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Abstract

Pointwise estimates in variable exponent Sobolev spaces on quasi-metric measure spaces

are investigated. Based on such estimates, Sobolev embeddings into Hölder spaces with vari-

able order are obtained. This extends some known results to the variable exponent setting.
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1 Introduction

Lebesgue and Sobolev spaces with variable exponent have been intensively studied during

the last decade. We only mention the surveying papers [9], [31], [38], where many refer-

ences may be found. In particular, embeddings of Sobolev spaces started to be investigated

since the beginning of the theory of these spaces, mainly those into Lebesgue spaces over

Euclidean domains (cf. [11], [12], [8]). In [13], [22] corresponding generalizations were in-

vestigated within the frameworks of the measure metric spaces. We also refer to [35], where

the continuity of Sobolev functions was proved in the limiting case.

The case when the exponent is greater than the dimension of the Euclidean space Rn

was less studied. The first attempt to get Sobolev embeddings into Hölder classes of variable
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order was done in [10]. Later a capacity approach was used in [21] to obtain embeddings

into the space of continuous functions. Based on certain pointwise inequalities involving

the oscillation of Sobolev functions, the authors [2] proved embeddings into variable Hölder

spaces on bounded domains with Lipschitz boundary. More recently, Hölder quasicontinuity

of Sobolev functions was studied in [25], including estimates for the exceptional set in terms

of capacities.

In this paper we derive more general results, namely we obtain embeddings of variable

exponent Haj lasz-Sobolev spaces into Hölder classes of variable order on a bounded (quasi-

)metric measure space (X , d, µ) with doubling condition. Our approach is based on the

estimation of Sobolev functions through maximal functions. We refer to papers [4], [7], [19],

[20], [30], where this way was used in the case of constant exponents.

The paper is organized as follows. After some preliminaries in Section 2 on variable

spaces defined on spaces of homogeneous type, in Section 3 we extend some known estimates

of the oscillation of Sobolev functions to the variable exponent setting. The embeddings

of variable Haj lasz-Sobolev spaces into Hölder spaces of variable order on metric measure

spaces are proved in Section 4. Sobolev embeddings of higher smoothness are also proved in

the Euclidean case.

2 Preliminaries

Everywhere below X = (X , d, µ) is a quasi-metric measure space. For any positive µ-

measurable function ϕ defined on X , ϕ− and ϕ+ denote the quantities

ϕ+ := ess sup
x∈X

ϕ(x) and ϕ− := ess inf
x∈X

ϕ(x). (2.1)

By C (or c) we denote generic positive constants which may have different values at

different occurrences. Sometimes we emphasize their dependence on certain parameters

(e.g. C(α) or Cα means that C depends on α, etc).

2.1 Spaces of homogeneous type

By a space of homogeneous type we mean a triple (X , d, µ), where X is a non-empty set,

d : X ×X → R is a quasi-metric on X and µ is a non-negative Borel measure such that the

doubling condition

µB(x, 2r) ≤ Cµ µB(x, r), Cµ > 1, (2.2)

holds for all x ∈ X and 0 < r < diam(X ), where B(x, r) = {y ∈ X : d(x, y) < r} denotes

the open ball centered at x and of radius r. For simplicity, we shall write X instead of

(X , d, µ) if no ambiguity arises.
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As is well known, by iteration of condition (2.2) it can be shown that there exists a

positive constant C such that

µB(x, %)

µB(y, r)
≤ C

(%
r

)N
, N = log2Cµ, (2.3)

for all the balls B(x, %) and B(y, r) with 0 < r ≤ % and y ∈ B(x, r). From (2.3) it follows

that

µB(x, r) ≥ c0 r
N , x ∈ X , 0 < r ≤ diam X , (2.4)

in the case X is bounded. Condition (2.4) is sometimes called the lower Ahlfors regularity

condition.

The quasimetric d is assumed to satisfy the standard conditions:

d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x),

d(x, y) ≤ a0[d(x, z) + d(z, y)], a0 ≥ 1.

