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On some quasi-periodic approximations
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Abstract. Trigonometric approximation or interpolation of a
non-smooth function on a finite interval has poor convergence
properties. This is especially true for discontinuous functions.
The case of infinitely differentiable but non-periodic functions
with discontinuous periodic extensions onto the real axis has at-
tracted interest from many researchers. In a series of works, we
discussed an approach based on quasi-periodic trigonometric ba-
sis functions whose periods are slightly bigger than the length of
the approximation interval. We proved validness of the approach
for trigonometric interpolations. In this paper, we apply those
ideas to classical Fourier expansions.

Introduction

We consider the problem of accurate reconstruction of a smooth but non-
periodic function f on [−1, 1] by the finite number of its Fourier coefficients
{fn}Nn=−N , where

fn =
1

2

∫ 1

−1

f(x)e−iπnxdx.

It is well known (see [1, 2] with references therein) that the solution of the
problem by the truncated Fourier series

SN(f, x) =
N∑

n=−N

fne
iπnx

is noneffective due to slow point-wise convergence on (−1, 1) and the Gibbs
phenomenon at x = ±1 which causes nonuniform convergence on [−1, 1].
Even when f is infinitely differentiable but non-periodic, the maximum con-
vergence rate is

f(x)− SN(f, x) = O

(
1

N

)
, x ∈ (−1, 1), N →∞,
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and
max
x∈[−1,1]

|f(x)− SN(f, x)| = O(1), N →∞.

Similar problems are well-known [1, 3] for accurate reconstruction of a
smooth but non-periodic function f on [−1, 1] by its point-values f(xk) on
a uniform grid {xk} ∈ [−1, 1]. In particular, when

xk =
2k

2N + 1
, |k| ≤ N,

the problem can be reformulated in terms of the discrete Fourier coefficients
{f̌n}Nn=−N , where

f̌n =
1

2N + 1

N∑
k=−N

f(xk)e
−iπnxk .

Similar to the truncated Fourier series, degradation of the convergence due
to non-periodicity exists also for the classical trigonometric interpolation

IN(f, x) =
N∑

n=−N

f̌ne
iπnx.

Different approaches are known for convergence acceleration of the trun-
cated Fourier series or trigonometric interpolation for non-periodic smooth
functions. We refer to [4–17] with references therein for a detailed review of
different methods.

In this paper, we consider a quasi-periodic approach suggested in [18]
for trigonometric interpolations. In a series of works [19–22], we explored
its point-wise and L2(−1, 1)-convergence, and behavior at the endpoints
x = ±1. We named it as quasi-periodic (QP-) interpolation and outlined its
benefits compared to the classical trigonometric interpolation.

More precisely, the QP-interpolation interpolates f ∈ [−1, 1] on the fol-
lowing equidistant grid

xk =
k

N
, |k| ≤ N (1)

and is exact for the following set of quasi-periodic functions

eiπnσx, |n| ≤ N, σ =
2N

2N +m+ 1
, m = 0, 1, . . .

with period 2/σ which tends to 2 as N →∞.
Explicit formula for the QP-interpolation can be derived by the following

simple transformation. Consider a new function f ∗(t) defined on [−σ, σ] by
the following change of variable

f ∗(t) = f

(
t

σ

)
= f(x), x ∈ [−1, 1], t ∈ [−σ, σ], t = σx.
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This implies interpolation of f ∗(t) on the grid

tk = σxk =
2k

2N +m+ 1
, |k| ≤ N,

while interpolating f(x) on the grid (1). Thus, the QP-interpolation actually
interpolates f ∗(t) on the grid tk and is exact for eiπnt, |n| ≤ N .

The main goal of this paper is the application of this idea to convergence
acceleration of the truncated Fourier series.

The paper is organized as follows. Section 1 shortly describes the idea
of the QP-interpolation. Section 2 considers extension of the approach to
the classical Fourier series. Sections 3 and 4 describe different possibilities
of application of the quasi-periodic basis functions to trigonometric approx-
imations. Section 5 proves that the Fourier coefficients of the quasi-periodic
basis functions can be sufficiently well approximated by the classical coef-
ficients. Section 6 makes conclusions, and Section 7 refers to some future
works.

1 Quasi-Periodic Approximation

Assume f is a smooth but non-periodic function on [−1, 1] such that

f ∈ Ck[−1, 1], k ≥ 0, f(1) 6= f(−1).

