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Introduction

A binary algebra (Q; %) is called invertible algebra or system of quasigroups
if each operation in ¥ is a quasigroup operation. Invertible algebras with
second-order formulas first were considered by Shaufler [I7] in connection
with coding theory. He pointed out that the resulting message would be
more difficult to decode by an unauthorized receiver than in the case when a
single operation is used for calculation. Later such algebras were investigated
by J. Aczel [1], V. D. Belousov [3] 5], A. Sade [16], Yu. M. Movsisyan [11]-
[15] and others.

It is well known [4] that with each quasigroup A the next five quasigroups
are connected:

A_l, _1A, _1(14_1), (_114)_1, A*,

where A*(z,y) = A(y,z). These quasigroups are called parastrophes of a
quasigroup A. Like this, with each invertible algebra (Q;3J) the next five
invertible algebras are connected:

(@Q:27Y), (@7'%), (@7'(E™), (D)), (@2,
where
Yl ={AAex},
Iy ={"1AlA e},
SET)={AN)Aez},
(D) ={("A)Aezx},
¥ = {A*|Ae X}


http://www.flib.sci.am/eng/journal/Math/

2 S. S. DAVIDOV AND D. A. SHAHNAZARYAN

Each of these invertible algebras are called parastrophes of the algebra
(@Q;X). The algebra (Q; X*) is called dual algebra of the (Q;3).
Let us recall that the following absolutely closed second-order formulas:

VX, .o X Ve, .o, (w1 = wa),
VXl,...,XkEiXk+1...,vaxl,...,l‘n ((JJl :CL)Q),

where w1, wy are words written in the functional variables X;,..., X,, and
in the object variables z1, ..., x,, are called V(V)-identity or hyperidentity
and V3(V)-identity, respectively. For details see [12].

The notion of isotopy plays an important role in the theory of quasi-
groups. The groupoid (Q; A) is called isotopic to the groupoid (@; B) if
exist three maps «, 3,7 of @ to @ such that vB(z,y) = A(ax, By) for all
x,y € Q. The isotopy of the form T' = («, 3, ), where ¢ is the identity map,
is called a principal isotope.

Many authors studied quasigroups isotopic to the groups or their differ-
ent subclasses and identities that generates them [18]-[21]. In [5], Belousov
introduced the concept of linear and left (right) linear quasigroups. Later
linear and left (right) linear invertible algebras were defined, which were
characterized by second-order formulas [7, 8, 13]. The notion of identity
with permutations first has been introduced in [6]. In [9], we brought the
notion of hyperidentity with permutations, with which we characterized hy-
peridentities bringing to the isotopy of quasigroups to groups.

In this paper, we obtain characterizations of invertible algebras with
different types of linearity using hyperidentities with permutations.

1 Auxiliary concepts and results

In this section, we present some notions and results, which are necessary for
further considerations.

Definition 1 The triple T = («, 3,7) of permutations of the set Q) is called
an autotopy of the groupoid (Q;-) if the following identity

V7 -y) = ax- Py
1s true forVr,y € Q.

Consequently, the notion of autotopy is the particular case of the notion
of isotopy. It is sufficient to state that A = B. If T' = («, /3, 7) is an autotopy
of the groupoid (Q; A), we write AT = A. In case a = 3 = +, the triple
T = (a,a, @) is an automorphism of the groupoid (Q;-). It is easy to see
that the set of autotopies of (@Q;-) forms a group.
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Definition 2 The third component v of the autotopy T = («, 3,7) of the
groupoid (Q; ) is called quasi-automorphism of the groupoid (Q;-). In other
words, a permutation v : @ — Q is called quasi-automorphism of the
groupoid (Q;-) if there exists such a permutations a,  : QQ — Q) that

V(z-y) = ax- By,
i.e., T = (a, 3,7) is an autotopy of the groupoid (Q; ).
In case of the groups, quasi-automorphisms have an easy construction.

Lemma 1 [5] Let o, 8, 7y, 0, o, T be permutations of the set Q) such that
the equality

Bla(z - y) - 2) =z - d(oy - 72)
is valid in the group (Q;-) for all z,y,z € Q. Then the permutations «, B,
v, 9, o, T are quasi-automorphisms of the group (Q;-).

Definition 3 An invertible algebra (Q; %) is called left (right) linear over a
group (Q;+) if every operation A € ¥ has the following form.:

Az, y) = par + Bay - (Alz,y) = aar + Yay),

where By (respectively, as) is a permutation of the set Q, and pa (respec-
tively, 1 4) is an automorphism of the group (Q;+).