We refer to [5], [6], [16], [26] for general properties of spaces of homogeneous type.

2.2 On variable exponent spaces

Let p : X → [1,∞) be a µ-measurable function. Everywhere below we assume that

1 < p− ≤ p(x) ≤ p+ <∞, x ∈ X ,

according to the notation in (2.1).

By Lp(·)(X ) we denote the space of all µ-measurable functions f on X such that the

modular

Ip(·)(f) = Ip(·),X (f) :=

∫
X
|f(x)|p(x)dµ(x)

is finite. This is a Banach space with respect to the norm

‖f‖p(·) = ‖f‖p(·),X := inf

{
λ > 0 : Ip(·)

(
f

λ

)
≤ 1

}
.

Variable exponent Lebesgue spaces over quasi-metric measure spaces have been consid-

ered in [13], [22], [23], [29], [35] and more recently in [32], [33], where the maximal operator

was studied on weighted spaces. For completeness, we recall here some basic properties of the

spaces Lp(·)(X ). It is known that the norm ‖ · ‖p(·) and the modular Ip(·) are simultaneously

greater or simultaneously less than one, from which there follows that

c1 ≤ ‖f‖p(·) ≤ c2 =⇒ c3 ≤ Ip(·)(f) ≤ c4

and

C1 ≤ Ip(·)(f) ≤ C2 =⇒ C3 ≤ ‖f‖p(·) ≤ C4,
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with c3 = min (c
p−
1 , c

p+
1 ), c4 = max (c

p−
2 , c

p+
2 ), C3 = min

(
C

1/p−
1 , C

1/p+
1

)
and C4 = max

(
C

1/p−
2 , C

1/p+
2

)
.

As usual, p′(·) denotes the conjugate exponent of p(·) and it is defined pointwise by

p′(x) = p(x)
p(x)−1

, x ∈ X . The Hölder inequality is valid in the form∫
X
|f(x)g(x)| dµ(x) ≤

(
1

p−
+

1

p′−

)
‖f‖p(·) ‖g‖p′(·).

We also note that the embedding

Lq(·)(X ) ↪→ Lp(·)(X )

holds for 1 ≤ p(x) ≤ q(x) ≤ q+ <∞, when µ(X ) <∞.

Often the exponent p(·) is supposed to satisfy the local logarithmic condition

|p(x)− p(y)| ≤ A0

ln 1
d(x,y)

, d(x, y) ≤ 1/2, x, y ∈ X , (2.5)

from which we derive

|p(x)− p(y)| ≤ 2RA0

ln 2R
d(x,y)

, d(x, y) ≤ R, x, y ∈ X .

Assumption (2.5) is known in the literature as Dini-Lipschitz condition or log-Hölder conti-

nuity.

We will also deal with Hölder spaces Hλ(·) of variable order. Hölder functions on metric

measure spaces were considered, for instance, in [14], [15], [34], [36] for constant orders λ.

Hölder spaces of variable order λ(x) were considered in [17], [27], [28] and [37] in the one-

dimensional Euclidean case and in [39], [40], [41], [42] on the unit sphere Sn−1 in Rn. In the

case of variable order we follow a symmetric approach, which was suggested in [37] in the

one-dimensional Euclidean case. We say that a bounded function f belongs to Hλ(·)(X ) if

there exists c > 0 such that

|f(x)− f(y)| ≤ c d(x, y)max{λ(x),λ(y)}

for every x, y ∈ X , where λ is a µ-measurable function on X taking values in (0, 1]. Hλ(·)(X )

is a Banach space with respect to the norm

‖f‖Hλ(·)(X ) = ‖f‖∞ + [f ]λ(·),

where

[f ]λ(·) := sup
x,y∈X

0<d(x,y)≤1

|f(x)− f(y)|
d(x, y)max{λ(x),λ(y)} .