We consider extension f ∗ of f on a bigger interval [−1, 1] ⊂ [−a, a] for some
a > 1:

f ∗(x) =


fleft(x), x ∈ [−a,−1),

f(x), x ∈ [−1, 1],

fright(x), x ∈ (1, a].

Now, f ∗ can be approximated by the truncated Fourier series on the interval
[−a, a]

S∗N(f, x) =
N∑

n=−N

f ∗ne
iπnx
a ,

where

f ∗n =
1

2a

∫ a

−a
f ∗(x)e−

iπnx
a dx.

If the extension onto the interval [−a, a] is performed such that f ∗ ∈ Ck[−a, a]
and

f ∗(j)(a) = f ∗(j)(−a), j = 0, . . . , k,

then the approximation S∗N(f, x) on [−1, 1] will be more precise compared
to SN(f, x).
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Below, we discuss different approaches for function extensions. Follow-
ing the idea of the QP-interpolation, we take (although other values for
parameter a can be considered)

a =
1

σ
=

2N +m+ 1

2N

and write S∗N(f, x) and f ∗n as follows

SN,m(f, x) =
N∑

n=−N

Fn,me
iπnσx, m = 0, 1, . . . ,

where

Fn,m =
σ

2

∫ 1
σ

− 1
σ

f ∗(x)e−iπnσxdx.

Then, we rewrite Fn,m as follows

Fn,m =
σ

2

∫ −1

− 1
σ

fleft(t)e
−iπnσtdt+ fn,m +

σ

2

∫ 1
σ

1

fright(t)e
−iπnσtdt, (2)

where

fn,m =
σ

2

∫ 1

−1

f(t)e−iπnσtdt. (3)

Note that m = −1 corresponds to σ = a = 1, and SN,−1(f, x) coincides
with the truncated Fourier series which can be used for periodic functions.

Further, we will discuss approaches for calculating the first and last terms
in (2). Note that the preliminary problem statement was the recovery of a
function defined on [−1, 1] by its finite number of the classical Fourier coeffi-
cients {fn}Nn=−N . However, the QP-approximation requires the knowledge of
the finite number of quasi-periodic coefficients {fn,m}Nn=−N . Another prob-
lem is that the latest depend on N and should be calculated each time when
N is changed. Thus, we will discuss the problem of approximation of the
QP-coefficients via classical Fourier coefficients. The approximation preci-
sion can be controlled by a parameter q and can be selected such that to
preserve the convergence qualities of the QP-approximation.

We will consider two different approaches for a function extension. Next
section discusses extensions based on linear combinations of some functions
like polynomials, quasi-polynomials, etc. Algorithm A considers the simplest
approach and performs extensions by a linear combination of exponential
functions. The unknown coefficients in the linear combination can be found
as a solution of a system of linear equations.

Section 3 considers implicit extensions via values of function f on a
grid outside of [−1, 1] for approximation of the first and last terms of (2)
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by some quadrature formulas. Further, those unknown data values will be
determined from the solution of a system of linear equations. The grid should
be non-uniform in case of Gaussian quadrature (Algorithm B) and uniform
(Algorithm C) while using more simple rules. Algorithm C allows an explicit
solution of the corresponding system with the Vandermonde matrix. As a
result, we get an explicit formula for the QP-approximation which allows
investigation of its convergence more accurately.

2 Extensions by a Linear Combination of Sup-

porting Functions

Let fn,m, |n| ≤ N be known. Let ψ(j, x), j = 0, . . . ,m be a system of
continuous functions defined on [−1/σ, 1/σ] and

ψ−n,m(j) :=
σ

2

∫ −1

−1/σ

ψ(j, x)e−iπnσxdx,

and

ψ+
n,m(j) :=

σ

2

∫ 1/σ

1

ψ(j, x)e−iπnσxdx.

We call ψ(j, x) supporting functions for the corresponding QP-approxima-
tion. Let us consider the following left and right extensions for f as some
linear combinations of the supporting functions:

fleft(x) =
m∑
j=0

cleftj ψ(j, x),

and

fright(x) =
m∑
j=0

crightj ψ(j, x).

