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Abstract

The goal of this note is to introduce a new approach to a known problem of finding

estimates for “analytic quazinorms” with Luzin area integral or Luzin cone Γα(ξ) in them,

namely we use new connections between Luzin Area integral and p-Carleson measures and

apply classical interpolation theorems of real analysis to get various new inequalities for

analytic functions in the unit disk and polydisk.
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1 Introduction and notations

Let n ∈ N and Cn = {z = (z1, ..., zn) |zk ∈ C, 1 ≤ k ≤ n} be the n-dimensional space of

complex coordinates. We denote the unit polydisk by

Dn = {z ∈ Cn : |zk| < 1, 1 ≤ k ≤ n}

and the distinguished boundary of Dn by

T n = {z ∈ Cn : |zk| = 1, 1 ≤ k ≤ n}.

We use dm2n to denote the volume measure on Dn and dmn to denote the normalized

Lebesgue measure on T n. If z ∈ Dn, β = (β1, · · · , βn), we denote (1 − |z|2)β by
∏n

k=1(1 −
|zk|2)βk . Let H(Dn) be the space of all holomorphic functions on Dn. When n = 1, we simply

denote D1 by D, T 1 by T . We note that in polydisk the following fractional derivative is

well studied(see, e.g.[5]),

(Dαf)(z) =
∑

k1,...,kn≥0

(k1 + 1)α · · · (kn + 1)αak1,...,knz
k1
1 z

kn
n ,
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where α ∈ R, f ∈ H(Dn). We refer to [12] for further details for the knowledge of polydisk.

Let β(z, w) denote the Bergman metric between two points z and w in D. It is well

known that

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

,

where ϕa(z) = (a− z)/(1− az) is the Möbius map of D. For z ∈ D and r > 0 we use

D(z, r) = {w ∈ D : β(z, w) < r}

to denote the Bergman metric ball at z with radius r. If r is fixed, then it can be checked

that the area of D(z, r), denoted by |D(z, r)|, is comparable to (1 − |z|2)2 as z approaches

the unit circle (see, e.g. [8, 18]). For a subarc I ∈ T , let

S(I) = {rζ ∈ D : 1− |I| < r < 1, ζ ∈ I}.

If |I| ≥ 1, then we set S(I) = D. Let µ denote a positive Borel measure on D. For

0 < p <∞, we say that µ is a p-Carleson measure on D if

sup
I⊂T

µ(S(I))/|I|p <∞.

Here and henceforth supI⊂T indicates the supremum taken over all subarcs I of T . Note

that p = 1 gives the classical Carleson measure. The p-Carleson measures in the unit disk

was studied intensively recently, see [15, 16] and references there.

Let L0(dm) be the space of complex-valued measure functions on T . For s ≥ 0 and

f ∈ L0(dm), denote the distribution function by

λf (s) = m({ξ ∈ T : |f(ξ)| > s})

and the decreasing rearrangement of |f | by

f ∗(s) = inf({t ≥ 0 : λf (t) ≤ s}).

Let 0 < p, q ≤ ∞ and f ∈ L0(dm). Then Lorentz functional ‖ · ‖p,q is defined at f by

‖f‖p,q =
(∫ 1

0

[f ∗(s)s
1
p ]q
ds

s

)1/q

and

‖f‖p,∞ = sup
s≥0

f ∗(s)s
1
p .

Let 0 < p, q ≤ ∞. Denote as usual by Lp,q(dm) the Lorentz space(see, e.g. [1, 9]), i.e.

Lp,q(dm) =

{
f ∈ L0(dm) : ‖f‖p,q <∞

}
.
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We denote as usual by Hp the Hardy space(see [6]), where

Hp =
{
f ∈ H(D) : ‖f‖pHp = sup

0<r≤1

∫
T

|f(rξ)|pdm(ξ) <∞
}
.