We observe that for 0 < β(x) ≤ λ(x) ≤ 1, there holds

Hλ(·)(X ) ↪→ Hβ(·)(X ),

where “↪→” means continuous embedding.
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2.3 Haj lasz-Sobolev spaces with variable exponent

Let 1 < p− ≤ p+ < ∞. We say that a function f ∈ Lp(·)(X ) belongs to the Haj lasz-Sobolev

space M1,p(·)(X ), if there exists a non-negative function g ∈ Lp(·)(X ) such that the inequality

|f(x)− f(y)| ≤ d(x, y) [g(x) + g(y)] (2.6)

holds µ-almost everywhere in X . In this case, g is called a generalized gradient of f .

M1,p(·)(X ) is a Banach space with respect to the norm

‖f‖1,p(·) = ‖f‖M1,p(·)(X ) := ‖f‖p(·) + inf ‖g‖p(·),

where the infimum is taken over all generalized gradients of f .

For constant exponents p(x) ≡ p, the spaces M1,p were first introduced by P. Haj lasz

[18] as a generalization of the classical Sobolev spaces W 1,p to the general setting of the

quasi-metric measure spaces. If X = Ω is a bounded domain with Lipschitz boundary (or

Ω = Rn), endowed with the Euclidean distance and the Lebesgue measure, then M1,p(Ω)

coincides with W 1,p(Ω). Recall that the oscillation of a Sobolev function may be estimated

by the maximal function of its gradient. In other words, every function f ∈ W 1,p(Ω) satisfies

(2.6) by takingM(|∇f |) as a generalized gradient (see, for instance, [4], [20], [30], for details

and applications, and [2] where this property was also discussed for variable exponents).

Haj lasz-Sobolev spaces with variable exponent have been considered in [24], [22]. In [24]

it was shown that M1,p(·)(Rn) = W 1,p(·)(Rn) if the maximal operator is bounded in Lp(·)(Rn),

which generalizes the result from [18] for constant p.

3 Some pointwise estimates

Let α : X → (0,∞) be a µ-measurable function. We define the fractional sharp maximal

function of order α(·) as

M]
α(·)f(x) = sup

r>0

r−α(x)

µB(x, r)

∫
B(x,r)

|f(y)− fB(x,r)| dµ(y),

where fB(x,r) denotes the average of f over B(x, r), with f ∈ L1
loc(X ). In the limiting case

α ≡ 0, M]
α(·) is the well known Fefferman-Stein function.

According to the notation above we write

α− = ess inf
x∈X

α(x) and α+ = ess sup
x∈X

α(x).

For constant α = β the following inequality was proved in [19], Lemma 3.6, which in turn

generalizes Theorem 2.7 in [7], given in the Euclidean setting.
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Lemma 3.1 Let X satisfy the doubling condition (2.2) and f be a locally integrable function

on X . If

0 < α− ≤ α(x) ≤ α+ <∞ and 0 < β− ≤ β(x) ≤ β+ <∞,

then

|f(x)− f(y)| ≤ C(µ, α, β)
[
d(x, y)α(x)M]

α(·)f(x) + d(x, y)β(y)M]
β(·)f(y)

]
(3.1)

µ-almost everywhere.

Proof. We skip some details since the proof follows similar arguments of [19]. For a Lebesgue

point x we have

|f(x)− fB(x,r)| ≤
∞∑
j=0

∣∣fB(x,2−(j+1)r) − fB(x,2−jr)

∣∣
≤

∞∑
j=0

1

µB (x, 2−(j+1)r)

∫
B(x,2−jr)

|f(z)− fB(x,2−jr)|dµ(z).

Hence, by the doubling condition (2.2) we get

|f(x)− fB(x,r)| ≤ cµ

∞∑
j=0

1

µB(x, 2−jr)

∫
B(x,2−jr)

∣∣f(z)− fB(x,2−jr)

∣∣ dµ(z)

≤ cµ c(α) rα(x)M]
α(·)f(x) (3.2)

where c(α) :=
∞∑
j=0

2−jα− = 2α−

2α−−1
. On the other hand, similar techniques also yield

|f(y)− fB(x,r)| ≤ |f(y)− fB(y,2r)|+ |fB(x,r) − fB(y,2r)|
≤ c(µ, β) rβ(y)M]