Then, according to (2), we can rewrite coefficients Fn,m as follows

Fn,m =
m∑
j=0

cleftj ψ−n,m(j) + fn,m +
m∑
j=0

crightj ψ+
n,m(j). (4)

We propose the determination of the unknown coefficients cleftj and crightj ,
j = 0, . . . ,m from the following system of linear equations

Fn,m = 0, |n| = N −m, . . . , N, (5)

assuming that the set of supporting functions {ψ(j, x)}mj=0 is selected such
that the system has a unique solution. By vanishing the last Fourier co-
efficients, we hope that the corresponding extension will be periodic and
relatively smooth to accelerate the convergence of the QP-approximation.
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2.1 Algorithm A

Let
ψ(j, x) = eαjx, j = 0, . . . ,m,

where αj, j = 0, . . . ,m should be chosen such that the corresponding system
(5) has a unique solution. It means that

fleft(x) =
m∑
j=0

cleftj eαjx, fright(x) =
m∑
j=0

crightj eαjx.

Below, we select them as αj = (j+1)/10, j = 0, . . . ,m. Taking into account
that coefficients ψ±n,m(j) can be calculated explicitly, we rewrite (4) as follows

Fn,m = fn,m +
σ

2

m∑
j=0

cleftj

αj − iπnσ

[
e−αjeiπnσ − e−

αj
σ (−1)n

]
+
σ

2

m∑
j=0

crightj

αj − iπnσ

[
e
αj
σ (−1)n − eαje−iπnσ

]
,

and assume that the coefficients cleftj and crightj , j = 0, . . . ,m are defined
from (5).

Throughout the paper, we only experiment with the following specific
function

f(x) = sin(x− 1), x ∈ [−1, 1], (6)

which is infinitely differentiable but non-periodic. Approximation by the
truncated Fourier series is poor with O(N−1) inside the interval and O(1)
on the entire interval as N →∞. Fig. 1 shows the corresponding results for
N = 256 and N = 512. The left graphs correspond to interval [−0.8, 0.8]
and the right graphs to the entire interval [−1, 1].

QP-approximation performs extension of (6) from [−1, 1] to interval
[−1/σ, 1/σ] and approximates the function on the latest interval by the trun-
cated Fourier series. Fig. 2 shows the corresponding extension for N = 512
and m = 7. The blue curve corresponds to the original function and the
red one to its extension. We see that the extension is periodic and almost
smooth. Fig. 3 shows the absolute errors by Algorithm A for function
(6). We see tremendously faster convergence rate compared to the classical
Fourier series inside the interval of approximation. Although, on the entire
interval the convergence rate is still O(1), the constant of the corresponding
asymptotic error is much smaller.

3 Extensions by Unknown Data Points

As we mentioned above, the extensions can also be provided implicitly. It
means that the values of the left and right extensions for some grid points
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(a) Approximation by Truncated Fourier Series (N = 256)
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(b) Approximation by Truncated Fourier Series (N = 512)

Figure 1: Absolute errors by the truncated Fourier series.
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Figure 2: Extension of function (6) corresponding to Algorithm A (N = 512, m = 7).

can be estimated without providing the explicit extensions. Fig. 4 illustrates
this idea, where ±x0, ±x1, . . . ,±xm are some 2m + 2 grid points (uniform
or non-uniform) outside the interval [−1, 1].

We use these values to approximate the integrals in (2) by a quadrature
formulas:

σ

2

∫ 1
σ

1

fright(t)e
−iπnσtdt ≈ σ

2

m∑
j=0

wjfright(xj)e
−iπnσxj ,
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(a) Quasi-periodic approximation by Algorithm A (N = 256, m = 7)
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(b) Quasi-periodic approximation by Algorithm A (N = 512, m = 7)

Figure 3: Absolute errors by Algorithm A.
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Figure 4: Extension of f ∈ [−1, 1] by an unknown grid.

and

σ

2

∫ −1

− 1
σ

fleft(t)e
−iπnσtdt ≈ σ

2

m∑
j=0

wjfleft(−xj)eiπnσxj .

Now, we rewrite (2) as follows:

Fn,m = fn,m +
σ

2

m∑
j=0

wjfright(xj)e
−iπnσxj +

σ

2

m∑
j=0

wjfleft(−xj)eiπnσxj .

We denote fleft(−xj) and fright(xj) by cleftj and crightj , respectively, and find
them from the following system of linear equations

Fn,m = 0, |n| = N −m, . . . , N,
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or
σ

2

m∑
j=0

wjc
left
j eiπnσxj +

σ

2

m∑
j=0

wjc
right
j e−iπnσxj = −fn,m

assuming that wj and xj are chosen appropriately.