For 0 < p < ∞, α > −1, the weighted Lebesgue space Lp(dmα) on D, consists of those

measure functions f for which

‖f‖pLp(dmα) =

∫
D

|f(z)|p(1− |z|2)αdm2(z) <∞.

We denote by Apα the weighted Bergman space, where Apα = Lp(dmα)
⋂
H(D).

The Hardy spaces on the polydisk, denoted by Hp(Dn)(0 < p ≤ ∞), are defined by

Hp(Dn) = {f ∈ H(Dn) : sup
0≤r<1

Mp(f, r) <∞},

where

Mp
p (f, r) =

∫
Tn
|f(rξ)|pdmn(ξ), M∞(f, r) = max

ξ∈Tn
|f(rξ)|, r ∈ (0, 1), f ∈ H(Dn).

For αj > −1, j = 1, · · · , n, 0 < p < ∞, recall that the weighted Bergman space Ap~α(Dn)

consists of all holomorphic functions on the polydisk satisfying the condition

‖f‖p
Ap
~α

=

∫
Dn
|f(z)|p

n∏
i=1

(1− |zi|2)αidm2n(z) <∞.

For σ > 0, ξ ∈ T , set

Γσ(ξ) = {z ∈ D : |ξ − z| < (σ + 1)(1− |z|)}.

When σ = 1, we simply denote Γσ(ξ) by Γ(ξ). The well-known maximal theorem of classical

Hardy spaces in the unit disk assert(see [8])

‖ sup
z∈Γ(ξ)

|f(z)|p‖L1(dm) ≤ ‖f‖pHp (1)

where 0 < p < ∞, Lp(dm) is a usual Lebesgue space on T . Various generalizations of this

result to the case of unit ball are well-known(see [11, 18]).

The goal of this note to propose a completely new promising approach to such type esti-

mates using connections of so-called Luzin area integral with so called p-Carleson measures

for p < 1. Let us note that ideas of this note can be developed further.

Throughout this paper, constants are denoted by C, they are positive and may differ from

one occurrence to the other. The notation A � B means that there is a positive constant C

such that C−1B ≤ A ≤ CB.
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2 Preliminary

In this section, we state some preliminary result which will be needed for the proof of main

results. The following lemma can be found in [6] or [10].

Lemma 1. Let f ∈ H(D), 0 < q <∞, ξ ∈ T , α > −1. Then∫ 1

0

|f(ρξ)|q(1− ρ)αdρ ≤ C

∫
Γt(ξ)

|f(z)|q(1− |z|)α−1dm2(z).

From Lemma 1 we easily get the following corollary.

Corollary 1. Let f ∈ H(D), ξ ∈ T , 0 < q <∞, α > −1, s ∈ (0,∞). Then

sup
I⊂T

1

|I|s

∫
S(I)

|f(z)|q(1− |z|)αdm2(z)

≤ C sup
I⊂T

1

|I|s

∫
I

∫
Γt(ξ)

|f(z)|q(1− |z|)α−1dm2(z)dm(ξ).

From the above corollary and a result in [2], we get the following lemma.

Lemma 2. Let f ∈ H(D), 0 < q <∞, α > −1, s ∈ (0, 1). Then

sup
I⊂T

1

|I|s

∫
I

∫
Γt(ξ)

|f(z)|q(1− |z|)α−1dm2(z)dm(ξ)

� sup
I⊂T

1

|I|s

∫
S(I)

|f(z)|q(1− |z|)αdm2(z).

The following result can be founded in [14]. For the completeness of the exposition we

will give the short proof of the following lemma 3 from [14].

Lemma 3. Let σt = (σ + 2)e2t − 2, σ > 0, t > 0, ξ ∈ T . Then

D(z, t) ⊂ Γσt(ξ) for all z ∈ Γσ(ξ).

Proof. From [17] we see that the Bergman metric ball D(w, t) is Euclidean disk on C with

center P = 1−τ2

1−|w|2τ2w and radius R = τ(1−|w|2)
1−|w|2τ2 , where τ = e2t−1

e2t+1
. We must show if w ∈ D(z, t)

and z ∈ Γσ(ξ), then w ∈ Γσt(ξ).

