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Introduction

A binary algebra (Q; Σ) is called invertible algebra or system of quasigroups
if each operation in Σ is a quasigroup operation. Invertible algebras with
second-order formulas first were considered by Shaufler [17] in connection
with coding theory. He pointed out that the resulting message would be
more difficult to decode by an unauthorized receiver than in the case when a
single operation is used for calculation. Later such algebras were investigated
by J. Aczel [1], V. D. Belousov [3, 5], A. Sade [16], Yu. M. Movsisyan [11]–
[15] and others.

It is well known [4] that with each quasigroup A the next five quasigroups
are connected:

A−1, −1A, −1(A−1), (−1A)−1, A∗,

where A∗(x, y) = A(y, x). These quasigroups are called parastrophes of a
quasigroup A. Like this, with each invertible algebra (Q; Σ) the next five
invertible algebras are connected:

(Q; Σ−1), (Q;−1 Σ), (Q;−1 (Σ−1)), (Q; (−1Σ)−1), (Q; Σ∗),

where

Σ−1 = {A−1|A ∈ Σ},
−1Σ = {−1A|A ∈ Σ},

−1(Σ−1) = {−1(A−1)|A ∈ Σ},
(−1Σ)−1 = {(−1A)−1|A ∈ Σ},

Σ∗ = {A∗|A ∈ Σ}.
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Each of these invertible algebras are called parastrophes of the algebra
(Q; Σ). The algebra (Q; Σ∗) is called dual algebra of the (Q; Σ).

Let us recall that the following absolutely closed second-order formulas:

∀X1, . . . , Xm∀x1, . . . , xn (ω1 = ω2),

∀X1, . . . , Xk∃Xk+1 . . . , Xm∀x1, . . . , xn (ω1 = ω2),

where ω1, ω2 are words written in the functional variables X1, . . . , Xm and
in the object variables x1, . . . , xn, are called ∀(∀)-identity or hyperidentity
and ∀∃(∀)-identity, respectively. For details see [12].

The notion of isotopy plays an important role in the theory of quasi-
groups. The groupoid (Q;A) is called isotopic to the groupoid (Q;B) if
exist three maps α, β, γ of Q to Q such that γB(x, y) = A(αx, βy) for all
x, y ∈ Q. The isotopy of the form T = (α, β, ε), where ε is the identity map,
is called a principal isotope.

Many authors studied quasigroups isotopic to the groups or their differ-
ent subclasses and identities that generates them [18]-[21]. In [5], Belousov
introduced the concept of linear and left (right) linear quasigroups. Later
linear and left (right) linear invertible algebras were defined, which were
characterized by second-order formulas [7, 8, 13]. The notion of identity
with permutations first has been introduced in [6]. In [9], we brought the
notion of hyperidentity with permutations, with which we characterized hy-
peridentities bringing to the isotopy of quasigroups to groups.

In this paper, we obtain characterizations of invertible algebras with
different types of linearity using hyperidentities with permutations.

1 Auxiliary concepts and results

In this section, we present some notions and results, which are necessary for
further considerations.

Definition 1 The triple T = (α, β, γ) of permutations of the set Q is called
an autotopy of the groupoid (Q; ·) if the following identity

γ(x · y) = αx · βy

is true for ∀x, y ∈ Q.

Consequently, the notion of autotopy is the particular case of the notion
of isotopy. It is sufficient to state that A = B. If T = (α, β, γ) is an autotopy
of the groupoid (Q;A), we write AT = A. In case α = β = γ, the triple
T = (α, α, α) is an automorphism of the groupoid (Q; ·). It is easy to see
that the set of autotopies of (Q; ·) forms a group.
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Definition 2 The third component γ of the autotopy T = (α, β, γ) of the
groupoid (Q; ·) is called quasi-automorphism of the groupoid (Q; ·). In other
words, a permutation γ : Q → Q is called quasi-automorphism of the
groupoid (Q; ·) if there exists such a permutations α, β : Q→ Q that

γ(x · y) = αx · βy,

i.e., T = (α, β, γ) is an autotopy of the groupoid (Q; ·).

In case of the groups, quasi-automorphisms have an easy construction.

Lemma 1 [5] Let α, β, γ, δ, σ, τ be permutations of the set Q such that
the equality

β(α(x · y) · z) = γx · δ(σy · τz)

is valid in the group (Q; ·) for all x, y, z ∈ Q. Then the permutations α, β,
γ, δ, σ, τ are quasi-automorphisms of the group (Q; ·).

Definition 3 An invertible algebra (Q; Σ) is called left (right) linear over a
group (Q; +) if every operation A ∈ Σ has the following form:

A(x, y) = ϕAx+ βAy (A(x, y) = αAx+ ψAy),

where βA (respectively, αA) is a permutation of the set Q, and ϕA (respec-
tively, ψA) is an automorphism of the group (Q; +).

An invertible algebra is called left (right) linear if it is left (right) linear
over some group (Q; +).