3.1 Algorithm B: Nonuniform Grid for the Gaussian
Quadrature

The most accurate should be the Gaussian quadrature with the correspond-
ing non-uniform grid. In particular, we apply the well known Gauss-Legendre
quadrature rule with (m+1) points, where xj is the j-th root of the Legendre
polynomial Pm+1(x), i.e.,

Pm+1(xj) = 0, j = 0, . . . ,m,

and

wj =
2

(1− xj)2[Pm+1
′(xj)]2

, j = 0, . . . ,m.

Fig. 5 shows the extension of (6) according to Algorithm B for N = 512,
m = 7. Fig. 6 shows the absolute errors with N = 256 and N = 512 for
the same function. The results are similar to the ones of Algorithm A for
[−0.8, 0.8] and [−1, 1].
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-0.2

Figure 5: Extension of (6) by Algorithm B (N = 512, m = 7).

3.2 Algorithm C: Uniform Grid for the Rectangle Rule

The idea is similar to Algorithm B, but instead of he Gauss-Legendre quadra-
ture, we apply the simplest rectangle rule with the uniform grid

xj =
2N + j

2N
, j = 0, . . . ,m,



10 ARNAK POGHOSYAN, LUSINE POGHOSYAN, RAFAYEL BARKHUDARYAN

-0.8 0.8

1.×10-15

2.×10-15

3.×10-15

4.×10-15

-1 1

0.0005

0.0010

0.0015

(a) Quasi-periodic approximation by Algorithm B (N = 256, m = 7)
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(b) Quasi-periodic approximation by Algorithm B (N = 512, m = 7)

Figure 6: Absolute errors by the Algorithm B for function (6).

and weights

wj =
1

2N
, j = 0, . . . ,m.

Further,

Fn,m = fn,m +
σ

2

1

2N

m∑
j=0

fleft(−x∗j)eiπnσx
∗
j +

σ

2

1

2N

m∑
j=0

fright(x
∗
j)e
−iπnσx∗j ,

where

x∗j =
2N + j

2N
+

1

4N
, j = 0, . . . ,m.

Denoting

cleftj =
σ

2

1

2N
fleft(−x∗j), c

right
j =

σ

2

1

2N
fright(x

∗
j),

we get the following system of linear equations

m∑
j=0

cleftj eiπnσx
∗
j +

m∑
j=0

crightj e−iπnσx
∗
j = −fn,m, |n| = N −m, . . . , N. (7)
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The solutions {cleftj } and {crightj } of system (7) will lead to the modified
coefficients

Fn,m = fn,m +
m∑
j=0

cleftj eiπnσx
∗
j +

m∑
j=0

crightj e−iπnσx
∗
j .

Fig. 7 shows the extension of the function (6) corresponding to Algo-
rithm C for N = 512 and m = 7. Fig. 8 shows the absolute errors while
approximating the same function by Algorithm C for N = 256, N = 512 and
m = 7. Although the extension is periodic, but visually the smoothness is
smaller compared to the previous extensions. As a result, the absolute errors
are worse compared to the corresponding absolute errors of Algorithms A
and B.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

Figure 7: Extension of (6) according to Algorithm C (N = 512, m = 7).

However, approximation by Algorithm C has several benefits. Firstly, we
will show that system (7) has Vandermonde matrix leading to the uniqueness
of the corresponding solution. Secondly, the Vandermonde matrix leads
to the explicit solution of the system and to the explicit form of the QP-
approximation. Thirdly, fast and robust algorithms for calculation of the
corresponding inverse matrix allow fast implementation even for big values
of m. Fourthly, Algorithm C will help to estimate the convergence rate of
the corresponding QP-approximation while it should be more problematic
for Algorithms A and B.

Let us show the explicit solution of the system with the Vandermonde
matrix. We have for ` = 0, . . . ,m


m∑
k=0

crightk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

cleftk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −fN−`,m,
m∑
k=0

crightk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
m∑
k=0

cleftk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −f−N+`,m.
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(a) Quasi-periodic approximation by Algorithm C (N = 256, m = 7)
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(b) Quasi-periodic approximation by Algorithm C (N = 512, m = 7)

Figure 8: Absolute errors by Algorithm C.

