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Abstract

In this paper we introduce several iterated convolutions and establish weighted Lp, p >

1,− norm inequalities for them by using the Hölder’s inequality and the transform of inte-

grals. Applications to wave and heat equations, Klein-Gordon equation are also considered.

Especially, we will see their applications to inhomogeneous differential equations.
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1 Introduction

Many boundary value problems and initial value problems in applied mathematics, mathe-

matical physics, and engineering sciences can be effectively solved by the use of the integral

transforms. In order to give physical interpretations of the solutions, various convolution

type transformations were introduced. The transform method combined with the convolu-

tion theorem provides an elegant representation of the solution for many boundary value and

initial value problems. Therefore, the estimates for the solutions of many equations usually

base on the convolution inequalities. As we know, the Fourier and Laplace convolutions are

certainly the best known of the convolution type transformations. We restate the Young’s

inequality, which is a fundamental tool to estimate the Fourier convolution here.
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Let f ∈ Lp(Rn), g ∈ Lq(Rn), and p−1 + q−1 > 1. The Young’s inequality (see [15]) says

that the Fourier convolution

f ∗ g :=

∫
Rn

f(y)g(x− y) dy

belongs to Lr(Rn), where r−1 = p−1 + q−1 − 1, and moreover,

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (1)

Note that for the typical case of f, g ∈ L2(Rn), the inequality (1) does not hold. In [14], by

considering the Lp - norms in weighted spaces, S. Saitoh gave convolution norm inequalities

in the form

‖f ∗ g‖Lp(Rn,ρ) ≤ ‖f‖Lp(Rn,ρ)‖g‖Lp(Rn,ρ). (2)

Unlike the Young’s inequality, inequality (2) holds also in case p = 2.

In recent publications ([5, 11]), the first two authors have given several new type of

convolution inequalities in weighted Lp(Rn, ρ) (p > 1) spaces in the following form∥∥∥((F1ρ1) ∗ (F2ρ2))(ρ1 ∗ ρ2)
1
p
−1
∥∥∥
Lp(Rn)

≤ ‖F1‖Lp(Rn,ρ1) ‖F2‖Lp(Rn,ρ2). (3)

and derived its applications (see [5, 6, 11]).

Furthermore, in [10] we generalized inequality (3) to the iterated Fourier convolution,

namely ∥∥∥∥∥∥
(

m∏
j=1

∗(Fjρj)

)(
m∏
j=1

∗ρj

) 1
p
−1
∥∥∥∥∥∥
Lp(Rn)

≤
m∏
j=1

‖Fj‖Lp(Rn,ρj). (4)

From the above inequality, we not only derived an important extension of Saitoh’s inequality

([13, Theorem 1.2]) but also obtained several inequalities for the Fourier transform which

have been successfully implemented in many L2− weighted integral estimates for the so-

lutions of partial differential equations. As we see from the proof the inequality (4), our

basic idea comes from the Hölder’s inequality and the transform of integrals. So, for various

type iterated convolutions, we can also obtain similar type iterated convolution inequalities.

Indeed, several weighted Lp, p > 1, norm inequalities in iterated Laplace convolutions ([9])

were derived by a simple and general principle whose L2 version was given by S. Saitoh ([12])

and obtained by using the theory of reproducing kernels. These inequalities are very con-

venient for various applications to fractional differential equations in weighted Lp− spaces

(see [9] for more details).

For our specific purpose, we will introduce various iterated convolutions inequalities in

Lp(Rn, ρ) spaces.
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2 Preliminaries

Throughout this paper, by x = (x1, ..., xn), xj ∈ R, j = 1, 2, ..., n, we denote a vector in Rn.

In particular,

1 = (1, 1, ..., 1), 2 = (2, 2, ..., 2), ... (5)

We shall write x > y to denote xj > yj, j = 1, 2, ..., n. Anologously one has to understand

x ≥ y, x < y, x ≤ y.

We always assume that ρ and ρj, j = 1, · · · , q -the weight functions, to be nonnegative,

and 1 < p < ∞. When we write A ≤ B, we understand that if B is finite, then A is also

finite, and bounded above by B.

We shall denote some subsets of Rn

Rn
+(t) = {x : x ∈ Rn,0 < x < t} (6)

Rn
t = {x : x ∈ Rn, t < x <∞} . (7)

Let D be a domain in Rn, Fi(.) : D → R, i = 1, · · · , q, and ϕ(., .), ψ(., .) : D ×D → D.