Definition 4 An invertible algebra (Q; Σ) is called left(right) alinear over
a group (Q; +), if every operation A ∈ Σ has the following form:

A(x, y) = ϕAx+ βAy (A(x, y) = αAx+ ψAy),

where βA(respectively, αA) is a permutation of the set Q, and ϕA(respectively,
ψA) is an antiautomorphism of the group (Q; +).

An invertible algebra is called left(right) alinear if it is left(right) alinear
over some group (Q; +).

Proposition 1 The invertible algebra (Q; Σ) is left linear (alinear) if and
only if the dual algebra (Q; Σ∗) is right linear (alinear).

Definition 5 An invertible algebra (Q; Σ) is called linear (alinear) over a
group (Q; +) if every operation A ∈ Σ has the following form:

A(x, y) = ϕAx+ tA + ψAy,

where ϕA, ψA are automorphisms (antiautomorphisms) of the group (Q; +)
and tA are fixed elements of Q.

An invertible algebra is called linear (alinear) if it is linear (alinear) over
some group (Q; +).
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Theorem 1 [9] If the following hyperidentity with permutations

αA,B
1 A(αA,B

2 B(x, y), z) = B(αA,B
3 x, αA,B

4 A(αA,B
5 y, αA,B

6 z)) (1)

is valid in the algebra (Q; Σ) for all A,B ∈ Σ and for some permutations
αA,B
i (i = 1, . . . , 6), then the algebra (Q; Σ) is principally isotopic to group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to group
(Q; ·), then for all A,B ∈ Σ, there exist permutations αA,B

i (i = 1, . . . , 6) such
that the hyperidentity with permutations (1) is valid in the algebra (Q; Σ).

Theorem 2 [9] If the following hyperidentity with permutations

αA,B
1 A(αA,B

2 B(αA,B
3 x, αA,B

4 z), αA,B
5 B(αA,B

6 w, αA,B
7 v)) =

A(αA,B
8 B(w, z), αA,B

9 B(x, v))
(2)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 9), then the algebra (Q; Σ) is principally isotopic
to an abelian group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to an
abelian group (Q; ·), then for all A,B ∈ Σ, there exist permutations αA,B

i (i =
1, . . . , 9) such that the hyperidentity with permutations (2) is valid in the
algebra (Q; Σ).

Theorem 3 [5] Let the nonempty set Q form a quasigroup under four op-
erations Ai (i=1,2,3,4). If these operations satisfy the following identity:

A1(A2(x, y), z) = A3(x,A4(y, z)), (3)

then there exists an operation (·) under which Q forms a group isotopic to
all these four quasigroups.

Theorem 4 [2] Let the nonempty set Q form a quasigroup under six oper-
ations Ai (i=1,2,3,4,5,6). If these operations satisfy the following identity:

A1(A2(x, y), A3(z, u)) = A4(A5(x, z), A6(y, u)), (4)

then there exists an operation (·) under which Q forms an abelian group
isotopic to all these six quasigroups, i.e.,

A1(x, y) = αx · βy, A4(x, y) = χx · ϕy,

A2(x, y) = α−1(γx · δy), A5(x, y) = χ−1(γx · θy),

A3(x, y) = β−1(θx · ψy), A6(x, y) = ϕ−1(δx · ψy),

where α, β, γ, δ, χ, ϕ, ψ, θ are permutations of Q.
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Theorem 5 [10] The class of all left linear invertible algebras is character-
ized by the following second-order formula:

A(B(x,B−1(u, y)), z) = B(A(x,A−1(u, u)), B−1(u,A(y, z))),

for all x, y, u, z ∈ Q and all A,B ∈ Σ.

Theorem 6 [10] The class of all right linear invertible algebras is charac-
terized by the following second-order formula:

B(x,A(−1A(y, u), z)) = A(−1A(B(x, y), u), B(−1B(u, u), z)),

for all x, y, u, z ∈ Q and all A,B ∈ Σ.

Theorem 7 [7] The invertible algebra (Q; Σ) is linear if and only if the
following second-order formula:

A(B(x, y), B(u, v)) = A(B(x, u), B(αA,B
u y, v)),

where

αA,B
u y = −1B(A−1(u,A(B(−1B(u, u), y), u)), B−1(u, u))

is valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ) for all A,B ∈ Σ.

Theorem 8 [7] The invertible algebra (Q; Σ) is alinear if and only if the
following second-order formula:

A(B(x, y), B(u, v)) = A(B(βA,B
x v, y), B(u, x)),

where

βA,B
x v = −1B(−1A(A(x,B(−1B(x, x), v)), x), B−1(x, x))

is valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ) for all A,B ∈ Σ.

Let (Q; Σ) be an invertible algebra and F be a second-order formula.
Then F ∗ is a second-order formula, where all the operations A ∈ Σ are
replaced appropriately by the operations A∗ ∈ Σ∗.