β(·)f(y) (3.3)

when y ∈ B(x, r) and β+ <∞. Thus, if x 6= y we take r = 2d(x, y) and write

|f(x)− f(y)| ≤
∣∣f(x)− fB(x,2d(x,y))

∣∣+
∣∣f(y)− fB(x,2d(x,y))

∣∣ .
Now it remains to make use of (3.2) and (3.3), where we also observe that both α(·) and

β(·) are bounded. �

Having in mind some applications, it is of interest to estimate the oscillation of a Haj lasz-

Sobolev function in terms of the fractional maximal function of the (generalized) gradient.

Recall that the fractional maximal functionMα(·)f of a locally integrable function f is given

by

Mα(·)f(x) = sup
r>0

rα(x)

µB(x, r)

∫
B(x,r)

|f(y)| dµ(y),

where the order α is admitted to be variable, namely α is a µ-measurable function, with

0 ≤ α(x) ≤ α+ < ∞. In the limiting case α(x) ≡ 0 we obtain the well known Hardy-

Littlewood maximal function M =M0.
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The next lemma is an adaptation of Corollary 3.10 in [19] to variable exponents. We

point out that the pointwise inequality (3.4) has been discussed before for variable exponents

in the Euclidean case, see [2], Proposition 3.3.

Lemma 3.2 Let X satisfy the doubling condition (2.2) and let f ∈ M1,p(·)(X ) and g ∈
Lp(·)(X ) be a generalized gradient of f . If 0 ≤ α+ < 1, 0 ≤ β+ < 1, then

|f(x)− f(y)| ≤ C(µ, α, β)
[
d(x, y)1−α(x)Mα(·)g(x) + d(x, y)1−β(y)Mβ(·)g(y)

]
(3.4)

µ-almost everywhere.

Proof. Taking into account (3.1), it suffices to show the estimate

M]
1−λ(·)g(x) ≤ cMλ(·)g(x), 0 ≤ λ(x) < 1. (3.5)

But (3.5) follows from the Poincaré type inequality∫
B(x,r)

|f(z)− fB(x,r)| dµ(z) ≤ c r

∫
B(x,r)

g(z) dµ(z), x ∈ X , r > 0, (3.6)

which is valid for every f ∈ M1,p(·)(X ), where g ≥ 0 is a generalized gradient of f . Indeed,

(3.6) can be obtained just by integrating the both sides of

|f(y)− f(z)| ≤ d(y, z) [g(y) + g(z)] , µ− a.e. y, z ∈ B(x, r),

(see (2.6)) over the ball B(x, r), first with respect to y and then to z. �

Remark 3.3 In the previous proof we used partially the statement of Theorem 4.2 in [24].

However, the boundedness of the maximal operator required there is not needed here.

4 Sobolev embeddings into variable exponent Hölder

spaces

4.1 Embeddings of variable Haj lasz-Sobolev spaces

Estimate (3.4) suggests that a function f ∈M1,p(·)(X ) is Hölder continuous (after a modifi-

cation on a set of zero measure) if the fractional maximal function of the gradient is bounded.

As we will see below, this is the case when the exponent p(·) takes values greater than the

“dimension”. First we need some auxiliary lemmas.

The following statement was given in [22] (see also [3] for an alternative proof).

Lemma 4.1 Let X be bounded, the measure µ satisfy condition (2.4) and p(·) satisfy con-

dition (2.5). Then ∥∥χB(x,r)

∥∥
p(·) ≤ c [µB(x, r)]

1
p(x) (4.1)

with c > 0 not depending on x ∈ X and r > 0.
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Below N > 0 denotes the constant from (2.4).

Lemma 4.2 Let X be bounded and µ satisfy condition (2.4). Suppose that p(·) is log-Hölder

continuous. If f ∈ Lp(·)(X ), then

M N
p(·)
f(x) ≤ c ‖f‖p(·), (4.2)

where c > 0 is independent of x and f .