Then, we introduce a convolution type integral, called the ϕ− convolution

Definition 2.1 ([14]) The ϕ− convolution of F1 and F2, denoted by F1 ∗ϕ F2, is defined by

(F1 ∗ϕ F2)(η) =

∫
D

F1(ξ)F2(ϕ(ξ,η))|ϕη(ξ,η)|dξ, (8)

when this integral exists. Here,

|ϕη(ξ,η)| := det

(
∂

∂η
ϕ(ξ,η)

)
is the Jacobian of the transformation η → ϕ(.,η).

Example 2.2 The following convolutions are particular cases of the ϕ−convolution ([1],

[4]):

• The Fourier convolution

F1 ∗F F2 :=

∫
Rn

F1(y)F2(x− y)dy, x ∈ Rn. (9)

• The Laplace convolution

F1 ∗L F2 :=

∫
Rn

+(t)

F1(τ )F2(t− τ )dτ , t ∈ Rn
+. (10)

• The Mellin convolution

F1 ∗M F2 :=

∫
Rn

+

F1(x)F2(t/x)x−1dx, t ∈ Rn
+. (11)

3
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Definition 2.3 The Fourier-Laplace convolution of G1(τ , ζ) and G2(τ , ζ) is defined by

(G1 ∗F,L G2)(ξ,η) :=

∫
Rn

+(ξ)

dτ

∫
Rn

G1(τ , ζ)G2(ξ − τ ,η − ζ)dζ. (12)

Remark 2.4 We observe that the Fourier-Laplace convolution is a special case of the ϕ−convolution.

Then, by using the Hölder’s inequality ([8, p. 106]) we have

Lemma 2.5 For non-negative functions ρj on D(j = 1, 2) such that the convolution ρ1 ∗ϕ ρ2

exists and for functions Fj ∈ Lp(D, ρjdxj), j = 1, 2; p > 1, we have the inequality

|((F1ρ1) ∗ϕ (F2ρ2))(η)|p ≤ ((ρ1 ∗ϕ ρ2)(η))p−1((|F1|pρ1) ∗ϕ (|F2|pρ2)(η)) (13)

for all η ∈ D. Equality holds here if and only if there exists a function k(η) in η such that

F1(ξ)F2(ϕ(ξ,η)) = k(η) a.e. on D. (14)

Definition 2.6 Define the ϕ− convolution product (iterated ϕ−convolution)
∏q

j=1 ∗ϕFj by

q∏
j=1

∗ϕFj(ξq) =

[
q−1∏
j=1

∗ϕFj

]
∗ϕ Fq(ξq). (15)

Under the stated assumption, we have

Lemma 2.7 For non-negative functions ρj on D such that the convolution
∏q

j=1 ∗ϕρj exists

and for functions Fj ∈ Lp(D, ρjdxj), j = 1, ..., q; p > 1, we have the inequality∣∣∣∣∣
q∏
j=1

∗ϕ(Fjρj)(ξq)

∣∣∣∣∣
p

≤

(
q∏
j=1

∗ϕρj(ξq)

)p−1 q∏
j=1

∗ϕ(|Fj|pρj)(ξq) (16)

for all ξq ∈ D. Equality holds here if and only if there exist some functions kl(ξl), ξl ∈ D,
such that

F1(ξ1)
l∏

j=2

Fj(ϕ(ξj−1, ξj)) = kl(ξl), l = 2, ..., q. (17)

Proof. We use induction on q. When q = 2, the inequality (16) and the equality statement

(17) are reduced to Lemma 2.5.

Now suppose (16) and (17) hold for some integer q ≥ 2. We claim that they also hold

for q + 1.

For each ξq+1, put

fξq+1
(ξq) =

{
q∏
j=1

∗ϕρj(ξq)ρq+1(ϕ(ξq, ξq+1))|ϕξq+1
(ξq, ξq+1)|

}(p−1)/p
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CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 5

and

gξq+1
(ξq) =

{
q∏
j=1

∗ϕ(|Fj|pρj)(ξq)ρq+1(ϕ(ξq, ξq+1))|ϕξq+1
(ξq, ξq+1)|

}1/p

× |Fq+1(ϕ(ξq, ξq+1))|.