Obviously

|ξ − w| ≤ |ξ − z|+ |z − w| ≤ (σ + 1)(1− |w|) + (σ + 2)|z − w|. (2)

It remains to show that |z − w| ≤ C(1− |w|). Since z ∈ D(w, t) is the same as w ∈ D(z, t),

we have

|z − w| ≤ τ(1− |w|2)

1− |w|2τ 2
.
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From (2) it is not difficult to see

|ξ − w| ≤ ((σ + 2)e2t − 1)(1− |w|).

That is exactly what we need.�

Lemma 4. [9] Let f be measurable in T n, 0 < q <∞. Then

‖f‖Lq,∞ �
(

sup
I1⊂T,··· ,
In⊂T

1∏n
k=1 |Ik|1−τ/q

∫
I

· · ·
∫
I

|f(ξ1, · · · , ξn)|τdmn(ξ)
)1/τ

for any τ ∈ (0, q).

The following result can be founded in [15].

Lemma 5. Let f ∈ H(D), 0 < p <∞, α > p− 1. Then

sup
I⊂T

( 1

|I|

∫
S(I)

|f ′(z)|p(1− |z|)αdm2(z)
)1/p

� sup
I⊂T

( 1

|I|

∫
S(I)

|f(z)|p(1− |z|)α−pdm2(z)
)1/p

.

Various interpolation theorems has proved to be an important useful and powerful tool in

many applications in complex and real analysis. We will formulate the classical Marcinkiewicz

interpolation theorem that will be used by us(see, e.g. [9]).

Lemma 6. Let (X,µ) and (Y, ν) be two measure spaces. Let 0 < p0 < p1 ≤ ∞, 0 < q0, q1 <

∞. If T is a sublinear operator defined on the space Lp0(X) and Lp1(X) taking values in Y

and

‖Tf‖Lq0,∞(Y ) ≤ C‖f‖Lp0 (X), f ∈ Lp0(X)

‖Tf‖Lq1,∞(Y ) ≤ C‖f‖Lp1 (X), f ∈ Lp1(X)

and

1

p
=

1− θ
p0

+
θ

p1

;
1

q
=

1− θ
q0

+
θ

q1

; p ≤ q, 0 < qzero, q1 ≤ ∞. (3)

Then for all f ∈ Lp(X),

‖Tf‖Lq(X) ≤ C‖f‖Lp(X).
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3 Main results and proofs

Now we formulate the main results of this paper.

Theorem 1 Let f ∈ H(D) and 0 < p <∞. Then the following statements hold.

1) If τ ∈ (0,∞], 0 < q <∞ and α > −1, then

∥∥∥ sup
w∈Γσ(ξ)

|f(w)|p(1− |w|)α+2
∥∥∥
Lq,τ (dm)

≤ C
∥∥∥∫

Γσt (ξ)

|f(z)|p(1− |z|)αdm2(z)
∥∥∥
Lq,τ (dm)

.

2) If 0 < s < 1 and α > −1, then

sup
I⊂T

1

|I|s

∫
I

sup
w∈Γσ(ξ)

|f(z)|p(1− |z|)α+2dm(ξ)

≤ C sup
I⊂T

1

|I|s

∫
S(I)

|f(z)|p(1− |z|)α+1dm2(z).

Proof. Since f ∈ H(D), for all p ∈ (0,∞), α > −1 and z ∈ Γσ(ξ), we have(see, e.g. [17])

|f(z)|p ≤ C

(1− |z|)2+α

∫
D(z,t)

|f(w)|p(1− |w|2)αdm2(w).

Since D(z, t) ⊂ Γσt(ξ) for all z ∈ Γσ(ξ), we have

sup
w∈Γσ(ξ)

|f(w)|p(1− |w|2)α+2 ≤ C

∫
Γσt (ξ)

|f(w)|p(1− |w|2)αdm2(w).