Theorem 9 If the second-order formula F is valid in the invertible algebra
(Q; Σ), then the second-order formula F ∗ is valid in the invertible algebra
(Q; Σ∗).
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2 Linear invertible algebras

2.1 Left linear invertible algebras

Proposition 2 If one of the following hyperidentities with permutations

A(B(x, y), z) = B(αA,B
1 x, αA,B

2 A(αA,B
3 y, αA,B

4 z)), (5)

A(B(x, y), z) = A(αA,B
1 x, αA,B

2 A(αA,B
3 y, z)), (6)

αA,B
1 A(B(x, y), z) = B(αA,B

2 x, αA,B
3 A(αA,B

4 y, αA,B
5 z)) (7)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 5), then the algebra (Q; Σ) is left linear.

Proof. First, we prove the statement for identity (5). According to The-
orem 1, if the identity (5) is valid in the algebra (Q; Σ), then (Q; Σ) is
principally isotopic to a group, i.e., there exists a group (Q; +) such that for
every A ∈ Σ

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let us rewrite the identity (5) by using the last equality:

αA(αBx+ βBy) + βAz = αBα
A,B
1 x+ βBα

A,B
2 (αAα

A,B
3 y + βAα

A,B
4 z).

By taking z = β−1
A 0 (0 is the neutral element of the group (Q; +)) we get:

αA(αBx+ βBy) = αBα
A,B
1 x+ βBα

A,B
2 (αAα

A,B
3 y + βAα

A,B
4 β−1

A 0)

or

αA(x+ y) = αBα
A,B
1 α−1

B x+ βBα
A,B
2 (αAα

A,B
3 β−1

B y + βAα
A,B
4 β−1

A 0).

The last equality shows that αA is quasiautomorphism of the group (Q; +).
Then we have

αAx = ϕAx+ cA,

where ϕA ∈ Aut(Q; +), cA ∈ Q and the following equality is valid:

A(x, y) = ϕAx+ cA + βAy.

Since A is an arbitrary operation from Σ, the algebra (Q; Σ) is left linear.
Secondly, we will prove the statement of the theorem for the identity

(6). Let (6) holds in (Q; Σ) for all A,B ∈ Σ and for some permutations
αA,B
i (i = 1, 2, 3). The identity (6) is a particular case of the associativity

equation (3), where

A1(x, y) = A(x, y), A2(x, y) = B(x, y),
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A3(x, y) = A(αA,B
1 x, y), A4(x, y) = αA,B

2 A(αA,B
3 x, y).

According to Theorem 3, the quasigroups A1, A2, A3, A4 are isotopic to the
same group (Q; ·), hence, the operations A,B are isotopic to (Q; ·). Since
the operations A and B are arbitrary, all operations from Σ are isotopic to
this group.

For every X ∈ Σ, let us define the operation:

x+
X
y = X(R−1

X,ax, L
−1
X,by), (8)

where a, b are some fixed elements from Q. The operation +
X

is a loop

operation with the identity element 0X = X(b, a). Obviously, (Q; +
X

) is a

loop isotopic to the group (Q; ·). Hence, by Albert’s theorem, it is a group.
For every X ∈ Σ, each (Q; +

X
) is a group. Hence, (6) can be rewritten in the

following form:

RA,a(RB,ax+
B
LB,by) +

A
LA,bz = RA,aα

A,B
1 x+

A
LA,bα

A,B
2 (RA,aα

A,B
3 y +

A
LA,bz).

Taking z = L−1
A,b0A in the last equality, we have

RA,a(RB,ax+
B
LB,by) = RA,aα

A,B
1 x+

A
LA,bα

A,B
2 RA,aα

A,B
3 y,

RA,a(x+
B
y) = αA,Bx+

A
βA,By, (9)

where αA,B = RA,aα
A,B
1 R−1

B,a, βA,B = LA,bα
A,B
2 RA,aα

A,B
3 L−1

B,b are permutations
of the set Q. Since the operations A and B are arbitrary, we can take A = B
in (9). Hence,

RA,a(x+
A
y) = αA,Ax+

A
βA,Ay. (10)

From (9) and (10) we have

α−1
A,Bx+

B
β−1
A,By = α−1

A,Ax+
A
β−1
A,Ay,

x+
A
y = γA,Bx+

B
δA,By, (11)

where γA,B = α−1
A,BαA,A and δA,B = β−1

A,BβA,A are permutations of the set Q.
Hence, together with (11) we get

RA,a(x+
B
y) = γA,BαA,Bx+

B
δA,BβA,By,
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i.e., RA,a is a quasiautomorphism of the group (Q; +
B

). Since A is arbitrary,

RA,a is a quasiautomorphism of the group (Q; +
B

) for all operations A ∈ Σ.

According to (8) we have

A(x, y) = RA,ax+
A
LA,by.

This, according to (11), gives:

A(x, y) = θ1A,Bx+
B
θ2A,By, (12)

where θ1A,B = γA,BRA,a and θ2A,B = δA,BLA,b are permutations of the set Q.
Thus, we can represent every operation from Σ by the operation +

B
.