By induction hypothesis, we arrive at∣∣∣∣∣
q+1∏
j=1

∗ϕ(Fjρj)(ξq+1)

∣∣∣∣∣ ≤
(

q∏
j=1

∗ϕ|Fjρj|

)
∗ϕ (|Fq+1ρq+1|) (ξq+1)

≤
∫
D

fξq+1
(ξq)gξq+1

(ξq)dξq.

Application of the Hölder’s inequality to fξq+1
(ξq) and gξq+1

(ξq) yields(∫
D

fξq+1
(ξq)gξq+1

(ξq)dξq

)p
≤
{∫

D

[fξq+1
(ξq)]

p/(p−1)dξq

}p−1 ∫
D

[gξq+1
(ξq)]

pdξq

=

{
q+1∏
j=1

∗ϕρj(ξq+1)

}p−1 q+1∏
j=1

∗ϕ(|Fj|pρj)(ξq+1).

Hence, we have∣∣∣∣∣
q+1∏
j=1

∗ϕ(Fjρj)(ξq+1)

∣∣∣∣∣
p

≤

(
q+1∏
j=1

∗ϕρj(ξq+1)

)p−1 q+1∏
j=1

∗ϕ(|Fj|pρj)(ξq+1). (18)

Equality holds in (18) if and only if∣∣∣∣∣
q∏
j=1

∗ϕ(Fjρj)(ξq)

∣∣∣∣∣
p

=

(
q∏
j=1

∗ϕρj(ξq)

)p−1 q∏
j=1

∗ϕ(|Fj|pρj)(ξq), (19)

and

[fξq+1
(ξq)]

p/(p−1)

∫
D

[gξq+1
(ξq)]

pdξq = [gξq+1
(ξq)]

p

∫
D

[fξq+1
(ξq)]

p/(p−1)dξq. (20)

By induction hypothesis, we have (19) and (20), and therefore the assertion follows. �

From the ϕ− convolution and the ψ− convolution, we get the following definition

Definition 2.8 Under suitable hypotheses for the ϕ− convolution F1 ∗ϕ F2 and the ψ−
convolution F1 ∗ψ F2, the (ϕ+ ψ)− convolution, denoted by F1 ∗ϕ+ψ F2, is defined by

(F1 ∗ϕ+ψ F2)(ξ) :=

∫
D

F1(τ ) [F2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ F2(ψ(τ , ξ))|ψξ(τ , ξ)|] dτ . (21)

We also define the iterated (ϕ+ ψ)−convolution by

q∏
j=1

∗ϕ+ψFj(ξq) =

[
q−1∏
j=1

∗ϕ+ψFj

]
∗ϕ+ψ Fq(ξq). (22)
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Example 2.9 The Fourier cosine convolution (see [16, 17])

F1 ∗Fc
F2(x) :=

1

(2π)
n
2

∫
Rn

+

F1(y)[F2(x+ y) + F2(|x− y|)]dy (23)

is a special case of the (ϕ+ ψ)−convolution.

Lemma 2.10 For non-negative functions ρj, j = 1, 2, on D such that the convolution

ρ1 ∗ϕ+ψ ρ2 exists, and for functions Fj ∈ Lp(D, ρj(ξ)dξ), j = 1, 2; p > 1, we have the

inequality

|(F1ρ1) ∗ϕ+ψ (F2ρ2)(ξ)|p

≤ (ρ1 ∗ϕ+ψ ρ2(ξ))p−1(|F1|pρ1) ∗ϕ+ψ (|F2|pρ2)(ξ)
(24)

for all ξ ∈ D. Equality holds here if and only if

|F2(ϕ(τ , ξ))| = |F2(ψ(τ , ξ))|, ∀ (τ , ξ) ∈ D ×D
and F1(τ )F2(ϕ(τ , ξ)) = k(ξ) a.e. on D,

(25)

for a function k(ξ) in ξ.