Then the first estimate follows.

Obviously 2) follows from 1)(case τ =∞) and Lemma 2. The proof is finished. �

Remark 1. Putting formally in 1) α = −2 and q = τ = 1, we get a classical maximal

theorem for Hardy classes. Let us also note that we actually obtain a maximal theorem

(that is (1) type inequality) for Qp type space(see, e.g. [15, 16]) and holomorphic Hardy-

Lorentz classes.

Remark 2. Let q > 1. Then according to Lemma 4 from preliminaries

‖f‖Lq,∞ � sup
I⊂T

1

|I|1−1/q

∫
I

|f(ξ)|dm(ξ).

Hence putting in the second estimates of the the theorem s = 1− 1/q, we get∥∥∥ sup
w∈Γσ(ξ)

|f(w)|p(1− |w|)α+2
∥∥∥
Lq,∞

≤ C sup
I⊂T

1

|I|1−1/q

∫
S(I)

|f(z)|p(1− |z|)α+1dm2(z).

37



Let now q →∞. Then by Lemma 5

sup
z∈D
|f(z)|(1− |z|)

α+2
p � sup

z∈D
|f ′(z)|(1− |z|)

α+2
p

+1

≤ C
(

sup
I⊂T

1

|I|

∫
S(I)

|f ′(z)|p(1− |z|)α+1+pdm2(z)
)1/p

.

Putting formally in last estimate p = 2 and α = −2, we get BMOA ⊂ B(see, e.g.[6, 8]), a

classical embedding between two well studied classes. So the second estimate in Theorem 1

can be seen as an extension of classical result BMOA ⊂ B.

Remark 3. Using more general estimate

|f(z)|p ≤ C

(1− |z|)2+α−β

∫
D(z,t)

|Dβf(w)|p(1− |w|2)αdm2(w).

where 0 < p <∞, β > 0. We have a more general formulation of theorem 1∥∥∥ sup
z∈Γσ(ξ)

|f(z)|p(1− |z|)α+2−β
∥∥∥
Lq,τ (dm)

≤ C
∥∥∥∫

Γσt (ξ)

|Dβf(z)|p(1− |z|2)αdm2(z)
∥∥∥
Lq,τ (dm)

,

where α > β − 2.

The same with part 2) of Theorem 1

sup
I⊂T

1

|I|s

∫
I

sup
w∈Γσ(ξ)

|f(z)|p(1− |z|)α+2−βdm(ξ)

≤ C sup
I⊂T

1

|I|s

∫
S(I)

|Dβf(z)|p(1− |z|)α+1dm2(z),

where α > β − 2.

Remark 4. Adding the amount of variables and repeating the same arguments we get a

polydisk version of Theorem 1.∥∥∥ sup
w1∈Γσ1 (ξ1),··· ,wn∈Γσn (ξn)

|f(w1, · · · , wn)|p(1− |w1|)α1+2 · · · (1− |wn|)αn+2
∥∥∥
Lq,τ (dmn)

≤ C
∥∥∥∫

Γσt1
(ξ1)

· · · ·
∫

Γσt1
(ξ1)

|f(z)|p(1− |z1|)α1 · · · (1− |zn|)αndm2n(z)
∥∥∥
Lq,τ (dmn)

,

where αj > −2, 0 < p, q <∞,τ ∈ (0,∞].

In the following Theorem we apply the off-diagonal interpolation theorem (Lemma 6)

apply for q = p. The general case can be applied similarly.
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Theorem 2 1) Let p ≥ 1 + 2
minβk

, βk > 0, k = 1, 2 · · · , n, f ∈ H(Dn). Then∫
Tn

sup
z1∈Γt1 (ξ1),···zn∈Γtn (ξn)

|f(z1, · · · , zn)|p(1− |z1|2)β1p · · · (1− |zn|2)βnpdmn(ξ)

≤ C

∫
Dn
|f(z1, · · · , zn)|p(1− |z1|2)β1 · · · (1− |zn|2)βndm2n(z).