An invertible algebra is called left (right) linear if it is left (right) linear
over some group (Q;+).

Definition 4 An invertible algebra (Q;X) is called left(right) alinear over
a group (Q; +), if every operation A € ¥ has the following form:

A(x,y) = paz + Bay  (Alx,y) = aaz +Yay),

where (4 (Tespectively, cy ) is a permutation of the set Q, and 4 (respectively,
a) is an antiautomorphism of the group (Q;+).

An invertible algebra is called left(right) alinear if it is left(right) alinear
over some group (Q;+).

Proposition 1 The invertible algebra (Q;X) is left linear (alinear) if and
only if the dual algebra (Q;X*) is right linear (alinear).

Definition 5 An invertible algebra (Q;X) is called linear (alinear) over a
group (Q;+) if every operation A € ¥ has the following form.:

A(z,y) = paz +ta +Yay,

where pa, Y4 are automorphisms (antiautomorphisms) of the group (Q;+)
and ta are fixed elements of Q.

An invertible algebra is called linear (alinear) if it is linear (alinear) over
some group (Q;+).

3
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Theorem 1 [9] If the following hyperidentity with permutations
P AP B(x,y), z) = Blas"Px, a P A(ai Py, af P 2)) (1)

is valid in the algebra (Q;X) for all A, B € ¥ and for some permutations

oziA’B(i =1,...,6), then the algebra (Q; ) is principally isotopic to group.
Conversely, if the invertible algebra (Q; X)) is principally isotopic to group

(Q; ), then for all A, B € ¥, there exist permutations af"B(z’ =1,...,6) such

that the hyperidentity with permutations is valid in the algebra (Q; ).
Theorem 2 [9] If the following hyperidentity with permutations

ozf’BA(o/;’BB(ag"Bx, af’Bz), a?’BB(ag"Bw, a?’Bv)) =

2
A(a?’BB(w, z),ag"BB(x,v)) @)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-

mutations aZA’B(i =1,...,9), then the algebra (Q;X) is principally isotopic

to an abelian group.

Conversely, if the invertible algebra (Q;X) is principally isotopic to an
abelian group (Q;-), then for all A, B € X3, there exist permutations ozZA’B(i =
1,...,9) such that the hyperidentity with permutations 18 wvalid in the
algebra (Q;X).

Theorem 3 [5]/ Let the nonempty set QQ form a quasigroup under four op-
erations A; (i=1,2,3,4). If these operations satisfy the following identity:

AI(A2<x>y)vZ) = A3(x’A4(y7Z))> (3)

then there exists an operation () under which @ forms a group isotopic to
all these four quasigroups.

Theorem 4 [2] Let the nonempty set Q) form a quasigroup under siz oper-
ations A; (i=1,2,3,4,5,6). If these operations satisfy the following identity:

Ai(Az(2,y), As(2,u)) = As(As(2, 2), As(y, w)), (4)

then there exists an operation (-) under which Q forms an abelian group
1sotopic to all these siz quasigroups, i.e.,

Ai(z,y) =ax- By,  Asz,y) = xx- @y,

Ap(z,y) = a '(yz - 0y),  As(z,y) =X '(yz - by),
As(z,y) = B0z - y),  As(z,y) = ¢ ' (6z - Py),
where o, B,7,9, X, v, Y, 0 are permutations of Q.
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Theorem 5 [10] The class of all left linear invertible algebras is character-
ized by the following second-order formula:

A(B(z, B (u,y)), 2) = B(A(z, A (u,u)), B~ (u, A(y, 2))),

for all z,y,u,z € Q and all A, B € X..

Theorem 6 [10] The class of all right linear invertible algebras is charac-
terized by the following second-order formula:

B(z, A(T Ay, u), 2)) = A(TA(B(z,y),u), B("' B(u, u), 2)),

forall z,y,u,z € Q and all A, B € X..

Theorem 7 [7] The invertible algebra (Q;X) is linear if and only if the
following second-order formula:

A(B(l’, y)v B(u’ U)) = A(B(x> u)’ B(a373y7 U))a

where

ay Py = 'B(AT (u, A(B(T' B(u,u), y), u), B (u,u))

u

is valid in the algebra (Q; XU X1 UTIY) for all A, B € ¥.

