α
|t+ i|{α}

∫ ∞
−∞

dx

|t− x− iy||x+ i|1+{α}dt.

Taking into consideration, that

|t+ i|{α}
∫ ∞
−∞

ydx

|t− x− iy||x+ i|1+{α} ≤

≤ C1

(∫ ∞
−∞

ydx

|t− x− iy|1−{α}(1 + |x|)1+{α} +

∫ ∞
−∞

ydx

|t− x− iy|2
+

+

∫ ∞
−∞

ydx

|x+ i|2
)
≤ 2C1

(∫ ∞
−∞

ydx

|t− x− iy|2
+

∫ ∞
−∞

ydx

|x+ i|2
)
< C2,

we get finally

y‖I1(f, x+ iy)‖L1(ρ) < C‖f‖L1(ρ). (13)

Estimating (12) we get

y

∫ ∞
−∞
|I2(f, x+ iy)|ρ(x)dx =

=
y

2π

∫ ∞
−∞

∣∣∣(x+ iy + i)n
∫ ∞
−∞

f(t)

(t+ i)n
dt

(t− x− iy)2

dx

|x+ i|α
∣∣∣ ≤

≤
∫ ∞
−∞

f(t)

|t+ i|α
|t+ i|{α}

∫ ∞
−∞

ydx

|t− x− iy|2|x+ i|{α}
dt.

As

|t+ i|{α}
∫ ∞
−∞

ydx

|t− x− iy|2|x+ i|{α}
≤
∫ ∞
−∞

ydx

|t− x− iy|2
+

+C1

∫ ∞
−∞

ydx

|t− x− iy|2−{α}|x+ i|{α}
dt ≤ π+

+C2

(∫ ∞
−∞

ydx

|t− x− iy|2
+

∫ ∞
−∞

ydx

|x+ i|2
)
< C,
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then

y‖I2(f, x+ iy)‖L1(ρ) < C‖f‖L1(ρ). (14)

From (13) and (14) follows (10). Let now g(x) ∈ C1,δ be a finite function, the support

of which is in the interval [−A, A]. In this case the function Φ(g, z) from (8) is analytic if

|z| > A and has the pole of order n−2 at infinity. Therefore |I1(g, z)| < C|z|n−2, |I2(g, z)| <
C|z|n−2, |z| > 2A. From these estimates follows

y

∫
|x|>2A

|Ik(g, x+ iy)|ρ(x)dx < Cy

∫
|x|>2A

dx

(1 + |x|)2+{α} , k = 1, 2.

From this inequality it may be deduced that

lim
y→+0

y

∫ ∞
−∞
|Φ′(g, x+ iy)|ρ(x)dx = 0.

Recalling one more time inequality (10) we achieve the proof of lemma. �

Lemma 4 Let f ∈ L1(ρ) and

Φ1(f, z) =
(z + i)n

2πi

∫ ∞
−∞

f(t)dt

(t+ i)n(t− z)2

Then

lim
y−→+0

y‖Φ1(f, x+ iy)‖L1(ρ) = 0,

Proof. Taking into account (12) and (14), we get

y‖Φ1(f, x+ iy)‖L1(ρ) < C‖f‖L1(ρ).

Now similar to the proof of lemma 3 we prove lemma 4. �

3 Investigation of a homogeneous problem

The general solution of the equation (1) may be represented in the form ([10])

u(z) = ϕ(z) + yψ(z) + ω(z), ω(i) = ω′(i) = 0 (15)

where ϕ, ψ, ω are analytic in Π+ functions, uniquely defined by u. Substituting u into

conditions (2), (3) we get the following boundary conditions

lim
y→+0

‖ϕ(x+ iy) + yψ(x+ iy) + ω(x+ iy)− f0‖L1(ρ) = 0, (16)

lim
y→+0

‖<(iϕ(x+ iy) + ψ(x+ iy) + iyψ′(x+ iy)− iω(x+ iy)− f1)‖L1(ρ) = 0, (17)

for definition of functions ϕ, ψ, ω. The problems (1)-(3) and (16)-(17) are equivalent. For

investigation of the problem (1)-(3) we formulate the following theorem (see [10]):