2) Let p̃ > p, γk > p(βk+2
p̃
− βk), γk > 0, βk > −1, f ∈ H(Dn). Then∫

Tn

(∫
Γt1 (ξ1)

· · ·
∫

Γtn (ξn)

|f(z)|p
n∏
k=1

(1− |z|2)βkp+γk−2dm2n(z)
)p̃/p

dmn(ξ)

≤ C

∫
Dn
|f(z)|p̃(1− |z|2)βdm2n(z).

Proof. 1) Our intention is to apply the interpolation theorem we formulated in previous

section. Let

(X,µ) = (Dn,
n∏
k=1

(1− |zk|2)βdm2n(z)); (Y, ν) = (T n, dmn(ξ)).

Then if

(T1f)(ξ1, · · · , ξn) = sup
z1∈Γt1 (ξ1),···,zn∈Γtn (ξn)

|f(z)|(1− |z|2)β, β > 0, f ∈ H(Dn),

we have

‖T1f‖L∞(Tn) ≤ C‖f(z)(1− |z|2)β‖L∞(Dn) (4)

So we must prove that for some p0 > 1

‖T1f‖Lp0,∞(dmn) ≤ C‖f(z)‖Lp0 (dmβ), (5)

then we get the desired result by applying Lemma 6.

Using Lemma 4 we have that (5) is equivalent to(
sup

I1⊂T,··· ,
In⊂T

1∏n
k=1 |Ik|t

∫
I

· · ·
∫
I

(
sup

z1∈Γt1
(ξ1),···

zn∈Γtn (ξn)

|f(z)|(1− |z|2)β
)τ
dmn(ξ)

)1/τ

≤ C
(∫

Dn
|f(z)|p0(1− |z|2)βdm2n(z)

)1/p0

, (6)

where t = 1− τ/p0, 0 < τ < p0, βk > 0.

Using the first inequality of Theorem 1, it is enough to show that

M =
(

sup
I1⊂T,··· ,
In⊂T

1∏n
k=1 |Ik|t

∫
I

· · ·
∫
I

(∫
Γt1 (ξ1)

· · ·
∫

Γtn (ξn)

|f(z)|(1− |z|2)β−2dm2n(z)
)τ
dmn(ξ)

)1/τ

≤ C‖f‖Ap0β .
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Using Lemma 2 we have(τk = βk − 1− βk+2
p0

)

M ≤ ‖|f(z)|(1− |z|2)
β+2
p0 ‖L∞(Dn) ×

n∏
k=1

sup
Ik⊂T

1

|Ik|t

∫
S(Ik)

(1− |z|2)τkdm2(zk)

≤ C

n∏
k=1

sup
Ik⊂T

1

|Ik|t

∫
S(Ik)

(1− |zk|2)τkdm2(zk),

where p0 ∈ (0,∞), βk > 0. Hence

M ≤ C‖f‖Ap0β

which is true if βk > 0 and p0 > 1 + 2/min βk, k = 1, · · · , n. The first part of Theorem 3 is

proved.

2). To apply the Lemma 6 to get the second estimate we introduce the operator

T γβ,pf(ξ1, · · · , ξn) =
(∫

Γt1 (ξ1)

· · ·
∫

Γtn (ξn)

|f(z)|p(1− |z|2)βp+γ−2dm2n(z)
)1/p

,

where βkp + γk > 0, k = 1, · · · , n, 0 < p <∞. Using similar argument as for the first part

we obtain

‖T γβ,pf‖L∞(Tn) ≤ C‖f(z)(1− |z|2)β‖L∞(Dn)

And it remains to show

‖T γβ,pf‖Lp0,∞(Tn) ≤ C‖f‖Lp0 (Dn)

for some p0 ∈ (0,∞). The last estimate is equivalent to(
sup

I1⊂T,··· ,
In⊂T

1∏n
k=1 |Ik|t

∫
I1

· · ·
∫
In

(∫
Γt1 (ξ1)