Moreover, we also have the following generalized result:

Lemma 2.11 For non-negative functions ρj, j = 1, 2, ..., q, on D such that there exists the

convolution
∏q

j=1 ∗ϕ+ψρj, and for functions Fj ∈ Lp(D, ρj(ξ)dξ), j = 1, 2, ..., q; p > 1, we

have the inequality∣∣∣∣∣
q∏
j=1

∗ϕ+ψ(Fjρj)(ξq)

∣∣∣∣∣
p

≤

(
q∏
j=1

∗ϕ+ψρj(ξq)

)p−1 q∏
j=1

∗ϕ+ψ(|Fj|pρj)(ξq) (26)

for all ξq ∈ D. Equality holds here if and only if

|Fj(ϕ(τ , ξ))| = |Fj(ψ(τ , ξ))|, ∀ (τ , ξ) ∈ D ×D, j = 2, ..., q, (27)

and for some functions kl(ξl), ξl ∈ D, such that

F1(ξ1)
l∏

j=2

Fj(ϕ(ξj−1, ξj)) = kl(ξl), l = 2, ..., q. (28)

Proof of Lemma 2.10 By the Hölder’s inequality, we have

|F2(ϕ(τ , ξ))ρ2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ F2(ψ(τ , ξ))ρ2(ψ(τ , ξ))|ψξ(τ , ξ)||
≤ (|F2(ϕ(τ , ξ))|pρ2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ |F2(ψ(τ , ξ))|pρ2(ψ(τ , ξ))|ψξ(τ , ξ)|)1/p

× (ρ2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ ρ2(ψ(τ , ξ))|ψξ(τ , ξ)|)(p−1)/p .

(29)

6
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For all ξ ∈ D, let

fξ(τ ) = (ρ1(τ ))(p−1)/p (ρ2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ ρ2(ψ(τ , ξ))|ψξ(τ , ξ)|)(p−1)/p

and

gξ(τ ) = (|F2(ϕ(τ , ξ))|pρ2(ϕ(τ , ξ))|ϕξ(τ , ξ)|+ |F2(ψ(τ , ξ))|pρ2(ψ(τ , ξ))|ψξ(τ , ξ)|)1/p

× |F1(τ )|(ρ1(τ ))(p−1)/p.

Application of the Hölder’s inequality to fξ(τ ) and gξ(τ ) yields

|(F1ρ1) ∗ϕ+ψ (F2ρ2)(ξ)|p ≤ (ρ1 ∗ϕ+ψ ρ2(ξ))p−1(|F1|pρ1) ∗ϕ+ψ (|F2|pρ2)(ξ). (30)

The equality holds if and only if equality holds in (29) and in (30). So we have (25). �

Remark 2.12 Similarly, for ϕj(., .) : D × D → D, j = 1, 2, ..., q, we can introduce the∑m
j=1 ϕ

j− convolution

(F1 ∗∑m
j=1 ϕ

j F2)(ξ) :=

∫
D

F1(τ )
m∑
j=1

{
F2(ϕ

j(τ , ξ))|ϕjξ(τ , ξ)|
}
dτ (31)

and for all ξ ∈ D we also have the inequality

|(F1ρ1) ∗∑m
j=1 ϕ

j (F2ρ2)(ξ)|p

≤ (ρ1 ∗∑m
j=1 ϕ

j ρ2(ξ))p−1(|F1|pρ1) ∗∑m
j=1 ϕ

j (|F2|pρ2)(ξ).
(32)

For the sake of convenience, we restate the inequality of Hardy, Littlewood and Pólya [7,

pp. 148-150] (see also [8, p. 106]) here.

Lemma 2.13 If p > 1, then[∫ ∣∣∣∑ fm(x)
∣∣∣p dx]1/p

≤
∑[∫

|fm(x)|pdx
]1/p

(33)

with equality if and only if fm(x) = Cmg(x), where Cm are constants and g(x) is an integrable

function.

3 The main results

Our main result is the following:

Theorem 3.1 For non-negative functions ρj, j = 1, 2, ..., q, on D such that the convolution∏q
j=1 ∗ϕρj exists, and for functions Fj ∈ Lp(D, ρjdxj), j = 1, ..., q; p > 1, we have the

inequality ∥∥∥∥∥∥
(

q∏
j=1

∗ϕ(Fjρj)

)(
q∏
j=1

∗ϕρj

) 1
p
−1
∥∥∥∥∥∥
Lp(D)

≤
q∏
j=1

‖Fj‖Lp(D,ρj). (34)

7
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Equality holds here if and only if there exist some functions kl(ξl), ξl ∈ D, such that

F1(ξ1)
l∏

j=2

Fj(ϕ(ξj−1, ξj)) = kl(ξl), l = 2, ..., q. (35)