18



Theorem A. Let the function u be the solution of the problem (1)-(3). Then it can be

represented in the form (15), where

ϕ(z) =
(z + i)n

2πi

∫ ∞
−∞

f0(t)dt

(t+ i)n(t− z)
+ P0(z) (18)

ω(z) =
(z − i)n

2πi

∫ ∞
−∞

f0(t)dt

(t− i)n(t− z)
− P0(z) (19)

ψ(z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

+
(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
− iϕ′(z)− iω′(z) + P1(z) (20)

Here the polynomials P0 and P1 are uniquely determined by u and coefficients of P1 are

purely imaginary numbers.

3.1 At first, we consider the case of noninteger α.

Theorem 1 If α is a noninteger number, then the homogeneous problem (1)-(3) has 3n, n =

[α] linearly independent solutions over the field of real numbers. These solutions can be

represented in the following form

uk(z) = zk − zk, k = 2, 3, ..., n,

ũk(z) = i((zk − zk)− k(z − z)zk−1), k = 2, 3, ..., n+ 1,

vk(z) = (z − z)zk, k = 0, 1, , ..., n− 1,

ṽn+1(z) = zn+1 − zn+1 − (n+ 1)(z − z)zn (21)

If α ≤ 1 the homogeneous problem has only a trivial solution.

Proof. Recalling theorem A from (15) and (18)-(20) we get (f0 ≡ f1 ≡ 0)

u(z) = P0(z)− P0(z) + y(P1(z)− i(P ′0(z)− P ′0(z))), (22)

where P0, P1 are some polynomials, and coefficients P1 are purely imaginary. Denoting the

coefficients of the polynomial P0 by ak = a′k + ia′′k, k = 0, 1, ...,m0, and the coefficients of

the polynomial P1 by 2ibk, k = 0, 1, ...,m1, we represent u in the following form

u(z) =

m0∑
k=1

a′kuk(z) + i

m0∑
k=1

a′′kũk(z) +

m1∑
k=1

bkvk(z). (23)

The order of function uk(z) for fixed y if |x| → ∞ is equal k − 1, i.e. |uk(x + iy)| =

yO(|x|k−1). Similarly |vk(x+ iy)| = O(|x|k−1). As

ũk(x+ iy) = ũk(iy) + ũ′k(iy)x...+
ũ

(k)
k (iy)

k!
xk
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and ũ
(k)
k (iy) = ũ

(k−1)
k (iy) = 0, ũ

(k−2)
k (iy) = 2k(k − 1)y2, we get |ũk(x + iy)| = y2O(|x|k−2).

The function u from (22) belongs to the class L1(ρ) if and only if the order doesn’t exceed

n− 1, and this corresponds to k = 2, 3, . . . , n+ 1. It should be noted that the order of

this function u(z) to doesn’t exceed m, where m = max {m0 − 1,m1}. Hence, in order the

function u(z) satisfy the homogeneous problem (2), (3), it is necessary that m ≤ n− 1, i.e.

m0 ≤ n and m1 ≤ n− 1. For arbitrary k > 0 we have zk+1 − z̄k+1 = 2iy(k + 1)xk + . . .,

(z − z̄)zk = 2iyxk + . . .. Therefore for arbitrary real number a′k , and bk = −(k + 1)a′k, we

have |a′kuk+1(z) − bkvk(z)| = 2yO(|x|k). It follows from this that ṽn+1(z) = zn+1 − z̄n+1 −
(n+1)(z− z̄)zn in infinity has the order of n− 1. It also should be noted that u1(z) = v0(z),

ũ1(z) ≡ 0.