Let + = +
B

. We prove that θ1A,B is a quasiautomorphism of the group

(Q; +). To do it, take z = (θ2A,B)−10B in (8) and rewrite this equality in the
form:

θ1A,B(RB,ax+ LB,by) + θ2A,Bz = θ1A,Bα
A,B
1 x+ θ2A,Bα

A,B
2 (θ1A,Bα

A,B
3 y + θ2A,Bz),

θ1A,B(RB,ax+ LB,by) = θ1A,Bα
A,B
1 x+ θ2A,Bα

A,B
2 θ1A,Bα

A,B
3 y.

The last equality shows that θ1A,B is a quasiautomorphism of the group
(Q; +). According to [[3], Lemma 2.5] we have

θ1A,Bx = ϕAx+ sA,

where ϕA is an automorphism of the group (Q; +) and sA is some element
of the set Q. Hence, it follows from (12) that

A(x, y) = ϕAx+ βAy, (13)

where βAy = sA + θ2A,By. Since A is an arbitrary operation, we obtain that
all operations from Σ can be represented in the from (13), i.e., the algebra
(Q; Σ) is left linear.

Finally, here is the proof for the identity (7). According to Theorem 4,
if the identity (7) is valid in the algebra (Q; Σ), then (Q; Σ) is principally
isotopic to a group, i.e., there exists a group (Q; +) such that for every A ∈ Σ

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let us rewrite the identity (7) by using the last equality:

αA,B
1 (αA(αBx+ βBy) + βAz) = αBα

A,B
2 x+ βBα

A,B
3 (αAα

A,B
4 y + βAα

A,B
5 z).

By doing the following replacements x = α−1
B x, y = β−1

B y, z = β−1
A z we get:

αA,B
1 (αA(x+ y) + z) = αBα

A,B
2 α−1

B x+ βBα
A,B
3 (αAα

A,B
4 β−1

B y + βAα
A,B
5 β−1

A z).
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According to Lemma 1, αA is quasiautomorphism of the group (Q; +), i.e.,

αAx = ϕAx+ cA,

where ϕA ∈ Aut(Q; +), cA ∈ Q. Then the following equality is valid:

A(x, y) = ϕAx+ cA + βAy.

Since A is an arbitrary operation from Σ, the algebra (Q; Σ) is left linear. �

Theorem 10 The invertible algebra (Q; Σ) is left linear if and only if for
all A,B ∈ Σ and for some permutations αA,B

i (i = 1, . . . , 4) the hyperidentity
with permutations (5) is valid in the algebra (Q; Σ).

Proof. If the invertible algebra (Q; Σ) is left linear, then according to The-
orem 5 the following formula is valid in that algebra:

A(B(x,B−1(u, y)), z) = B(A(x,A−1(u, u)), B−1(u,A(y, z))).

The formula may be rewritten in the following form:

A(B(x, y), z) = B(RA,A−1(u,u)x, L
−1
B,uA(LB,uy, z)).

By taking u = a, where a is a fixed element from Q we get the identity (5),
where

αA,B
1 = RA,A−1(a,a), α

A,B
2 = L−1

B,a, α
A,B
3 = LB,a, α

A,B
4 = ε.

The sufficiency follows from the Proposition 2. �

2.2 Right linear invertible algebras

Proposition 3 If one of the following hyperidentities with permutations

A(x,B(y, z)) = A(αA,B
1 A(x, αA,B

2 y), αA,B
3 z), (14)

A(x,B(y, z)) = A(αA,B
1 A(αA,B

2 x, αA,B
3 y), αA,B

4 z), (15)

αA,B
1 A(x,B(y, z)) = B(αA,B

2 A(αA,B
3 x, αA,B

4 y), αA,B
5 z) (16)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 4), then the algebra (Q; Σ) is right linear.

Proof. Follows from the Proposition 1 and the Theorem 9. �

Theorem 11 The invertible algebra (Q; Σ) is right linear if and only if for
all A,B ∈ Σ and for some permutations αA,B

i (i = 1, . . . , 4) the hyperidentity
with permutations (15) is valid in the algebra (Q; Σ).
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Proof. If the invertible algebra (Q; Σ) is right linear, then according to
Theorem 6 the following formula is valid in that algebra:

B(x,A(−1A(y, u), z)) = A(−1A(B(x, y), u), B(−1B(u, u), z)).

We may rewrite the formula in the following form:

B(x,A(y, z)) = A(R−1
A,uB(x,RA,uy), RB,B−1(u,u)z).

By taking u = a, where a is a fixed element from Q, we get the identity (15),
where

αA,B
1 = R−1

A,a, α
A,B
2 = ε, αA,B

3 = RA,a, α
A,B
4 = RB,B−1(a,a).

The sufficiency follows from the Proposition 3. �

2.3 Linear invertible algebras

Proposition 4 If one of the following hyperidentities with permutations

αA,B
1 A(B(x, y), z) = B(αA,B

2 x,A(αA,B
3 y, αA,B

4 z)), (17)

αA,B
1 A(B(x, y), z) = B(αA,B

2 x, αA,B
3 A(y, αA,B

4 z)), (18)

A(αA,B
1 B(x, y), z) = B(αA,B

2 x,A(y, αA,B
3 z)) (19)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 4), then the algebra (Q; Σ) is linear.