Remark 3.2 From the above theorem, we can derive inequalities for iterated convolutions

obtained previously:

• For the iterated Fourier convolution
∏q

j=1 ∗F, we have ([9])∥∥∥∥∥∥
(

q∏
j=1

∗F(Fjρj)

)(
q∏
j=1

∗Fρj

) 1
p
−1
∥∥∥∥∥∥
Lp(Rn)

≤
q∏
j=1

‖Fj‖Lp(Rn,ρj). (36)

• For the iterated Laplace convolution
∏q

j=1 ∗L, we have ([10])∥∥∥∥∥∥
(

q∏
j=1

∗L(Fjρj)

)(
q∏
j=1

∗Lρj

) 1
p
−1
∥∥∥∥∥∥
Lp(Rn

+)

≤
q∏
j=1

‖Fj‖Lp(Rn
+,ρj). (37)

• For the iterated Mellin convolution
∏q

j=1 ∗M, we have ([10])∥∥∥∥∥∥
(

q∏
j=1

∗M(Fjρj)

)(
q∏
j=1

∗Mρj

) 1
p
−1
∥∥∥∥∥∥
Lp(Rn

+)

≤
q∏
j=1

‖Fj‖Lp(Rn
+,ρj). (38)

Proof of Theorem 3.1 From Lemma 2.7, we have∣∣∣∣∣
q∏
j=1

∗ϕ(Fjρj)(ξq)

∣∣∣∣∣
p( q∏

j=1

∗ϕρj(ξq)

)1−p

≤
q∏
j=1

∗ϕ(|Fj|pρj)(ξq). (39)

Now, by taking integration of both sides of (39) with respect to ξq on D we obtain the

inequality∫
D

∣∣∣∣∣
q∏
j=1

∗ϕ(Fjρj)(ξq)

∣∣∣∣∣
p( q∏

j=1

∗ϕρj(ξq)

)1−p

dξq ≤
∫
D

q∏
j=1

∗ϕ(|Fj|pρj)(ξq)dξq.

Here we have, by definition,∫
D

q∏
j=1

∗ϕ(|Fj|pρj)(ξq)dξq =

∫
D

∫
D

[
q−1∏
j=1

∗ϕ(|Fj|pρj)(ξq−1)

]
|Fq(ϕ(ξq−1, ξq))|p

ρq(ϕ(ξq−1, ξq))|ϕξq
(ξq−1, ξq)|dξq−1dξq,

which is, by the Fubini’s theorem and the change of variables xq = ϕ(ξq−1, ξq),

=

∫
D

[
q−1∏
j=1

∗ϕ(|Fj|pρj)(ξq−1)

]
dξq−1

∫
D

|Fq(xq)|pρq(xq)dxq.

8
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Therefore, ∫
D

∣∣∣∣∣
q∏
j=1

∗ϕ(Fjρj)(ξq)

∣∣∣∣∣
p( q∏

j=1

∗ϕρj(ξq)

)1−p

dξq ≤
q∏
j=1

∫
D

|Fj(x)|pρj(x)dx. (40)

Raising both sides of the inequality (40) to power 1/p yields the inequality (34).

Equality holds here if and only if equality holds in Lemma 2.7, and we have (35). �

We now show the inequality for a sum of iterated ϕ− convolution

Corollary 3.3 Let functions ρj,m be non-negative on D such that the convolution
∏q

j=1 ∗ϕρj,m(ξq,m)

exists. Then, we have the inequality for the sum of iterated ϕ− convolution∥∥∥∥∥∥
n∑

m=1

(
q∏
j=1

∗ϕ(Fj,mρj,m)

)(
q∏
j=1

∗ϕρj,m

) 1
p
−1
∥∥∥∥∥∥
Lp(D)

≤
n∑

m=1

q∏
j=1

‖Fj,m‖Lp(D,ρj,m)

(41)

for functions Fj,m ∈ Lp(D, ρj,mdξj,m), j = 1, ..., q; m = 1, ..., n, p > 1. Equality holds here

if and only if there exist some functions kl,m(ξl,m), ξl,m ∈ D, such that

F1,m(ξ1,m)
l∏

j=2

Fj,m(ϕ(ξj−1,m, ξj,m)) = kl(ξl,m), l = 2, ..., q, m = 1, ..., n, (42)

kq,m(x)

q∏
j=1

∗ϕρj,m(x) = Cmh(x), x ∈ D, Cm : constants, m = 1, ..., n, (43)

where h(x) is an integrable function.