Proof. Let x ∈ X and r > 0. By the Hölder inequality we have

r
N
p(x)

µB(x, r)

∫
B(x,r)

|f(y)| dµ(y) ≤ 2 r
N
p(x)

µB(x, r)
‖f‖p(·)

∥∥χB(x,r)

∥∥
p′(·) .

From this, we easily arrive at (4.2) by using the inequality (4.1) and the assumption (2.4).

�

Theorem 4.3 Let X be bounded and let µ be doubling. Suppose also that p(·) satisfies (2.5)

with p− > N . If f ∈M1,p(·)(X ) and g is a generalized gradient of f , then there exists C > 0

such that

|f(x)− f(y)| ≤ C ‖g‖p(·) d(x, y)1− N
max{p(x),p(y)} (4.3)

for every x, y ∈ X with d(x, y) ≤ 1.

Proof. After redefining f on a set of zero measure, we make use of (3.4) with α(x) = N
p(x)

and β(y) = N
p(y)

, and get

|f(x)− f(y)| ≤ C(µ,N, p) d(x, y)1− N
min{p(x),p(y)}

[
M N

p(·)
g(x) +M N

p(·)
g(y)

]
for all x, y ∈ X . Hence we arrive at (4.3) taking into account (4.2). �

The statement of the next theorem was proved in [2] within the frameworks of the Eu-

clidean domains with Lipschitz boundary.

Theorem 4.4 Let the set X be bounded and the measure µ be doubling. If p(·) is log-Hölder

continuous and p− > N , then

M1,p(·)(X ) ↪→ H1− N
p(·) (X ). (4.4)

Proof. Let x ∈ X and r0 > 0 be arbitrary. Recovering the argument from (3.2), we make

use of (3.5) and we get ∣∣f(x)− fB(x,r0)

∣∣ ≤ c r
1− N

p(x)

0 M]

1− N
p(·)
f(x)

≤ c r
1− N

p(x)

0 M N
p(·)
g(x)

≤ c r
1− N

p(x)

0 ‖g‖p(·),
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where in the last inequality we took estimate (4.2) into account, with g ∈ Lp(·)(X ) denoting

a gradient of f ∈M1,p(·)(X ). On the other hand, the Hölder inequality (cf. proof of Lemma

4.2) yields ∣∣fB(x,r0)

∣∣ ≤ c r
− N
p(x)

0 ‖f‖p(·).

Hence, choosing r0 = min{1, diam(X )} above, one obtains

‖f‖∞ ≤ c ‖f‖1,p(·). (4.5)

It remains to show that f is Hölder continuous. To this end, we apply inequality (4.3)

and we get

|f(x)− f(y)|

d(x, y)max{1− N
p(x)

,1− N
p(y)}

≤ c ‖g‖p(·) d(x, y)
N

max{p(x),p(y)}−
N

min{p(x),p(y)}

for every x, y ∈ X , x 6= y, with d(x, y) ≤ 1. Since p(·) satisfies the log-condition, then

d(x, y)
N

max{p(x),p(y)} ∼ d(x, y)
N

min{p(x),p(y)} .

Hence there holds [f ]1− N
p(·)
≤ c ‖g‖p(·), from which the embedding (4.4) follows, having also

in mind (4.5). �

4.2 Further results for the Euclidean case

In the particular case when X is a bounded domain Ω (with Lipschitz boundary) in the

Euclidean space Rn, then

W 1,p(·)(Ω) ↪→ H1− n
p(·) (Ω) (4.6)

where it is assumed that p(·) is log-Hölder continuous and p− > n. In this section we are

concerned with corresponding embeddings for higher smoothness. For constant exponents p

such embeddings are well known and can be found, for instance, in [1].

Let Ω ⊂ Rn be an open set and k ∈ N. Recall that the usual Sobolev space W k,p(·)(Ω)

consists of all functions f for which the (weak) derivatives Dβf are in Lp(·)(Ω), for any

0 ≤ |β| ≤ k. This is a Banach space with respect to the norm

‖f‖k,p(·),Ω =
∑
|β|≤k

‖Dβf‖p(·),Ω.