Theorem 8 [7/ The invertible algebra (Q;X) is alinear if and only if the
following second-order formula:

A(B(x,y), B(u,v)) = A(B(B;""v,y), B(u, 7)),
where
BFv = "'B(TA(A(, B(T' B(x,2),v)), ), B~ (x,2))
is valid in the algebra (Q; X U XU ~'Y) for all A, B € .
Let (@;X) be an invertible algebra and F' be a second-order formula.

Then F* is a second-order formula, where all the operations A € X are
replaced appropriately by the operations A* € ¥*.

Theorem 9 If the second-order formula F' is valid in the invertible algebra
(@Q; ), then the second-order formula F* is valid in the invertible algebra

(@Q;%%).

5
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2 Linear invertible algebras

2.1 Left linear invertible algebras

Proposition 2 If one of the following hyperidentities with permutations

A(B(xay)wZ) = B(af Ba: a2 A( 3 yaaf BZ))? (5)
A(B(z,y),2) = Al ?Bl’ 042 A( 3 Y, %)), (6)
VPA(B(x,y), 2) = Blag Pa, a5 A(aq "y, a5 7 2)) (7)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-
mutations aZA’B(i =1,...,5), then the algebra (Q;X) is left linear.

Proof. First, we prove the statement for identity . According to The-
orem [I if the identity is valid in the algebra (Q;X), then (Q;X) is
principally isotopic to a group, i.e., there exists a group (Q; +) such that for
every A € X

A(Z‘, y) = AT + ﬁAya
where aiq, B4 € Sg. Let us rewrite the identity (5)) by using the last equality:

aslapr + Bpy) + Baz = aBa1 By 4 63042 (aAa?’By + ﬁAaf’Bz).

By taking z = 8,0 (0 is the neutral element of the group (Q;+)) we get:

aslapr + Ppy) = ozBa1 By 4 53% (aAaf’By + 5Aaf’35210)

or

aa(z +y) = apaiPagle + Bpas P (aacs P 85y + Baas P 5710).

The last equality shows that a4 is quasiautomorphism of the group (Q;+).
Then we have

QAT = QAT + Cy,

where p4 € Aut(Q;+),ca € @ and the following equality is valid:

A(z,y) = pax + ca+ Bay.

Since A is an arbitrary operation from X, the algebra (Q;X) is left linear.
Secondly, we will prove the statement of the theorem for the identity
(6). Let (6) holds in (Q;X) for all A,B € ¥ and for some permutations
fB(z = 1,2,3). The identity is a particular case of the associativity
equation (|3 , where

Al(x’y) :A<x7y)v A2($7y>:B(xay)7
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As(z,y) = A(Pz)y),  Ag(z,y) = a5 BPA(f Pz, y).

According to Theorem [3] the quasigroups Ay, Ay, Az, Ay are isotopic to the
same group (Q;-), hence, the operations A, B are isotopic to (Q;-). Since
the operations A and B are arbitrary, all operations from ¥ are isotopic to
this group.

For every X € X, let us define the operation:

v 4y = X(Ry,w L), (8)

where a,b are some fixed elements from (). The operation + is a loop
X
operation with the identity element 0x = X(b,a). Obviously, (Q;+) is a
X

loop isotopic to the group (Q;-). Hence, by Albert’s theorem, it is a group.
For every X € X, each (Q;+) is a group. Hence, (@ can be rewritten in the
X

following form:

Ruo(Rpax —g Lpupy) jx_ Lapz = RA,aOéf’BiU jx_ LA,baz P(Ry, g0 P + Lapz).

Taking z = L;leO 4 in the last equality, we have

Ruo(Rpax _E Lpyy) = RA,aO/l4 x + L, bOég PR, aOéf? Py,

Ryl -g Y) = e ‘X Ba,BY, (9)

ABp AB— .
where g p = Ra .00 Ry a, Bap = La ba2 RA a0’ LBlb are permutations

of the set (). Since the operations A and B are arbitrary, we can take A = B
in (9). Hence,

Ryo(x j‘— Y) = a AT Jg Ba,ay. (10)
From @ and we have

—1 —1 _ —1 —1
Qg BT ‘g BapY = Qg AT ‘X Ba.aY;

T+ Y =74,B% + 04,BY, (11)
A B

where v4 5 = ay BaAA and 04 p = BA BBAA are permutations of the set ().
Hence, together with . we get

Ry —]f; Y) = YA,BOA BT vg d4,BBA,BY,

7
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i.e., R4, is a quasiautomorphism of the group (Q); +). Since A is arbitrary,
B
R4, is a quasiautomorphism of the group (Q;+) for all operations A € X.
B
According to we have

A(z,y) = Raor —iA- Lapy.