· · ·
∫

Γtn (ξn)

|f(z)|p(1− |z|2)βp+γ−2dm2n(z)
)τ/p

≤ C‖f‖τ
A
p0
β
, (7)

where t = 1 − τ/p0 for some τ < p0. Let us put in the last estimate τ = p. Then using

Lemmas 2 and 3 we have(
sup

I1⊂T,··· ,
In⊂T

1∏n
k=1 |Ik|t

∫
I1

· · ·
∫
In

(∫
Γt1 (ξ1)

· · ·
∫

Γtn (ξn)

|f(z)|p(1− |z|2)βp+γ−2dm2n(z)
)τ/p

≤ sup
z∈Dn

|f(z)|
n∏
i=1

(1− |zi|)
β+2
p0

n∏
k=1

(
sup
Ik⊂T

1

|Ik|t

∫
S(Ik)

(1− |z|)αkdm2(z)
) 1
p

≤ C‖f‖Ap0β , (8)

where αk = βkp + γk − 1 − β+2
p0
p > −1, which is equivalent to γk > p(βk+2

p0
− βk), βk > −1.

The proof is completed.�
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Remark 5. Estimates of Theorem 2 are known in disk, see [5, 11].

We give below some new results using the the same technique. It is known that various

estimates for so-called Cs
q,α(f)(ξ) function

Cs
q,α(f)(ξ) =

(
sup
ξ∈I

1

|I|s

∫
S(I)

|f(z)|q(1− |z|2)α−1dm2(z)
)1/q

where s ∈ (0,∞), q ∈ (0,∞), α > 0, f ∈ H(D), are played crucial role in complex and

Harmonic analysis(see, e.g. [3, 4, 7, 8]).

We apply again the classical interpolation theorem(to be more precise it is vector valued

version, see [9]) with Lemmas 3 and 4. Put

(X,µ) = (T, dm); (Y, ν) = (T, dm).

Consider the operator

Ssf(ξ) = sup
z∈Γt(ξ)

|Dkf(z)|(1− |z|)k−s, k > s.

We have(see[11])

‖Ssf‖L∞(dm) ≤ C‖C1
q,(k−s)q(Dkf)‖L∞(dm), 0 < q <∞, s < k, s ∈ (−∞,∞).

To complete the proof we need to show that for some p0 > 1,

‖Ssf‖Lp0,∞(dm(ξ)) ≤ C‖C1
q,k−s(Dkf)‖Lp0 (T ). (9)

Using Lemmas 3 and 4,

‖Ssf‖Lp0,∞(dm)

≤ C sup
I⊂T

1

|I|1−1/p0

∫
I

(∫
Γt(ξ)

|Dkf(z)|q(1− |z|2)(k−s)q−2dm2(z)
)1/q

dm(ξ)

≤ C
∥∥∥(∫

Γt(ξ)

|Dkf(z)|q(1− |z|2)(k−s)q−2dm2(z)
)1/q∥∥∥

Lp0 (dm)
, (10)

where we used the fact that‖f‖Lp0,∞ ≤ C‖f‖Lp0 for 1 < p0 < ∞. Here p ∈ (1,∞), s ∈
R, k > s, p0 ∈ (1,∞), q ∈ (0,∞). Applying theorem 3 of [4] we get (9). Applying vector

valued version of Lemma 6(see [9]) we get

‖Ssf‖Lp ≤ C‖C1
q,(k−s)q(D

kf)‖Lp , 1 < p <∞, 0 < q <∞. (11)

Remark 6. The estimate (11) for p =∞ was given in [11] for the case of unit ball.

Remark 7. Theorem 2 can be extended to more general form with

|Dsf(z)|p(1− |z|2)sp, s > 0 (12)

instead of |f(z)|p in estimates of Theorem 2.

Remark 8. Some other applications of characterizations of p-Carleson measures via Luzin

area integral were noticed and announced at the conference by the author(see [13]).
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