After changing the summation orders of the second sums, we get

m∑
k=0

crightk e−
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
2m+1∑
k=m+1

cleft2m+1−ke
− iπ(N−`)(2N+k+1

2 )

2N+m+1 = −fN−`,m,

m∑
k=0

crightk e
iπ(N−`)(2N+k+1

2 )

2N+m+1 +
2m+1∑
k=m+1

cleft2m+1−ke
iπ(N−`)(2N+k+1

2 )

2N+m+1 = −f−N+`,m.

Let us denote

crightk = ck, k = 0, . . . ,m

and

ck = cleft2m+1−k, k = m+ 1, . . . , 2m+ 1.

Then, we rewrite the system for ` = 0, . . . ,m
2m+1∑
k=0

cke
− iπ(N−`)k

2N+m+1 = −e
iπ(N−`)(2N+1

2 )

2N+m+1 fN−`,m,

2m+1∑
k=0

cke
iπ(N−`)k
2N+m+1 = −e−

iπ(N−`)(2N+1
2 )

2N+m+1 f−N+`,m,
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with the following Vandermonde matrix
V`,k = e−

iπ(N−`)k
2N+m+1 , ` = 0, . . . ,m; k = 0, . . . , 2m+ 1,

V`,k = e
iπ(N−`+m+1)k

2N+m+1 , ` = m+ 1, . . . , 2m+ 1; k = 0, . . . , 2m+ 1.

Denoting

α` = e−
iπ(N−`)
2N+m+1 , β` = e

iπ(N−`)
2N+m+1 ,

we obtain the inverse matrix

V −1
k,` = −

∑k
j=0 γjα

j
`

αk+1
`

m∏
i=0

(α` − βi)
m∏
i=0
i 6=`

(α` − αi)
,

` = 0, . . . ,m; k = 0, . . . , 2m+ 1,

V −1
k,` = −

∑k
j=0 γjβ

j
`−m−1

βk+1
`−m−1

m∏
i=0

i 6=`−m−1

(β`−m−1 − βi)
m∏
i=0

(β`−m−1 − αi)
,

` = m+ 1, . . . , 2m+ 1; k = 0, . . . , 2m+ 1,

where γj are the coefficients of the polynomial

m∏
i=0

(x− αi)
m∏
i=0

(x− βi) =
2m+2∑
j=0

γjx
j.

Finally, we get the following explicit form for the coefficients Fn,m

Fn,m = fn,m −
2m+1∑
k=0

e−
iπn(2N+k+1

2 )

2N+m+1

×

(
m∑
`=0

V −1
k,` e

iπ(N−`)(2N+1
2 )

2N+m+1 fN−`,m

+
m∑
`=0

V −1
k,`+m+1e

− iπ(N−`)(2N+1
2 )

2N+m+1 f−N+`,m

)
.

4 Approximation of the Quasi-Periodic Fourier

Coefficients by the Classical Ones

The main goal was reconstruction of a function on [−1, 1] by a finite num-
ber of its Fourier coefficients {fn}Nn=−N . However, the QP-approximation
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deals with Fourier quasi-periodic coefficients {fn,m}Nn=−N . In this section,
we discuss the problem of approximation of the quasi-periodic Fourier coef-
ficients by their classical counterparts. We consider the Lanczos representa-
tion [4, 5, 23] for this purpose.

Let f ∈ Cq[−1, 1], q ≥ 0. By Ak(f) denote the exact value of the jump
in the k-th derivative of f at the endpoints

Ak(f) = f (k)(1)− f (k)(−1), k = 0, . . . , q.

Consider the following representation of the approximated function

f(x) = Φ(x) +

q−1∑
k=0

Ak(f)Bk(x), (8)

where Bk are 2-periodic extensions of the Bernoulli polynomials with the
Fourier coefficients

Bn(k) =


0, n = 0,

(−1)n+1

2(iπn)k+1
, n = ±1,±2, . . .

and Φ is a 2-periodic function on the real line with the Fourier coefficients

Φn = fn −
q−1∑
k=0

Ak(f)Bn(k).

Note that f(x) ≡ Φ(x) for x ∈ [−1, 1] when q = 0. Note also that the
smoothness of Φ on the real line is directly connected with the value of q.
More precisely, if f ∈ Cq[−1, 1] and A0(f) 6= 0, then Φ ∈ Cq−1(R).