Proof. According to Theorem 1, if each of the above-mentioned identities
is valid in the algebra (Q; Σ), then (Q; Σ) is principally isotopic to a group,
i.e., there exists a group (Q; +) such that for every A ∈ Σ

A(x, y) = αAx+ βAy, (20)

where αA, βA ∈ SQ.
At first, we will prove the proposition for the identity (17). Let us rewrite

the identity (17) by using (20):

αA,B
1 (αA(αBx+ βBy) + βAz) = αBα

A,B
2 x+ βB(αAα

A,B
3 y + βAα

A,B
4 z).

After replacement of variables we get:

αA,B
1 (αA(x+ y) + z) = αBα

A,B
2 α−1

B x+ βB(αAα
A,B
3 β−1

B y + βAα
A,B
4 β−1

A z).

According to Lemma 1, αA and βB are quasiautomorphisms of the group
(Q; +) for every A,B ∈ Σ, i.e.,

αAx = ϕAx+ cA, βAy = dA + ψAx
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where ϕA, ψA ∈ Aut(Q; +), cA, dA ∈ Q. Thus,

A(x, y) = ϕAx+ uA + ψAy,

where uA = cA + dA. Hence, the algebra (Q; Σ) is linear.
Secondly, we will prove the proposition for the identity (18). Let us

rewrite the identity (18) by using (20):

αA,B
1 (αA(αBx+ βBy) + βAz) = αBα

A,B
2 x+ βBα

A,B
3 (αAy + βAα

A,B
4 z).

After replacement of variables we get:

αA,B
1 (αA(x+ y) + z) = αBα

A,B
2 α−1

B x+ βBα
A,B
3 (αAβ

−1
B y + βAα

A,B
4 β−1

A z).

According to Lemma 1, αA and αAβ
−1
B are quasiautomorphisms of the group

(Q; +) for every A,B ∈ Σ, thus βB is a quasiautomorphism as well (the set
of quasiautomorphisms forms a group). Hence, the algebra (Q; Σ) is linear.

Finally, here is the proof of the proposition for the identity (19). Let us
rewrite the identity (19) by using (20):

αAα
A,B
1 (αBx+ βBy) + βAz = αBα

A,B
2 x+ βB(αAy + βAα

A,B
3 z).

After replacement of variables we get:

αAα
A,B
1 (x+ y) + z = αBα

A,B
2 α−1

B x+ βB(αAβ
−1
B y + βAα

A,B
3 β−1

A z).

According to Lemma 1, βB and αAβ
−1
B are quasiautomorphisms of the group

(Q; +) for every A,B ∈ Σ, thus, αA is a quasiautomorphism as well (the set
of quasiautomorphisms forms a group). Hence, the algebra (Q; Σ) is linear.
�

Theorem 12 The invertible algebra (Q; Σ) is linear if and only if for all
A,B ∈ Σ and for some permutations αA,B

i (i = 1, . . . , 3) the following hyper-
identity with permutations

A(B(x, y), z) = A(αA,B
1 x,B(αA,B

2 y, αA,B
3 z)), (21)

is valid in the algebra (Q; Σ).

Proof. Let (21) holds in (Q; Σ) for all A,B ∈ Σ and for some permutations
αA,B
i (i = 1, 2, 3). The identity (21) is a particular case of the associativity

equation (3), where

A1(x, y) = A(x, y), A2(x, y) = B(x, y),

A3(x, y) = A(αA,B
1 x, y), A4(x, y) = B(αA,B

2 x, αA,B
3 y).
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According to Theorem 3, the quasigroups A1, A2, A3, A4 are isotopic to the
same group (Q; ·), hence, the operations A,B are isotopic to (Q; ·). Since
the operations A and B are arbitrary, we obtain that all operations from Σ
are isotopic to this group.

For every X ∈ Σ, let us define the operation:

x+
X
y = X(R−1

X,ax, L
−1
X,by), (22)

where a, b are some fixed elements from Q. The operation +
X

is a loop

operation with the identity element 0X = X(b, a). Obviously, (Q; +
X

) is a

loop isotopic to the group (Q; ·), Hence, by Albert’s theorem, it is a group.
For every X ∈ Σ, each (Q; +

X
) is a group. Thus, (21) can be rewritten in the

form:

RA,a(RB,ax+
B
LB,by) +

A
LA,bz = RA,aα

A,B
1 x+

A
LA,b(RA,aα

A,B
2 y +

A
LA,bα

A,B
3 z).

Taking z = L−1
A,b0A in the last equality, we have

RA,a(RB,ax+
B
LB,by) = RA,aα

A,B
1 x+

A
LA,b(RA,bα

A,B
2 y +

A
LA,bα

A,B
3 L−1

A,b0).