The next statement was proved in [8].

Theorem 4.5 Let k ∈ N with 1 ≤ k < n. If p(·) is log-Hölder continuous and is constant

outside some large ball, with 1 < p− ≤ p+ < n
k

, then

W k,p(·)(Rn) ↪→ Lq(·)(Rn), (4.7)

where 1
q(x)

= 1
p(x)
− k

n
, x ∈ Rn.

27



If Ω ⊂ Rn is an open bounded set with Lipschitz boundary, then there exists a bounded

linear extension operator E : W k,p(·)(Ω) → W k,p̃(·)(Rn), such that Ef(x) = f(x) almost

everywhere in Ω, for all f ∈ W k,p(·)(Ω). The exponent p̃(·) is an extension of p(·) to the

whole Rn preserving the original bounds and the continuity modulus of p(·). All the details

of this construction in the case k = 1 can be found in [8], Theorem 4.2 and Corollary 4.3, and

[10], Theorem 4.1; constructions for k 6= 1 follow the same way, since the Hestenes method

is known to work well with higher derivatives as well. As a consequence we conclude that

embedding (4.7) holds also for bounded open sets Ω with Lipschitz boundary, namely if p(·)
satisfies condition (2.5) in Ω with 1 < p− ≤ p+ < n

k
, then

W k,p(·)(Ω) ↪→ Lq(·)(Ω),
1

q(x)
=

1

p(x)
− k

n
, x ∈ Ω. (4.8)

Remark 4.6 Embedding (4.8) was proved in [8] (Corollary 5.3) in the case k = 1, which

in turn generalizes a former result from [10] formulated for Lipschitz continuous exponents.

We note that embedding (4.8) was also proved in [12] by assuming the Lipschitz continuity

of p(·) and the cone condition in Ω.

Theorem 4.7 Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. If p(·) is log-

Hölder continuous and (k − 1)p+ < n < kp−, then

W k,p(·)(Ω) ↪→ Hk− n
p(·) (Ω). (4.9)

Proof. As in the classical setting of constant exponents, the proof can be reduced to the

case k = 1 as follows. By (4.8) we have

W k,p(·)(Ω) ↪→ W k−1,p(·)(Ω) ↪→ Lq(·)(Ω),

where 1
q(x)

= 1
p(x)
− k−1

n
, x ∈ Ω. Thus we also get W k,p(·)(Ω) ↪→ W 1,q(·)(Ω). Hence it remains

to observe that

W 1,q(·)(Ω) ↪→ H1− n
q(·) (Ω),

which follows from (4.6). Indeed, we have n
q−

= n
p−
− k + 1 < 1 and 1− n

q(x)
= k − n

p(x)
. �

Remark 4.8 Since we consider Hölder spaces of orders less than 1, in Theorem 4.7 we in

fact have a restriction k < p+
p+−p− . To avoid this restriction one should make use Hölder

spaces of higher order which we do not touch here. Observe that the condition (k−1)p+ < n

of Theorem 4.7 may be omitted, but then we should just assume that (k − 1)p+ 6= n and

embedding (4.9) written in the form W k,p(·)(Ω) ↪→ H{k−
n
p(·)}(Ω), where

{
k − n

p(x)

}
stands

for the fractional part of k − n
p(x)

.

Corollary 4.9 Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. Let also p(·)
be log-Hölder continuous with p− >

n
k

, k > 1. Then

W k,p(·)(Ω) ↪→ Hλ(·)(Ω),

for any function λ(·) ∈ L∞(Ω) such that λ(x) ≤ k − n
p(x)

and λ− > 0, λ+ < 1.
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[19] P. Haj lasz and J. Kinnunen, Hölder quasicontinuity of Sobolev functions on metric

spaces. Rev. Mat. Iberoamericana 14(3) (1998), 601–622.

[20] P. Haj lasz and O. Martio, Traces of Sobolev functions on fractal type sets and charac-

terization of extension domains. J. Funct. Anal. 143 (1997), 221–246.
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