Let’s prove that every function from (21) satisfies the conditions (2), (3). It is sufficient to

consider the functions un(z), ũn+1(z), ṽn−1(z) and ṽn+1(z). Since |un(x+ iy)| = 2yO(|x|n−1),

|vn−1(x + iy) = 2yO(|x|n−1), |ũn+1(x + iy)| = y2O(|x|n−1) and |ṽn+1(x + iy)| = y2O(|x|n−1)

with fixed y > 0, thus

lim
y→+0

‖un(x, y)‖L1(ρ) = lim
y→+0

‖vn−1(x, y)‖L1(ρ) =

= lim
y→+0

‖ũn+1(x, y)‖L1(ρ) = lim
y→+0

‖ṽn+1(x, y)‖L1(ρ) = 0.

Further
∂un(z)

∂y
= ni(zn−1 + z̄n−1),

∂ũn+1(z)

∂y
= −(n+ 1)(zn + z̄n) + 2(n+ 1)zn + 2i(n+ 1)nyzn−1,

∂vn−1(z)

∂y
= 2izn−1 − 2y(n− 1)zn−2,

∂ṽn+1(z)

∂y
= −(n+ 1)i(zn + z̄n) + 2i(n+ 1)zn − 2(n+ 1)nyzn−1,

and therefore

|Re∂vn−1(z)

∂y
| = yO(|x|n−2), |Re∂ṽn+1(z)

∂y
| = yO(|x|n−1),

so the functions vn−1(z), ṽn+1(z) also satisfies the condition (3).

To complete the proof of the theorem we must prove that the system of functions (21) is

linearly independent over the field of the real numbers. Let’s prove the linearly independence

of the system uk(z), k = 2, 3, . . . , n, ũk(z), k = 2, 3, . . . , n+ 1. In fact, assume for some real

numbers Ak, Bk,
n∑
k=2

Akuk(z) +
n+1∑
k=2

Bkũk(z) ≡ 0.

It follows from this identity that

n∑
k=2

(Ak + iBk)z̄
k + iBn+1z̄

n+1 = Q1(z) + z̄Q2(z),
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where Q1(z), Q2(z) are some polynomials. We get

∂2

∂z̄2

(
n∑
k=2

(Ak + iBk)z̄
k + iBn+1z̄

n+1

)
= 0.

It is possible only if Ak = 0, k = 2, 3, . . . , n, Bk = 0, k = 2, 3, . . . , n+ 1. Similar argumenta-

tions confirm that the system (21) is linearly independent. �

3.2. The case when α is integer.

Theorem 2 The following statements are true.

a) Let α = 0, 1. In this case the homogeneous problem (1) - (3) has only trivial solution.

b) Let α = n = 2, 3, . . . .. Then the homogeneous problem (1) - (3) has 3n − 4, linearly

independent solutions over the field of real numbers. These solutions can be represented as

uk(z) = zk − zk, k = 2, 3, ..., n− 1,

ũk(z) = i((zk − zk)− k(z − z)zk−1), k = 2, 3, ..., n,

vk(z) = (z − z)zk, k = 0, 1, , ..., n− 2. (24)

Proof. For the function u(x+ iy) ∈ L1(ρ), if α = 0, 1, it is necessary that |u(x+ iy)| = o(1)

for |x| → ∞. It is possible only if in (23) m0 = 1, m1 = 0. Therefore in this case

u(x + iy) = 2a′1iy. But this function doesn’t satisfy the condition (2), so a) is proved. By

the same way we have |un(x + iy)| = yO|x|n−1, un(x + iy) /∈ L1(ρ). Therefore un(x + iy)

doesn’t satisfy the homogeneous conditions (2), (3). The proof of therem is completed. �

4 Investigation of a non homogeneous problem.

4.1. The case of noninteger α.

Theorem 3 The problem (1) - (3) has a solution for any functions f0(x), f ′0(x) ∈ L1(ρ),

f1(x) ∈ L1(ρ). General solution can be represented as

u(z) = u0(z) + u1(z), (25)

where u0(z) is the general solution of the homogeneous problem, and u1(z) = ϕ1(z)+yψ1(z)+

ω1(z), where

ϕ1(z) =
(z + i)n

2πi

∫ ∞
−∞

f0(t)dt

(t+ i)n(t− z)
(26)

ω1(z) =
(z − i)n

2πi

∫ ∞
−∞

f0(t)dt

(t− i)n(t− z)
(27)

ψ1(z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

+
(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
− iϕ′(z)− iω′(z). (28)
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Proof. We must prove that the function from (25) is a solution of the problem (1)-(3).