Proof. By Lemma 2.13, we first observe that∥∥∥∥∥∥
n∑

m=1

(
q∏
j=1

∗ϕ(Fj,mρj,m)

)(
q∏
j=1

∗ϕρj,m

) 1
p
−1
∥∥∥∥∥∥
Lp(D)

≤
n∑

m=1

∥∥∥∥∥∥
(

q∏
j=1

∗ϕ(Fj,mρj,m)

)(
q∏
j=1

∗ϕρj,m

) 1
p
−1
∥∥∥∥∥∥
Lp(D)

,

which is, by Theorem 3.1,

≤
n∑

m=1

q∏
j=1

‖Fj,m‖Lp(D,ρj,m).

The equality holds if and only if for an integrable function h(x)∣∣∣∣∣
q∏
j=1

∗ϕ(Fj,mρj,m)(x)

∣∣∣∣∣
p( q∏

j=1

∗ϕρj,m(x)

)1−p

=

q∏
j=1

∗ϕ(|Fj|pρj)(x) = Cmh(x),

where Cm are constants. Thus the Corollary is proved. �

9
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Corollary 3.4 For non-negative functions ρj on Rn×Rm
+ such that the convolution

∏q
j=1 ∗F,Lρj

exists, and for functions Fj ∈ Lp(Rn × Rm
+ , ρjdξjdηj), j = 1, ..., q; p > 1, we have the in-

equality ∥∥∥∥∥∥
(

q∏
j=1

∗F,L(Fjρj)

)(
q∏
j=1

∗F,Lρj

) 1
p
−1
∥∥∥∥∥∥
Lp(Rn×Rm

+ )

≤
q∏
j=1

‖Fj‖Lp(Rn×Rm
+ ,ρj). (44)

Equality holds here if and only if

Fj(ξ,η) = Cje
αξ+βη, (ξ,η) ∈ Rn × Rm

+ , Cj : constants, (45)

where α ∈ Rn, β ∈ Rm are two constants such that Fj ∈ Lp(Rn × Rm
+ , ρjdξjdηj).

Remark 3.5 In Corollary 3.4, let q = 2, m = 1,

ρ1 ≡ 1 and F2(ξ − x, t− τ) = G(ξ − x, t− τ),

for some Green’s function G(ξ − x, t− τ). Then, we have the inequality

∫ ∞
0

dt

∫
Rn

∣∣∣∫ t0 ∫Rn F (x, τ)ρ(x, τ)G(ξ − x, t− τ)dxdτ
∣∣∣p(∫ t

0

∫
Rn |ρ(ξ, τ)|dξdτ

)p−1 dx

≤
∫ ∞

0

dτ

∫
Rn

|F (x, τ)|p|ρ(x, τ)|dx
∫ ∞

0

dτ

∫
Rn

|G(x, τ)|pdx,

(46)

for ρ(x, t) ∈ L1(Rn × R+, dxdt).

Remark 3.6 Inequality (46) can be generalized further as follows∫ T

0

dt

∫ b

a

∣∣∣∣∫ t

0

∫
Rn

F (x, τ)ρ(x, τ)G(ξ − x, t− τ)dxdτ

∣∣∣∣p dx
≤
(∫ T

0

dτ

∫
Rn

|ρ(ξ, τ)|dξ
)p−1

×
∫ T

0

dτ

∫
Rn

|F (ξ, τ)|p|ρ(ξ, τ)|
∫ T

0

dτ

∫ b−ξ

a−ξ
|G(x, τ)|pdxdξ.