This, according to , gives:

Alw,y) = 8 57+ 0550, (12)

where 0}473 = vaplla, and 012413 = 04,5L .y are permutations of the set Q.
Thus, we can represent every operation from > by the operation +.
B

Let + = +. We prove that 0 5 is a quasiautomorphism of the group
B b

(@;+). To do it, take z = (6% ) ~'0p in (8) and rewrite this equality in the
form:

04 5(Rpat + Lpyy) + 0% pz = Ginaf’Brx + Hinaf’B(HiLBa?’By + 0% 52),

1 1 A,B 2 A,Bpl A,B
0ap(Rpav + Lppy) = 04 ot "w + 05 gay, 0,4 gaz ™ y.

The last equality shows that 9;1 p 1s a quasiautomorphism of the group
(Q;+). According to [[3], Lemma 2.5] we have

1
0457 = paT + 54,

where ¢4 is an automorphism of the group (Q;+) and s, is some element
of the set (). Hence, it follows from that

A(Q?, y) = QAT + ﬁAya (13)

where S y = sa4 + 91247 Y. Since A is an arbitrary operation, we obtain that
all operations from > can be represented in the from , i.e., the algebra
(Q;X) is left linear.

Finally, here is the proof for the identity . According to Theorem ,
if the identity is valid in the algebra (Q;X), then (Q;X) is principally
isotopic to a group, i.e., there exists a group (@Q; +) such that for every A € &

A('Ia y) = QT + BAya

where aiq, B4 € Sg. Let us rewrite the identity (7)) by using the last equality:

oM (ax(apz + Bry) + Baz) = apasPr + Bpas® (el Py + BaaiP2).

By doing the following replacements r = az'w,y = 85'y, 2 = 55 '2 we get:

ozf’B(ozA(x +y)+2) = ozBaf’Boz;x + BBaf;’B(ozAaf’Bﬁ]gly + 6,40/54’36;12).
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According to Lemma , a4 is quasiautomorphism of the group (Q;+), i.e.,
QAT = QAT + Ca,
where 4 € Aut(Q;+),ca € Q. Then the following equality is valid:
A(z,y) = paz + ca+ Bay.
Since A is an arbitrary operation from ¥, the algebra (Q; X) is left linear. O

Theorem 10 The invertible algebra (Q;X) is left linear if and only if for
all A, B € ¥ and for some permutations aiA’B(i =1,...,4) the hyperidentity
with permutations (3)) is valid in the algebra (Q; ).

Proof. If the invertible algebra (Q); X)) is left linear, then according to The-
orem | the following formula is valid in that algebra:

A(B(x, B~ (u,y)), 2) = B(A(z, A (u,u)), B~ (u, Aly, 2)))-
The formula may be rewritten in the following form:
A(B(SE, y)u Z) = B(RA,A_l(u,u)xy LE,IUA<LB,UZ/7 Z))

By taking u = a, where a is a fixed element from () we get the identity ,
where

AB _ AB _ y-1 _AB _ AB _
ay” = Raa-1aa), @ =Lg,, a3 =Lpa, oy =€

The sufficiency follows from the Proposition [2| O

2.2 Right linear invertible algebras

Proposition 3 If one of the following hyperidentities with permutations

Az, B(y,2)) = AlaiP Az, a3Py), afB-2), (14)
Ale, By, ) = Ao A(af Pz, afBy), a®2), (15)
oA, B(y, 2) = Blaf P Ao Pa,alPy),adP2)  (16)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-
mutations o/ (i = 1,...,4), then the algebra (Q;X) is right linear.

Proof. Follows from the Proposition [I] and the Theorem [9 O

Theorem 11 The invertible algebra (Q; %) is right linear if and only if for
all A, B € ¥ and for some permutations af’B(i =1,...,4) the hyperidentity
with permutations is valid in the algebra (Q; ).

9
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Proof. If the invertible algebra (Q;X) is right linear, then according to
Theorem [f] the following formula is valid in that algebra:

Bz, A(T Ay, u), 2)) = A(T'A(B(z,y), u), B("' B(u, u), 2)).
We may rewrite the formula in the following form:
B(z, Ay, z)) = A(RZ}uB(x, Rawy), Re.B-1(uu)?)-

By taking u = a, where a is a fixed element from (), we get the identity ,

where
AB _ p-1 _AB _ AB _ AB _
Qp = RA,a’ a0 =603 = Raq 04" = Rp p-1(a,a)-

The sufficiency follows from the Proposition [3| O

2.3 Linear invertible algebras

Proposition 4 If one of the following hyperidentities with permutations

0P A(B(a,y), ) = BlaiPe, APy, ofP2)), (17)
aPA(B(x,y), 2) = B(ad"Pr, 0P A(y, alvP2)), (18)
A" B(x,y), 2) = Bloy P, Ay, a5 2)) (19)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-
mutations oz?’B(i =1,...,4), then the algebra (Q;X) is linear.