After replacement of parameters we get

RA,a(x+
B
y) = αA,Bx+

A
βA,By, (23)

where αA,B and βA,B are permutations of the set Q. Since the operations A
and B are arbitrary, we can take A = B in (23). Hence,

RA,a(x+
A
y) = αA,Ax+

A
βA,Ay. (24)

From (23) and (24) we have

α−1
A,Bx+

B
β−1
A,By = α−1

A,Ax+
A
β−1
A,Ay,

x+
A
y = γA,Bx+

B
δA,By, (25)

where γA,B = α−1
A,BαA,A and δA,B = β−1

A,BβA,A are permutations of the set Q.
Hence, according to (25) we get

RA,a(x+
B
y) = γA,BαA,Bx+

B
δA,BβA,By,

i.e., RA,a is a quasiautomorphism of the group (Q; +
B

). Since A is arbitrary,

RA,a is a quasiautomorphism of the group (Q; +
B

) for all operations A ∈ Σ.
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According to (22) we have

A(x, y) = RA,ax+
A
LA,by.

This, according to (25), gives:

A(x, y) = θ1A,Bx+
B
θ2A,By, (26)

where θ1A,B = γA,BRA,a and θ2A,B = δA,BLA,b are permutations of the set Q.
Thus, we can represent every operation from Σ by the operation +

B
. Let us

fix B and denote + = +
B

, then we can write (26) in the following way:

A(x, y) = θ1Ax+ θ2Ay, (27)

Let us rewrite (21) by using (27):

θ1A(θ1Bx+ θ2By) + θ2Az = θ1Aα
A,B
1 x+ θ2A(θ1Aα

A,B
2 y + θ2Aα

A,B
3 z)

According to Lemma 1, θ1A and θ2A are quasiautomorphisms of the group
(Q; +) and thus

A(x, y) = ϕAx+ cA + ψAy,

where ϕA, ψA ∈ Aut(Q; +), cA ∈ Q.
Conversely, if the invertible algebra (Q; Σ) is linear, then according to

Theorem 7 the following second-order formula is valid in that algebra:

A(B(x, y), B(u, z)) = A(B(x, u), B(αA,B
u y, z)),

where

αA,B
u y = −1B(A−1(u,A(B(−1B(u, u), y), u)), B−1(u, u)).

The formula may be rewritten in the following form:

A(B(x, y), LB,uz) = A(RB,ux,B(αA,B
u y, z)).

By taking u = a, where a is a fixed element from Q, we get the identity (21),
where

αA,B
1 = RB,a, α

A,B
2 = αA,B

a , αA,B
3 = L−1

B,a.

�
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3 Alinear invertible algebras

3.1 Left alinear invertible algebras

Proposition 5 If the following hyperidentity with permutations

A(B(x, y), z) = B(αA,B
1 y, αA,B

2 A(αA,B
3 z, αA,B

4 x)), (28)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 4), then the algebra (Q; Σ) is left alinear.

Proof. Let us rewrite the identity (28) in the following way:

A∗(z,B(x, y)) = B∗(αA,B
2 A(αA,B

3 z, αA,B
4 x), αA,B

1 y),

where X∗(x, y) = X(y, x). According to Theorem 1, ∀A ∈ Σ is principally
isotopic to the group (Q; +),i.e. for every A ∈ Σ:

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let’s rewrite the identity (28) by using the last equality:

αA(x+ y) + z = αBα
A,B
1 β−1

B y + βBα
A,B
2 (αAα

A,B
3 β−1

A z + βAα
A,B
4 α−1

B x).

By taking z = 0 (0 is the neutral element of the group (Q; +)) we get:

αA(x+ y) = αBα
A,B
1 β−1

B y + βBα
A,B
2 (αAα

A,B
3 β−1

A 0 + βAα
A,B
4 α−1

B x).

The last equality shows that αA is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ, i.e.

αAx = ϕAx+ cA,

where ϕA is an antiautomorphism of (Q; +) and cA ∈ Q. Thus,

A(x, y) = ϕAx+ cA + βAy.

Since A is an arbitrary operation from Σ, we obtain that the algebra (Q; Σ)
is left alinear. �

3.2 Right alinear invertible algebras

Proposition 6 If the following hyperidentity with permutations

A(αA,B
1 B(x, y), z) = B(αA,B

2 y, A(αA,B
3 z, αA,B

4 x)), (29)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 4), then the algebra (Q; Σ) is right alinear.

Proof. Follows from the Proposition 1 and the Theorem 9. �
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3.3 Alinear invertible algebras

Proposition 7 If the following hyperidentity with permutations

A(B(x, y), z) = B(αA,B
1 y, A(αA,B

2 z, αA,B
3 x)) (30)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some per-
mutations αA,B

i (i = 1, . . . , 3), then the algebra (Q; Σ) is alinear.