(47)

From Lemma 2.10 we obtain

Theorem 3.7 For non-negative functions ρj, j = 1, ..., q, on D such that the convolution∏q
j=1 ∗ϕ+ψρj exists, and for functions Fj ∈ Lp(D, ρjdxj), j = 1, ..., q; p > 1, we have the

inequality ∥∥∥∥∥∥
(

q∏
j=1

∗ϕ+ψ(Fjρj)

)(
q∏
j=1

∗ϕ+ψρj

) 1
p
−1
∥∥∥∥∥∥
p

Lp(D)

≤ 2q−1

q∏
j=1

‖Fj‖pLp(D,ρj)
. (48)

10
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The equality holds in (48) if and only if

|Fj(ϕ(τ , ξ))| = |Fj(ψ(τ , ξ))|, ∀ (τ , ξ) ∈ D ×D, j = 2, ..., q, (49)

and for some functions kl(ξl), ξl ∈ D, such that

F1(ξ1)
l∏

j=2

Fj(ϕ(ξj−1, ξj)) = kl(ξl), l = 2, ..., q. (50)

Corollary 3.8 For non-negative functions ρj, j = 1, ..., q, on Rn
+ such that the convolution∏q

j=1 ∗Fc
ρj exists, and for functions Fj ∈ Lp(Rn

+, ρjdxj), p > 1, we have the inequality∥∥∥∥∥∥
(

q∏
j=1

∗Fc
(Fjρj)

)(
q∏
j=1

∗Fc
ρj

) 1
p
−1
∥∥∥∥∥∥
p

Lp(Rn
+)

≤
[

2√
2π

n

]q−1 q∏
j=1

‖Fj‖pLp(Rn
+,ρj)

.

(51)

Remark 3.9 In Corollary 3.8, for ρq ≡ 1 and Fq ≡ G, we have∥∥∥∥∥
(
q−1∏
j=1

∗Fc
(Fjρj)

)
∗Fc

G

∥∥∥∥∥
p

Lp(Rn
+)

≤
[

2√
2π

n

]2q−3

‖G‖pLp(Rn
+)

q−1∏
j=1

‖ρj‖p−1
L1(Rn

+)

q−1∏
j=1

‖Fj‖Lp(Rn
+,ρj)

(52)

for ρj ∈ L1(Rn
+) and for functions Fj and G such that the right hand side of (52) is finite.

Proof of Corollary 3.8 We have∫
Rn

+

∣∣∣∣∣
q∏
j=1

∗Fc
(Fjρj)(ξq)

∣∣∣∣∣
p( q∏

j=1

∗Fc
ρj(ξq)

)1−p

dξq

≤
∫

Rn
+

q∏
j=1

∗Fc
(|Fj|pρj)(ξq)dξq.

(53)

Since ∫
Rn

+

[
|Fq(ξq + ξq−1)|pρq(ξq + ξq−1) + |Fq(|ξq − ξq−1|)|pρq(|ξq − ξq−1|)

]
dξq

=

∫
Rn

ξq−1

|Fq(z)|pρq(z)dz +

∫
Rn(ξq−1)

|Fq(t)|pρq(t)dt+

∫
Rn

+

|Fq(t)|pρq(t)dt

= 2‖Fq‖pLp(Rn
+,ρq),

11
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and from the Fubini’s theorem, its follows that∫
Rn

+

q∏
j=1

∗Fc
(|Fj|pρj)(ξq)dξq

=
2√
2π

n‖Fq‖pLp(Rn
+,ρq)

∫
Rn

+

q−1∏
j=1

∗Fc
(|Fj|pρj)(ξq−1)dξq−1.

Therefore, ∫
Rn

+

q∏
j=1

∗Fc
(|Fj|pρj)(ξq)dξq =

[
2√
2π

n

]q−1 q∏
j=1

‖Fj‖pLp(Rn
+,ρj)

. (54)

Combining (53) and (54) yields (51). �

Now, from Theorem 3.7 and Lemma 2.13 we have

Corollary 3.10 For non-negative functions ρj,m on D such that the convolution
∏q

j=1 ∗ϕ+ψρj,m

exists we have the inequality for the sum of iterated (ϕ+ ψ)− convolution∥∥∥∥∥∥
n∑

m=1

(
q∏
j=1

∗ϕ+ψ(Fj,mρj,m)

)(
q∏
j=1

∗ϕ+ψρj

) 1
p
−1
∥∥∥∥∥∥
Lp(D)

≤ 2q−1

n∑
m=1

q∏
j=1

‖Fj,m‖Lp(D,ρj,m).