Taking into account theorem 2, it is sufficient to show that the function u1(z) satisfies the

statement. For this purpose let’s consider the boundary-value problem in class of analytic

functions in the upper half-plane.

lim
y→+0

‖ϕ(x+ iy) + ω(x+ iy)− f0(x)‖L1(ρ) = 0, (29)

lim
y→+0

‖Re(iϕ′(x+ iy) + ψ(x+ iy) + ω′(x+ iy))− f1(x)‖L1(ρ) = 0. (30)

Let ω−(z) = −ω(z̄). From (29) we have

lim
y→+0

‖ϕ(x+ iy)− ω−(x− iy)− f0(x)‖L1(ρ) = 0.

This problem by [8] has a solution for any function f0(x) ∈ L1(ρ), and the solution is

represented in the form

ϕ(z) =
(z + i)n

2πi

∫ ∞
−∞

f0(t)dt

(t+ i)n(t− z)
+ P0(z), (31)

ω(z) =
(z − i)n

2πi

∫ ∞
−∞

f0(t)dt

(t− i)n(t− z)
− P0(z), (32)

where P0(z) is a purely imaginary polynomial of order n. Denoting Ψ+(z) = iϕ′(z) +ψ(z) +

iω′(z), z ∈ Π+, Ψ−(z) = −Ψ(z̄), z ∈ Π−, we get from (30)

lim
y→+0

‖Ψ(x+ iy)−Ψ−(x− iy)− 2f1(x)‖L1(ρ) = 0.

Using again the results of paper [8] we get

Ψ(z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

+
(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
+ P1(z), (33)

where the coefficients of the polynomial P1(z) are purely imaginary numbers. The functions

ϕ(z), ω(z), from (31) (32), and the function

ψ(z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

+
(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
− iϕ′(z)− iω′(z) + P1(z)

are the solution of the problem (29), (30). By lemmas 3 and 4

lim
y→+0

y‖ψ(x+ iy)‖L1(ρ) = 0, (34)

lim
y→+0

y‖ψ′(x+ iy)‖L1(ρ) = 0, (35)

the functions (31), (32), and (33) are the solution of the problem (16), (17), implying that

u1(z) satisfies conditions (2), (3). The theorem is proved. �
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4.2. The case, if α is integer.

Lemma 5 Let α = n be a natural number, f1(x) be a finite function, then u(z) = ϕ1(z) +

yψ̃1(z) + ω1(z) + u0(z) is the solution of the problem (1)-(3). Here u0(z) is the solution of

the homogeneous problem, ϕ1(z), ω1(z) are determined by formulas (26), (27), and ψ̃1(z) =

ψ1(z) + A0(z − z̄)zn−1, where ψ1(z) is determined by formula (28), and

A0 =
1

2πi

∫ ∞
−∞

f1(t)

(
1

(t+ i)n
+

1

(t− i)n

)
dt. (36)

Proof. Assume thatA0 = 0. We prove that in this case the function u1(z) = ϕ1(z)+yψ1(z)+

ω1(z), where ϕ1(z), ω1(z), ψ1(z) are determined by formulas (26), (27), (28), satisfies (2)

and (3). Since

lim
y→+0

‖ϕ(x+ iy) + ω(x+ iy)− f0(x)‖L1(ρ) = 0,

it is sufficient to prove that

lim
y→+0

y‖ψ1(x+ iy)‖L1(ρ) = 0. (37)

Taking into account equalities

lim
y→+0

y‖ϕ′1(x+ iy)‖L1(ρ) = lim
y→+0

y‖ω′1(x+ iy)‖L1(ρ) = 0,

we prove

lim
y→+0

y‖ψ2(x+ iy)‖L1(ρ) = 0, (38)

where

ψ2(z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
. (39)