Lanczos representation (8) leads to the following approximation of fn,m

fn,m ≈ f̃n,m = σ

N∑
s=−N

Φs
sin π(s− nσ)

π(s− nσ)
+

q−1∑
k=0

Ak(f)Bσ
n,m(k),

where

Bσ
n,m(k) =

σ

2

∫ 1

−1

Bk(x)e−iπnσxdx

are the Fourier quasi-periodic coefficients of the Bernoulli polynomials. Worth
noting that the latest can be derived explicitly as follows

Bσ
n,m(0) = −cos πnσ

2iπn
+

sin πnσ

2in2π2σ
, n 6= 0,

Bσ
n,m(1) = − sin πnσ

2n3π3σ2
+

cosπnσ

2n2π2σ
+

sin πnσ

6nπ
, n 6= 0,
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and so on. Also note that Bσ
0,m(k) = 0 as the Bernoulli coefficients are

defined such that ∫ 1

−1

Bk(x)dx = 0, k = 0, 1, . . .

Let
En,m(f,N) = fn,m − f̃n,m.

Next theorem estimates En,m(f,N) assuming that the exact jumps are known.

Theorem 1 Let f (q+1) ∈ AC[−1, 1], q ≥ 0. Then the following asymptotic
expansion holds as N →∞ and |n| ≤ N :

En,m = Aq(f)
σ sin πnσ

πq+2iq+1N q+1

∞∑
t=0

(nσ
N

)2t 1

2t+ q + 1
+ o(N−q−1) (9)

for even values of q, and

En,m = Aq(f)
σ sin πnσ

πq+2iq+1N q+1

∞∑
t=0

(nσ
N

)2t+1 1

2t+ q + 2
+ o(N−q−1) (10)

for odd values of q.

Proof. The following asymptotic expansions hold for the classical Fourier
coefficients fn and Φn

fn =

q−1∑
k=0

Ak(f)Bk,n + Aq(f)
(−1)n+1

2(iπn)q+1
+ o(n−q−1), n→∞,

and

Φn = Aq(f)
(−1)n+1

2(iπn)q+1
+ o(n−q−1), n→∞.

The last expansion leads to the following asymptotic estimate for the error

En,m =
σ

π
sin πnσ

∑
|s|>N

Φs
(−1)s+1

s− nσ

= Aq(f)
σ sinπnσ

2iq+1πq+2

∑
|s|>N

1

sq+1(s− nσ)
+ o(N−q−1), |n| ≤ N. (11)

Let us estimate the infinite series on the right-hand side of (11). Applying
differentiation with respect to a parameter, we get

SN(n) :=
∑
|s|>N

1

sq+1(s− nσ)

=

q∑
j=0

(−1)j − 1

(nσ)q−j+1

∞∑
s=N+1

1

sj+1
+

2

(nσ)q

∞∑
s=N+1

1

s2 − n2σ2
.
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Let q be even. The following asymptotic estimates hold as N →∞

SN(n) = − 2

(nσ)q

q
2
−1∑
j=0

(nσ)2j

∞∑
s=N+1

1

s2j+2
+

2

(nσ)q

∞∑
j=0

(nσ)2j

∞∑
s=N+1

1

s2j+2

=
2

N q+1

∞∑
j= q

2

(nσ
N

)2j−q
(
N2j+1

∞∑
s=N+1

1

s2j+2

)

=
2

N q+1

∞∑
j= q

2

(nσ
N

)2j−q
(

1

2j + 1
+O

(
1

N

))

=
2

N q+1

∞∑
t=0

1

2t+ q + 1

(nσ
N

)2t

+O

(
1

N q+2

)
,

which concludes the proof of (9). Similarly, for the odd values of parameter
q, we have

SN(n) =
2

N q+1

∞∑
j= q−1

2
+1

(nσ
N

)2j−q
(
N2j+1

∞∑
s=N+1

1

s2j+2

)

=
2

N q+1

∞∑
j= q−1

2
+1

(nσ
N

)2j−q
(

1

2j + 1
+O

(
1

N

))

=
2

N q+1

∞∑
t=0

1

2t+ q + 2

(nσ
N

)2t+1

+O

(
1

N q+2

)
,

which concludes the proof of (10). �

Fig. 9 shows the accuracies of approximations for different values of
N , m and q in logarithmic scale (see (6)). According to Theorem 1, as
bigger is the value of q, the more precise is the approximation of the quasi-
periodic coefficients. The accuracy of the approximation depends on the
parameter q. Its value should be selected such that the approximation of
the quasi-periodic coefficients does not degrade the convergence properties
of the QP-approximation.