Proof. According to Theorem [I} if each of the above-mentioned identities
is valid in the algebra (Q; ), then (Q; X)) is principally isotopic to a group,
i.e., there exists a group (Q;+) such that for every A € &

Az, y) = aax + Pay, (20)

where a4, B4 € Sg.
At first, we will prove the proposition for the identity . Let us rewrite

the identity by using :
o (aalapz + Bry) + Baz) = apay Pz + Bplascy Py + Bacy ' z).
After replacement of variables we get:
aPlaa(z +y) + 2) = agadPag'e + Belaaas P Baly + Baai P51 2).

According to Lemma , ay and fp are quasiautomorphisms of the group
(Q; +) for every A,B € X, i.e.,

QAT = QAT +ca,  Pay =da+Yax
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where pa,14 € Aut(Q;+),ca,da € Q. Thus,

Az, y) = pax +ua + Pay,

where uq = c4 + d4. Hence, the algebra (Q;X) is linear.
Secondly, we will prove the proposition for the identity . Let us

rewrite the identity by using (20)):
a?P(aa(apz + Bpy) + Baz) = apay’Pr + Bpas ® (aay + facy " 2).

After replacement of variables we get:

o/f’B(ozA(x +y)+z2)= ozBo/;’Boz]glx + 630/34’3(0%5]513; + BAozf’Bﬁglz).

According to Lemma , a4 and « Aﬁgl are quasiautomorphisms of the group
(Q; +) for every A, B € ¥, thus fp is a quasiautomorphism as well (the set
of quasiautomorphisms forms a group). Hence, the algebra (Q;X) is linear.

Finally, here is the proof of the proposition for the identity . Let us

rewrite the identity by using :
aa0i"B(apz + Bpy) + Baz = apad e+ Bplaay + Baas P 2).

After replacement of variables we get:

aAa’f’B(x +y)+z= aBOz’;’Bagla: + BB(OzAﬁgly + ﬁAa?’Bﬁglz).

According to Lemma , bp and « Aﬁgl are quasiautomorphisms of the group
(Q;+) for every A, B € ¥, thus, a4 is a quasiautomorphism as well (the set
of quasiautomorphisms forms a group). Hence, the algebra (Q; ) is linear.
O

Theorem 12 The invertible algebra (Q;X) is linear if and only if for all
A, B € ¥ and for some permutations @A’B(i =1,...,3) the following hyper-

identity with permutations
A(B(x,y),2) = Alai""z, B(ay Py, a3""2)), (21)
is valid in the algebra (Q; ).

Proof. Let holds in (Q; X) for all A, B € ¥ and for some permutations
oziA’B(i = 1,2,3). The identity is a particular case of the associativity
equation (3)), where

Al(x’y) :A<$,y), Az(x,y)zB(x,y),

As(z,y) = A(a"Pryy), Az, y) = BBz, a5Py).

11
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According to Theorem [3, the quasigroups Ay, A, A3, A4 are isotopic to the
same group (@;-), hence, the operations A, B are isotopic to (Q;-). Since
the operations A and B are arbitrary, we obtain that all operations from
are isotopic to this group.

For every X € X, let us define the operation:

x —)l(— Yy = X(R;(’laac, L;(}by), (22)

where a,b are some fixed elements from (). The operation + is a loop
X
operation with the identity element 0y = X(b,a). Obviously, (Q;+) is a
X

loop isotopic to the group (Q;-), Hence, by Albert’s theorem, it is a group.
For every X € ¥, each (Q;+) is a group. Thus, |} can be rewritten in the
X

form:

Ruo.(Rpax -}3; Lgpy) jx_ Lapz = Ra.oiPa jx_ Lap(Raacy ™y ;i; LapasPz).
Taking z = LZ}bO 4 in the last equality, we have
Rao(Rpox vg Lppy) = RagoiPz ‘X Lap(Rapas ™y j; LA,bOééq’BLZ,lbO)