If f1(x) is a finite function, then the function ψ2(z) is analytic out of segment [−A;A], A > 0

and the Laurent series of this function in the vicinity of an infinity has the form

ψ2(x+ iy) = A0z
n−1 + . . . ,

where A0 is determined by formula (36). The assumption A0 = 0 implies

ψ2(x+ iy) = A1(x+ iy)n−2 + A2(x+ iy)n−3 + . . . ,

and |ψ2(x+ iy)| ≤ C0|x|n−2, y ∈ [0; 1], |x| > 2A, for some constant C0 > 0. Therefore

lim
y→+0

y

∫
|x|>2A

|ψ2(x+ iy)|ρ(x)dx = 0.

Taking into account equality

lim
y→+0

y

∫
|x|<2A

|ψ2(x+ iy)|ρ(x)dx = 0,
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we get (38) (if A0 = 0). Now let A0 6= 0. Let’s prove that the solution of problem (1)-(3) is

the function

u1(z) = ϕ1(z) + yψ1(z) + ω1(z) +
A0i

2
vn−1(z), (40)

where vn−1(z) = (z − z̄)zn−1. As

yψ2(z) +
A0i

2
vn−1(z) = y

(
ψ2(z)− A0z

n−1
)
,

and in the vicinity of a infinity |ψ2(z)− A0z
n−1| = O (|z|n−2), now in a similar way

lim
y→+0

‖yψ2(x+ iy) +
A0i

2
vn−1(x+ iy)‖L1(ρ) = 0.

The lemma is proved. �

Theorem 4 Let α be a natural number that is more than 1. In this case the problem (1)-(3)

has a solution for any functions f0(x), f ′0(x) ∈ L1(ρ), f1(x) ∈ L1(ρ). The general solution

may be represented in the form

u(z) = ϕ1(z) + yψ̃1(z) + ω1(z) + u0(z)

Here u0(z) is the general solution of the homogeneous problem, ϕ1(z), ω(z) are determined

by formulas (26), (27), and ψ̃1(z) = ψ1(z) + A0(z − z̄)zn−1, where ψ1(z) is determined by

formula (28), and A0 by formula (36).

Proof. Let A0 = 0. Let’s prove that function

u1(z) = ϕ1(z) + yψ1(z) + ω1(z),

where ϕ1(z), ω1(z), ψ1(z) are determined by formulas (26), (27), (28), satisfies conditions

(2) and (3). We have

lim
y→+0

‖ϕ(x+ iy) + ω(x+ iy)− f0(x)‖L1(ρ) = 0,

therefore it is sufficient to prove that

lim
y→+0

y‖ψ1(x+ iy)‖L1(ρ) = 0. (41)

Taking into account

lim
y→+0

y‖ϕ′1(x+ iy)‖L1(ρ) = lim
y→+0

y‖ω′1(x+ iy)‖L1(ρ) = 0,

(41) can be replaced with

lim
y→+0

y‖ψ2(x+ iy)‖L1(ρ) = 0, (42)

where

ψ2(z) = Ψ2(f1 : z) =
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=
(z + i)n

2πi

∫ ∞
−∞

f1(t)dt

(t+ i)n(t− z)
+

(z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
.

Now

Ψ2(f1 : z) = I1(f1 : z) + I2(f1 : z),

where

I1(f1 : z) =
(z + i)n − (z − i)n

2πi

∫ ∞
−∞

f1(t)dt

(t− i)n(t− z)
,

I2(f1 : z) =
(z + i)n

2πi

∫ ∞
−∞

f1(t)

(
1

(t+ i)n
+

1

(t− i)n

)
dt

t− z
.