Proof. Let us rewrite the identity (30) in the following way:

A∗(z,B(x, y)) = B∗(A(αA,B
2 z, αA,B

3 x), αA,B
1 y),

where X∗(x, y) = X(y, x). According to Theorem 1, every A ∈ Σ is princi-
pally isotopic to the group (Q; +), i.e., for every A ∈ Σ:

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let us rewrite the identity (30) by using the last equal-
ity:

αA(αBx+ βBy) + βBz = αBα
A,B
1 y + βB(αAα

A,B
2 z + βAα

A,B
3 x). (31)

By taking z = β−1
B 0 in (31) (0 is the neutral element of the group (Q; +))

we get:

αA(αBx+ βBy) = αBα
A,B
1 y + βB(αAα

A,B
2 β−1

B 0 + βAα
A,B
3 x).

The last equality shows that αA is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ. Further, let us take y = (αA,B

1 )−1α−1
B 0 in (31):

(αA(αBx+ βB(αA,B
1 )−1α−1

B 0) + βBz = βB(αAα
A,B
2 z + βAα

A,B
3 x).

The last equality shows that βB is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ, too. Thus,

A(x, y) = ϕAx+ cA + ψAy,

where ψA, ϕA are antiautomorphisms of (Q; +) and cA ∈ Q.
Since A is an arbitrary operation from Σ, the algebra (Q; Σ) is alinear.

�

Theorem 13 The invertible algebra (Q; Σ) is alinear if and only if for all
A,B ∈ Σ and for some permutations αA,B

i (i = 1, . . . , 3) the following hyper-
identity with permutations

A(B(x, y), z) = A(αA,B
1 y,B(αA,B

2 z, αA,B
3 x)), (32)

is valid in the algebra (Q; Σ).



16 S. S. DAVIDOV AND D. A. SHAHNAZARYAN

Proof. Let us rewrite the identity (32) in the following way:

A∗(z,B(x, y)) = A∗(B(αA,B
2 z, αA,B

3 x), αA,B
1 y).

From the last equality we can conclude that ∀A ∈ Σ is isotopic to a group.
Similarly to the case of linear invertible algebras, we get that every operation

x+
A
y = A(R−1

A,ax, L
−1
A,by) (33)

is a group with the identity element 0X = X(b, a). Let us rewrite the identity
(32) by using equality (33):

RA,a(RB,ax+
B
LB,by) +

A
LA,bz =

RA,aα
A,B
1 y +

A
LA,b(RA,aα

A,B
2 z +

A
LA,bα

A,B
3 x).

(34)

By taking z = L−1
A,b0A in (34) we get:

RA,a(RB,ax+
B
LB,by) = RA,aα

A,B
1 y +

A
LA,b(RA,aα

A,B
2 L−1

A,b0A +
A
LA,bα

A,B
3 x)

or

RA,a(x+
B
y) = αA,By +

A
βA,Bx, (35)

where αA,B, βA,B ∈ SQ. Since the operations A and B are arbitrary, we can
take A = B in (35). Hence,

RA,a(x+
A
y) = αA,Ay +

A
βA,Ax. (36)

From (35) and (36) we have

α−1
A,Bx+

B
β−1
A,By = α−1

A,Ax+
A
β−1
A,Ay,

x+
A
y = γA,Bx+

B
δA,By, (37)

where γA,B, δA,B ∈ SQ. Hence, according to (37) we get

RA,a(x+
B
y) = γA,BαA,Bx+

B
δA,BβA,By,

i.e., RA,a is a quasiautomorphism of the group (Q; +
B

). Since A is arbitrary,

RA,a is a quasiautomorphism of the group (Q; +
B

) for all operations A ∈ Σ.

According to (33) we have

A(x, y) = RA,ax+
A
LA,by.
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This, according to (37), gives:

A(x, y) = θ1A,Bx+
B
θ2A,By, (38)

where θ1A,B = γA,BRA,a and θ2A,B = δA,BLA,b are permutations of the set Q.
Thus, we can represent every operation from Σ by the operation +

B
.Let us

fix B and denote + = +
B

, then we can write (38) in the following way:

A(x, y) = θ1Ax+ θ2Ay. (39)

Let us rewrite the identity (32) by using (39):

θ1A(θ1Bx+ θ2By) + θ2Az = θ1Aα
A,B
1 y + θ2A(θ1Bα

A,B
2 z + θ2Bα

A,B
3 x). (40)

By taking z = (θ2A)−10 in (38) (0 is the neutral element of the group (Q; +))
we get:

θ1A(θ1Bx+ θ2By) = θ1Aα
A,B
1 y + θ2A(θ1Bα

A,B
2 (θ2A)−10 + θ2Bα

A,B
3 x).

The last equality shows that θ1A is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ. Further, let us take y = (αA,B

1 )−1(θ2A)−10 in (38):

θ1A(θ1Bx+ θ2B(θ2A)−10) + θ2Az = θ2A(θ1Bα
A,B
2 z + θ2Bα

A,B
3 x).

The last equality shows that θ2A is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ, too. Thus

A(x, y) = ϕAx+ cA + ψAy,

where ψA, ϕA are antiautomorphisms of (Q; +) and cA ∈ Q. Since A is an
arbitrary operation from Σ, the algebra (Q; Σ) is alinear.