After replacement of parameters we get

Rz —g Y) = A px ;il‘ Ba,BY, (23)

where ay p and B4 p are permutations of the set (). Since the operations A
and B are arbitrary, we can take A = B in . Hence,

Ry oz + Y) = a AT + Ba,ay. (24)

From and we have

—1 —1 —1 —1
Qy BT g BapY = Qg AT j BaaYs

T+ Y ="74,B% + 04,BY, (25)
A B

where y4 5 = a;l,lBO‘A,A and dsp = BZ}BBA,A are permutations of the set Q).
Hence, according to we get

Ry —]f; Y) = YA,BOA BT vg d4,884,BY,

i.e., R, is a quasiautomorphism of the group (Q;+). Since A is arbitrary,
B

R4, is a quasiautomorphism of the group (Q); +) for all operations A € X.
B
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According to (22)) we have

A(z,y) = Raor jx_ Lapy.

This, according to (25)), gives:

A(aja y) = 9,14,B$ _g 9,24,By7 (26)

where 9}43 = Yaplla, and 9,24,3 = 04,5L .y are permutations of the set Q.
Thus, we can represent every operation from ¥ by the operation +. Let us
B

fix B and denote + = +, then we can write in the following way:
B

A(z,y) = 04z + 03y, (27)

Let us rewrite by using :
04 (05 + Ohy) + 04z = Ohai Px + 03 (045" y + 03057 2)

According to Lemma , 0y and 0% are quasiautomorphisms of the group

(Q;+) and thus
A(z,y) = pax + ca + ay,

where o4, 94 € Aut(Q;+),ca € Q.
Conversely, if the invertible algebra (Q;Y) is linear, then according to
Theorem [7] the following second-order formula is valid in that algebra:

A(B(:L‘, y)? B(u) Z)) = A(B(xv u)’ B(Ozf’By, z))7
where

aBy = 1B(A T (u, A(B("'B(u, ), y),u)), B (u, u)).

u

The formula may be rewritten in the following form:
A(B(z,y), Lpuz) = A(Rx, BlaiPy, 2)).

By taking u = a, where a is a fixed element from (), we get the identity ,
where

AB _ AB _ AB AB _ ;-1
ay” = Rpa,0p7 = a7, a3 = L,

13
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3 Alinear invertible algebras

3.1 Left alinear invertible algebras
Proposition 5 If the following hyperidentity with permutations
A(B(x,y),2) = B(ai""y, 05" Az 2, P)), (28)

is valid in the invertible algebra (Q; %) for all A, B € 3 and for some per-
mutations af’B(i =1,...,4), then the algebra (Q;X) is left alinear.

Proof. Let us rewrite the identity in the following way:
A*(z, B(x,y)) = B* (a5 " A(a3"" 2,01 ), a7"y),

where X*(z,y) = X(y, ). According to Theorem [I] VA € X is principally
isotopic to the group (Q;+),i.e. for every A € ¥:

A(z,y) = aaz + Bay,
where as, B4 € Sg. Let’s rewrite the identity by using the last equality:
aa(r +y)+ 2z = apal 851y + Bpay P (aaay TB 2 + Baa) Pag'a).
By taking z = 0 (0 is the neutral element of the group (Q;+)) we get:
aa(r +y) = apai" "By + Bray " (aaay ” 6110 + Baay P ag ).

The last equality shows that a4 is an antiquasiautomorphism of the group
(Q; +) for every A,B € %, i.e.

QAT = QAT + Ca,
where P4 is an antiautomorphism of (Q; +) and ¢4 € Q. Thus,
A(z,y) = Pax + ca + Bay.
Since A is an arbitrary operation from X, we obtain that the algebra (Q; %)

is left alinear. OJ

3.2 Right alinear invertible algebras
Proposition 6 If the following hyperidentity with permutations
A(ai"? B(x,y), 2) = B(ag""y, A(a3""z, a3 ), (29)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-
mutations aiA’B(i =1,...,4), then the algebra (Q;X) is right alinear.

Proof. Follows from the Proposition [I] and the Theorem [9 O
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3.3 Alinear invertible algebras
Proposition 7 If the following hyperidentity with permutations
A(B(z,y),2) = B(a}"Py, A(ay""z, a5 ")) (30)

is valid in the invertible algebra (Q;X) for all A, B € ¥ and for some per-
mutations ozZA’B(i =1,...,3), then the algebra (Q;X) is alinear.