Fig. 10 shows the graphs of absolute errors by algorithm A with approx-
imate quasi-periodic coefficients. The top graphs of Fig. 10 corresponds to
the approximations with q = 0. In this case, the quality of the approxima-
tion by Algorithm A is heavily impacted by the poor approximation of the
coefficients. The middle graphs correspond to q = 1 and show better per-
formance, although they are still far from the quality of the approximation
with the exact coefficients. Only the bottom graphs corresponding to q = 2
have the same performance as Algorithm A with the exact coefficients. As
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Figure 9: Values of max
|n|≤N

|En,m(f,N)| for f(x) = sin(x− 1) in logarithmic scale.

it was expected, the accuracy can be improved by increasing q and similar
results can be obtained as in case of exact coefficients.

Assume that the acceptable value of parameter q = q0 is selected. The
next milestone is an approximation of jumps Ak(f) when they are unknown.
Approximations can be derived from the following system of linear equations
(see [24] with references therein)

fn =

q0−1∑
k=0

Ãk(f)Bn(k), n = ±N,±(N − 1), · · · . (12)

According to the results of [24]

Ak(f)− Ãk(f) = O

(
1

N q0−k

)
, k = 0, . . . , q0 − 1.

Then,

Φn = fn −
q0−1∑
k=0

Ãk(f)Bn(k) =

q0−1∑
k=0

(
Ak(f)− Ãk(f)

)
Bn(k)

+ Aq0(f)
(−1)n+1

2(iπn)q0+1
+ o(n−q0−1), n→∞, (13)

which can be used in (11). The first term in the right-hand side of (13) is of
the order O(N−q0−1) when |n| > N . The same order has the second term.
It means that the convergence rate of Theorem 1 will remain valid, but with
another constant of the asymptotic error. To get the same constant, we
need to approximate jumps by system (12) with q = q0 +1 and drop the last
jump.

5 Some Extensions

Up to now, it was assumed that the parameter m in the QP-approximations
was fixed. As all three Algorithms A, B, and C require solution of systems
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Figure 10: Absolute errors while approximating f(x) = sin(x− 1) by Algorithm A with
approximate quasi-periodic coefficients.

of linear equations with 2m+ 2 unknowns, it is reasonable to keep m small
to deal with systems of small sizes. However, explicit solution of the system
of Algorithm C via the inverse of the Vandermonde matrix allows utilization
of large values of m which will provide with improved accuracy away from
the singularities x = ±1.

A practical solution can also be achieved by using the well-known Björk-
Pereyra algorithm [25]. This O((2m+2)2)–algorithm has a number of bene-
ficial properties. In particular, under certain mild hypotheses [26], the mag-
nitude of the corresponding numerical errors depends only on the machine
precision used and is independent of the condition number of the matrix.
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Thus, either using the explicit formulas or the mentioned algorithm, m can
be tended to infinity together with N .

Quasi-periodicity requires limiting m by the condition m = o(N). We
experiment with m = [

√
N ] (integer part), and the corresponding results

show in Fig. 11 for function (6). For each graph, we show the value of N
and the corresponding value of m. The left column of the figure corresponds
to the results for interval [−0.8, 0.8]. We see benefits of the quasi-periodic
approach. The right column shows the behavior of the absolute errors around
the point x = 1. We detected identical behavior around the point x =
−1. Although, the error is not decreasing much while m is increasing, it is
obviously affecting the L2-error.

Another opportunity for improving the convergence is application of the
polynomial correction approach to the QP-approximations. Paper [27] de-
scribes this approach for the QP-interpolations. Our experiments show that
it similarly works for the QP-approximations.

The convergence of the QP-interpolation [22] depends on the following
property of differentials

f (k)(−1) = f (k)(1) = 0, k = 0, . . . , q − 1. (14)

It means that for an arbitrary f which does not satisfy (14), a polynomial
should be subtracted such that a new function satisfies (14). In [27], the
following decomposition was considered

f(x) = G(x) +

q−1∑
k=0

A−k (f)µk,q(x) +

q−1∑
k=0

A+
k (f)νk,q(x), (15)

where

A−k (f) = f (k)(1)− f (k)(−1), A+
k (f) = f (k)(1) + f (k)(−1),

and polynomials µk,q(x) and νk,q(x) (see [27]) are such that

G(k)(1) = G(k)(−1) = 0, k = 0, . . . , q − 1.