Let’s estimate the norm ‖I1(f1 : z)‖L1(ρ).

y

∫ ∞
−∞
|I1(f1 : x+ iy)|ρ(x)dx <

< Cy

∫ ∞
−∞

1

|x+ i|

∣∣∣∣∫ ∞
−∞

f1(ft)

(t− i)n
dt

t− x− iy

∣∣∣∣ dx ≤
C

∫ ∞
−∞

f1(t)

|t+ i|n

∫ ∞
−∞

ydx

|t− x− iy||x+ i|
dt < C‖f1‖L1(ρ). (43)

Integrating by parts we get

I2(f1 : z) =
(fz + i)n

2πi

∫ ∞
−∞

f̃1(t)
dt

(t− z)2
,

where

f̃1(t) =

∫ t

−∞
f1(τ)

(
1

(τ + i)n
+

1

(τ − i)n

)
dτ.

The function f̃1(t) ∈ L1(ρ) if n = 2, 3, . . . and by lemma 5

lim
y→+0

y‖I2(f1 : x+ iy)‖L1(ρ) = 0. (44)

Now let f1ε(x) ∈ Cδ(−∞; +∞) be a finite function, such that

‖f1ε(x)− f1(x)‖L1(ρ) < ε, (45)∫ ∞
−∞

f1ε(t)

(
1

(t+ i)n
+

1

(t− i)n

)
dt = 0.

Denoting

Ψ2ε(f1ε : z) =
(z + i)n

2πi

∫ ∞
−∞

f1ε(t)dt

(t+ i)n(t− z)
+

+
(z − i)n

2πi

∫ ∞
−∞

f1ε(t)dt

(t− i)n(t− z)

we get

‖Ψ2(f1 : x+ iy)‖L1(ρ) ≤ y‖Ψ2(f1 : x+ iy)−Ψ2ε(f1ε : x+ iy)‖L1(ρ)+

+y‖Ψ2ε(f1ε : x+ iy)‖L1(ρ) ≤ y‖I1(f1 − f1ε : x+ iy)‖L1(ρ)+
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+y‖I2(f1 − f1ε : x+ iy)‖L1(ρ) + y‖Ψ2ε(f1ε : x+ iy)‖L1(ρ) ≤

≤ C‖f1 − f1ε‖L1(ρ) + y‖I2(f1 − f1ε : x+ iy)‖L1(ρ) + y‖Ψ2ε(f1ε : x+ iy)‖L1(ρ).

Since

lim
y→+0

y‖I2(f1 − f1ε : x+ iy)‖L1(ρ) = 0,

and from lemma 5

lim
y→+0

y‖Ψ2ε(f1ε : x+ iy)‖L1(ρ) = 0,

and taking into account (43) and (44), we get (41). Now let A0 6= 0. Let’s prove that the

function

u1(z) = ϕ1(z) + yψ1(z) + ω1(z) +
A0i

2
vn−1(z),

where vn−1(z) = (z − z̄)zn−1 is the solution of the problem (1)-(3). For this purpose let’s

choose the finite function f1ε(x) so that the following equality holds

1

2πi

∫ ∞
−∞

(f1(t)− f1ε(t))

(
1

(t+ i)n
+

1

(t− i)n

)
dt = 0. (46)

If f1(x) substituted by f1(x) − f1ε(x) in statement (3), the problem (1)-(3) will have the

solution u1(z) = ϕ1(z)+yψ1(z)+ω1(z), where ϕ1(z), ω1(z) are determined by formulas (26),

and (27), and ψ1(z) = ψ1(f1 − f1ε : z). For the function f1ε(x) the problem (1)-(3), according

to lemma 5, has a solution, hence the problem (1)-(3) has a solution for the function f1(x),

and this solution may be represented in the from mentioned in the theorem. The theorem

is proved. �

Theorem 5 Let α = 0, 1. If the function f1(x) is such that f̃1(x) ∈ L1(ρ), then the problem

(1)-(3) is uniquely solvable. The solution can be represented by (25), where P0(z) ≡ P1(z) ≡
0.

Proof. Using notation of Theorem th4 and taking into account that f̃1(t) ∈ L1(ρ) we get

lim
y→+0

y‖I2(f1 : x+ iy)‖L1(ρ) = 0

and therefore

lim
y→+0

y‖ψ1(f1 : x+ iy)‖L1(ρ) = 0.

The theorem is proved. �
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