Proof. Let us rewrite the identity (30]) in the following way:
A"(2, B(z,y)) = B*(A(ay""z, 05" x), 0y Py),

where X*(z,y) = X(y,z). According to Theorem [I every A € ¥ is princi-
pally isotopic to the group (Q;+), i.e., for every A € 3:

A(LE, y) = apr + BA,%
where ay, 4 € Sq. Let us rewrite the identity by using the last equal-
ity:
aalapr + Bpy) + Bpz = apal’y + Be(aacy Pz + Baay Pr).  (31)

By taking z = 850 in (31)) (0 is the neutral element of the group (Q;+))
we get:

aalapz + Bpy) = apai Py + Be(asas 5510 + Baas Pr).
The last equality shows that a4 is an antiquasiautomorphism of the group
(Q; +) for every A, B € ¥. Further, let us take y = (o"")"1a5'0 in

,B)fl

(as(apz + Bpla] a5'0) 4 Bpz = Belarcd Pz + BrasPr).

The last equality shows that Sp is an antiquasiautomorphism of the group
(Q; +) for every A, B € X, too. Thus,

A(z,y) = @ax + ca + Yay,

where 104, P4 are antiautomorphisms of (Q;+) and c4 € Q.

Since A is an arbitrary operation from X, the algebra (Q;Y) is alinear.
O

Theorem 13 The invertible algebra (Q;X) is almear if and only if for all
A, B € ¥ and for some permutations af\ B(z ,3) the following hyper-
wdentity with permutations

A(B(z,y),2) = A(ai""y, Blag""z, a3 7)), (32)

is valid in the algebra (Q; ).
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Proof. Let us rewrite the identity in the following way:
A*(z, Blz,y)) = A"(B(ay Pz, a5 Px), 0 Py).

From the last equality we can conclude that VA € ¥ is isotopic to a group.
Similarly to the case of linear invertible algebras, we get that every operation

zty= ARy, Lyhy) (33)

is a group with the identity element Ox = X (b, a). Let us rewrite the identity

by using equality (33):

Rao(Rpax —Et Lgpy) j Lapz =

34
RAﬂozf’By —A— LA7b(RAyaO/24’BZ _J{; LA,bOé?’BZL'). ( )

By taking z = L;}bOA in ((34) we get:
Rao(Rp o+ Lpyy) = Raooi™"y + Lap(Raas " L3304 + Lagoi ")
or
Ry(z -Et Y) = aaBY jx_ Ba,BT, (35)

where oy g, Ba,p € Sg. Since the operations A and B are arbitrary, we can
take A = B in . Hence,

Raa(z 7; Y) = aaay -iA- Baazx. (36)

From and we have

—1 —1 —1 —1
Qy BT ‘g BapY = Qg AT j: BaaYs

= ) 37
xry ’YA,Bx‘g A,BY, (37)
where v4 5,045 € Sg. Hence, according to (37) we get
Ryl + Y) = YA,BQA BT + 0a,B04,BY;

i.e., R4, is a quasiautomorphism of the group (Q); +). Since A is arbitrary,
B
R4, is a quasiautomorphism of the group (Q;+) for all operations A € X.
B
According to we have

A(I’, y) = RA,ax :Iq' LA,by'
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This, according to , gives:
Az,y) = G,IA,B‘T g 9%,3% (38)

where 0}473 = YaplRa, and 912473 = 04, L .y are permutations of the set Q.
Thus, we can represent every operation from ¥ by the operation +.Let us
B

fix B and denote 4+ = +, then we can write in the following way:
B

A(z,y) = Oz + 0y, (39)
Let us rewrite the identity by using :
04 (0 + 05y) + 032 = 04077y + 63(0p05""2 + Oa5"%x).  (40)

By taking z = (#%)7'0 in (0 is the neutral element of the group (Q;+))
we get:

0105+ Ohy) = 0303 "y + 0305057 (03) 710 + Oh05 " x).

The last equality shows that 0} is an antiquasiautomorphism of the group
(Q; +) for every A, B € X. Further, let us take y = (a;"")=1(6%)~10 in (38):

Oa(ha + 65(0)70) + 03z = 0% (603 "= + 0303 a)

The last equality shows that §% is an antiquasiautomorphism of the group
(Q;+) for every A, B € ¥, too. Thus

A(z,y) = @ax + ca + Yay,

where 104, B4 are antiautomorphisms of (Q;+) and ¢4 € Q. Since A is an
arbitrary operation from X, the algebra (Q; ) is alinear.