Function G can be successfully approximated by the QP-approximation. We
denote the corresponding QP-approximation by SN,m,q(f, x):

SN,m,q(f, x) = SN,m(G, x) +

q−1∑
k=0

A−k (f)µk,q(x) +

q−1∑
k=0

A+
k (f)νk,q(x).

For the realization of the approximation SN,m(G, x), the Fourier quasi-
periodic coefficients of G can be computed from (15).
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Figure 11: Absolute errors by Algorithm C for different values of m = [
√
N ]. The left

figures correspond to interval [−0.8, 0.8] and the right ones to interval [−1, 1].



ON SOME QP-APPROXIMATIONS 21

Since the exact values of jumps A−k (f) and A+
k (f) are unknown, the

corresponding approximations can be derived from the following system of
linear equations

Gn,m = 0, |n| = N − q + 1, . . . , N,

where Gn,m are the quasi-periodic coefficients of G.
Figs. 12 and 13 show the absolute errors by SN,m,q for q = 1 and q = 2,

respectively (see (6)). As in Fig. 11, we took m = [
√
N ]. Comparison of

the figures shows that polynomial corrections improve the convergence not
only away from the singularities x = ±1, but also for the entire interval.

For example, let us consider the graphs corresponding to N = 4096 and
m = 64.

The absolute error on interval [−0.8, 0.8] for the QP-approximation is
4×10−105. After the polynomial correction with q = 1, the error is 7×10−129.
After the polynomial correction with q = 2, the error is 1.5× 10−135.

The absolute error on interval [−1, 1] for the QP-approximation is 0.003.
We saw that it was impossible to improve neither by increasing N nor m.
After the polynomial correction with q = 1, the error is 8× 10−27. After the
polynomial correction with q = 2, the error is 2× 10−33.

6 Conclusion

The problem considered in the paper is in a function reconstruction on a fi-
nite interval by the finite number of its Fourier coefficients. Natural approach
of reconstruction can be application of the truncated Fourier series which
uses periodic trigonometric basis functions whose periods exactly match the
length of the approximation interval. Those approximations are very power-
ful for functions whose periodic extensions from a finite interval onto the real
axis are smooth or, preferably, infinitely differentiable. As a result, those
expansions have poor convergence properties for infinitely differentiable but
non-periodic functions with unequal values at the endpoints of the interval
of approximation

f(−1) 6= f(1).

QP-approximation considers trigonometric expansions with “basis” func-
tions whose periods are slightly bigger than the length of the interval of the
approximation

period = 2/σ = 2 +
m+ 1

N
→ 2, N →∞.

Thus, they diminish the affect of the mentioned non-periodicity and result in
better convergence properties away from the endpoints. At the endpoints,
the convergence rate is O(1), N → ∞ as in the case of classical Fourier
expansions, however the constant of the asymptotic error is smaller. For
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Figure 12: Absolute errors by Algorithm C after the polynomial correction for different
values of m = [

√
N ] and q = 1. The left figures correspond to interval [−0.8, 0.8] and the

right ones to interval [−1, 1].
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Figure 13: Absolute errors by Algorithm C after the polynomial correction for different
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QP-approximation, approximated functions should be extended from [−1, 1]
to a slightly bigger interval whose length matches the period of the “basis”
functions. Those extensions can be provided differently which lead to Algo-
rithms A, B, and C. Extensions require a solution of some systems of linear
equations that lead to almost smooth and periodic extensions. In the case of
Algorithm C, the system has the Vandermonde matrix, and the uniqueness
of the corresponding solution is easy to prove. In case of Algorithms A and
B, we have only experimental validation of the approaches.

7 Future Work

The investigation of the convergence of Algorithms A, B, and C should be
the next. For fair comparisons, it is better to have asymptotically exact esti-
mates for the corresponding convergence rates. Most likely, those estimates
will be derived for Algorithm C which has almost explicit formulation in
terms of the inverse of the Vandermonde matrix. Investigations should be
performed both for the entire interval of the approximation and away from
the endpoints. The application of all these ideas to the modified trigono-
metric basis, which was intensively investigated in a series of papers [28–32],
is also interesting.
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