Conversely, if the invertible algebra (Q; Σ) is alinear, then according to
Theorem 8 the following second-order formula is valid in that algebra:

A(B(x, y), B(u, v)) = A(B(βA,B
x v, y), B(u, x)),

where

βA,B
x v = −1B(−1A(A(x,B(−1B(x, x), v)), x), B−1(x, x)),

The formula may be rewritten in the following form:

A(LB,xy,B(u, v)) = A(B(βA,B
x v, y), RB,xu).

By taking x = a, where a is a fixed element from Q we get the identity (32),
where

αA,B
1 = LB,a, α

A,B
2 = R−1

B,a, α
A,B
3 = (βa)

−1.

�
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4 Invertible algebras of mixed type of linear-

ity

Definition 6 An invertible algebra (Q; Σ) is called an invertible algebra of
mixed type of linearity of the first (second) kind over a group (Q; +), if every
operation A ∈ Σ has the form

A(x, y) = ϕAx+ cA + ψAy (A(x, y) = ϕAx+ cA + ψAy),

where ϕA, ψA ∈ Aut(Q; +), ψA, ϕA are antiautomorphisms of (Q; +), and cA
is a fixed element from Q.

4.1 Invertible algebras of mixed type of linearity of
the first kind

Proposition 8 If the following hyperidentity with permutations

A(B(x, y), z) = B(αA,B
1 x,A(αA,B

2 z, αA,B
3 y)), (41)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some permu-
tations αA,B

i (i = 1, . . . , 3), then the algebra (Q; Σ) is mixed type of linearity
of the first kind.

Proof. Let us rewrite the identity (41) in the following way:

A(B(x, y), z) = B(αA,B
1 x,A∗(αA,B

3 y, αA,B
2 z)),

where X∗(x, y) = X(y, x). According to Theorem 1, every A ∈ Σ is princi-
pally isotopic to the group (Q; +), i.e., for every A ∈ Σ:

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let us rewrite the identity (41) by using the last equal-
ity:

αA(αBx+ βBy) + βBz = αBα
A,B
1 x+ βB(αAα

A,B
2 z + βAα

A,B
3 y). (42)

By taking x = (αA,B
1 )−1α−1

B 0 in (42) (0 is the neutral element of the group
(Q; +)) we get:

αA(αB(αA,B
1 )−1α−1

B 0 + βBy) + βBz = βB(αAα
A,B
2 z + βAα

A,B
3 y).

The last equality shows that βB is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ. Further, let us take z = β−1

B 0 in (42):

αA(αBx+ βBy) = αBα
A,B
1 x+ βB(αAα

A,B
2 β−1

B 0 + βAα
A,B
3 y).
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The last equality shows that αA is a quasiautomorphism of the group (Q; +)
for every A,B ∈ Σ. Thus,

A(x, y) = ϕAx+ cA + ψAy,

where ψA is an antiautomorphism of (Q; +) and ϕA ∈ Aut(Q; +), cA ∈ Q.
Since A is an arbitrary operation from Σ, the algebra (Q; Σ) is a mixed type
of linearity of the first kind. �

4.2 Invertible algebras of mixed type of linearity of
the second kind

Proposition 9 If the following hyperidentity with permutations

A(B(x, y), z) = B(αA,B
1 y, A(αA,B

2 x, αA,B
3 z)), (43)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some permu-
tations αA,B

i (i = 1, . . . , 3), then the algebra (Q; Σ) is mixed type of linearity
of the second kind.

Proof. Let us rewrite the identity (43) in the following way:

A(B∗(x, y), z) = B(αA,B
1 y, A(αA,B

2 x, αA,B
3 z)),

where X∗(x, y) = X(y, x). According to Theorem 1, every A ∈ Σ is princi-
pally isotopic to the group (Q; +), i.e., for every A ∈ Σ:

A(x, y) = αAx+ βAy,

where αA, βA ∈ SQ. Let us rewrite the identity (43) by using the last equal-
ity:

αA(αBx+ βBy) + βAz = αBα
A,B
1 y + βB(αAα

A,B
2 x+ βAα

A,B
3 z). (44)

By taking z = β−1
A 0 in (44) (0 is the neutral element of the group (Q; +))

we get:

αA(αBx+ βBy) = αBα
A,B
1 y + βB(αAα

A,B
2 x+ βAα

A,B
3 β−1

A 0).

The last equality shows that αA is an antiquasiautomorphism of the group
(Q; +) for every A,B ∈ Σ. Further, let us take y = (αA,B

1 )−1αB0 in (44):

αA(αBx+ βB(αA,B
1 )−1αB0) + βAz = βB(αAα

A,B
2 x+ βAα

A,B
3 z).

The last equality shows that βB is a quasiautomorphism of the group (Q; +)
for every A,B ∈ Σ. Thus,

A(x, y) = ϕAx+ cA + ψAy,

where ϕA is an antiautomorphism of (Q; +) and ψA ∈ Aut(Q; +), cA ∈ Q.
Since A is an arbitrary operation from Σ, the algebra (Q; Σ) is a mixed type
of linearity of the second kind. �
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