Conversely, if the invertible algebra (Q; ) is alinear, then according to
Theorem [8| the following second-order formula is valid in that algebra:

A(B(x,y), B(u,v)) = A(B(8;""v,y), B(u, 2)),
where
P = T'B(TM A(A(z, B(T' B(x,2),v)),2), B~ (x,)),
The formula may be rewritten in the following form:
A(Lp.y, B(u,v)) = A(B(84Pv,y), Rp_.u).

By taking x = a, where a is a fixed element from () we get the identity ,
where
A A 1 A _
231 = LB,aa o2 = RB,lav Qg = (ﬁa) 1'

O



18 S. S. DAVIDOV AND D. A. SHAHNAZARYAN

4 Invertible algebras of mixed type of linear-
ity
Definition 6 An invertible algebra (Q;X) is called an invertible algebra of

mized type of linearity of the first (second) kind over a group (Q;+), if every
operation A € X3 has the form

Alz,y) = oar +eat+ ¥y (Alw,y) =Paz + ca+ Yay),

where @A, 4 € Aut(Q;+), v 4, @4 are antiautomorphisms of (Q;+), and c4
is a fized element from Q.

4.1 Invertible algebras of mixed type of linearity of
the first kind

Proposition 8 If the following hyperidentity with permutations
A(B(x,y),2) = B(ai""x, A(ay Pz, a5""y)), (41)

is valid in the invertible algebra (Q;X) for all A, B € 3 and for some permu-
tations a?’B(i =1,...,3), then the algebra (Q;X) is mized type of linearity
of the first kind.

Proof. Let us rewrite the identity in the following way:

where X*(z,y) = X(y, ). According to Theorem [1 every A € ¥ is princi-
pally isotopic to the group (Q;+), i.e., for every A € %

A(z,y) = aar + Bay,

where a4, B4 € Sg. Let us rewrite the identity by using the last equal-
ity:

aalasr + Bry) + Bez = apay P + Be(aacy 2 + Bacy Py).  (42)
By taking x = (af’B)*la];lO in |D (0 is the neutral element of the group
(Q;+)) we get:

aalap(0r?) a0+ Bry) + Brz = Belaacs Pz + Baayy).

The last equality shows that Sp is an antiquasiautomorphism of the group
(Q; +) for every A, B € ¥. Further, let us take z = 85'0 in :

aaapz + Bay) = apai"Pz + Bplasas P B510 + Bacs Py).
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The last equality shows that a4 is a quasiautomorphism of the group (Q; +)
for every A, B € ¥. Thus,

A(z,y) = ax + ca + Yay,

where 14 is an antiautomorphism of (Q;+) and ¢4 € Aut(Q;+),ca € Q.
Since A is an arbitrary operation from Y, the algebra (Q;Y) is a mixed type
of linearity of the first kind. [J

4.2 Invertible algebras of mixed type of linearity of
the second kind

Proposition 9 If the following hyperidentity with permutations
A(B(x,y), 2) = B(ai""y, A(ayPw, 05" 2)), (43)

is valid in the invertible algebra (Q; %) for all A, B € 3 and for some permu-

tations a?’B(z’ =1,...,3), then the algebra (Q;X) is mized type of linearity

of the second kind.
Proof. Let us rewrite the identity in the following way:
A(B*(,y),2) = B(ai""y, A(ay""w, a5""2)),
where X*(z,y) = X(y,z). According to Theorem [1] every A € X is princi-
pally isotopic to the group (Q;+), i.e., for every A € X
Az, y) = aax + Bay,

where a4, 4 € Sq. Let us rewrite the identity by using the last equal-
ity:

as(apr + Bpy) + Baz = apaiPy + Bplasay Pr + BacyPz).  (44)
By taking z = 3,0 in (44) (0 is the neutral element of the group (Q;+))
we get:

aalapz + Bpy) = apai Py + Be(asay P + Baay ™ 5110).

The last equality shows that a4 is an antiquasiautomorphism of the group

(Q;+) for every A, B € ¥. Further, let us take y = (a"?)La50 in :
axlapz + Bpla™®)Lap0) 4+ faz = Bplasas Pz + Bras P2).

The last equality shows that Sp is a quasiautomorphism of the group (Q; +)

for every A, B € ¥. Thus,

A(z,y) = Pax + ca + Vay,

where P4 is an antiautomorphism of (Q;+) and ¥4 € Aut(Q;+),ca € Q.
Since A is an arbitrary operation from Y, the algebra (Q;Y) is a mixed type
of linearity of the second kind. [J

19
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