(55)

The equality holds here if and only if

|Fj,m(ϕ(τ , ξ))| = |Fj,m(ψ(τ , ξ))|, ∀ (τ , ξ) ∈ D ×D, j = 2, ..., q, m = 1, ..., n, (56)

and for some functions kl,m(ξl,m), ξl,m ∈ D, such that

F1,m(ξ1,m)
l∏

j=2

Fj,m(ϕ(ξj−1,m, ξj,m)) = kl(ξl,m), l = 2, ..., q, m = 1, ..., n, (57)

kq,m(x)

q∏
j=1

∗ϕ+ψρj,m(x) = Cmh(x), x ∈ D, Cm : constants, m = 1, ..., n, (58)

where h(x) is an integrable function.

4 Applications

In this section we will get Lp integral estimates for the solutions of the inhomogeneous Cauchy

problems for the wave equations, the linear Klein-Gordon equation, the Cauchy problems

for the inhomogeneous heat equations ([1], [3], [4]).

12
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4.1 The Inhomogeneous Cauchy Problem for the Wave Equation

Let

θ(x) =

1 for x ≥ 0,

0 for x < 0.

Consider the integral transform

u(x, t) =
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
F (ξ, τ)ρ(ξ, τ)dξ

=
1

2c

∫ t

0

dτ

∫ ∞
−∞

θ (c(t− τ)− |x− ξ|)F (ξ, τ)ρ(ξ, τ)dξ,

(59)

which gives the formal solution u(x, t) of the inhomogeneous wave equation ([3, pp. 54-55],

see also [4], [1])

utt = c2uxx + F (x, t)ρ(x, t), x ∈ R, t > 0, (c > 0 is a constant), ρ ≥ 0, (60)

satisfying the homogeneous initial conditions

u(x, 0) = ut(x, 0) = 0, on R. (61)

Then, from (47) we have the inequality∫ T

0

dt

∫ ∞
−∞
|u(x, t)|pdx ≤ cT 2

(2c)p

(∫ T

0

dt

∫ ∞
−∞

ρ(x, t) dx

)p−1

×
∫ T

0

dt

∫ ∞
−∞
|F (x, t)|pρ(x, t) dx, ∀T > 0,

(62)

for ρ ∈ L1(R× [0, T ], dxdt) and F ∈ Lp(R× [0, T ], ρ(x, t) dxdt).

We consider the non-perfectly elastic string equation

∂2u

∂t2
=

1

r(x)

[
∂

∂x

(
p
∂u

∂x

)
+ qu

]
+ F (t)ρ(t), a ≤ x ≤ b, t > 0, ρ ≥ 0, (63)

with the boundary conditions

a1u(a, t) + a2ux(a, t) = 0; b1u(b, t) + b2ux(b, t) = 0, t > 0, (64)

and the initial conditions

u(x, 0) = 0 = ut(x, 0), a < x < b, (65)

where p, q and r are assumed to be continuous functions of x in a ≤ x ≤ b and a1, a2, b1, b2

are real constants such that

a2
1 + a2

2 > 0 and b21 + b22 > 0.

13



CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 14

Following the method of separation of variables, we obtain the solution of the string equation

(63) in the form (see [3, pp. 94-96])

u(x, t) =
∞∑
n=1

[
1

αn
φn(x)

∫ b

a

φn(ξ)dξ

∫ t

0

sinαn(t− τ)F (τ)ρ(τ)dτ

]
. (66)

Here, λn = −α2
n and φn, n = 1, 2, ..., are the eigenvalues and the orthonormal eigenfunctions

respectively of the equation

1

r(x)

[
∂

∂x

(
p
∂φ

∂x

)
+ qφ

]
= λφ, (67)

where λ is a separation constant, with the associated boundary conditions for φ(x)

a1φ(a) + a2φ
′(a) = 0, b1φ(b) + b2φ

′(b) = 0. (68)

From Corollary 3.3, the formal solution u(x, t) satisfies the inequality∫ T

0

|u(x, t)|pdt ≤
(∫ T

0

ρ(t)dt

)p−1 ∫ T

0

|F (t)|pρ(t)dt

× T

[
∞∑
n=1

∣∣∣∣ 1

αn
φn(x)

∫ b

a

φn(ξ)dξ

∣∣∣∣
]p (69)

for all T > 0 and for ρ ∈ L1([0, T ]), F ∈ Lp([0, T ], ρ(t)dt).

4.2 The Klein-Gordon Equation

The one-dimensional inhomogeneous Klein-Gordon equation is given by

utt − c2uxx + d2u = F (x, t)ρ(x, t), x ∈ R, t > 0, ρ ≥ 0, (70)

where c and d are constants, with the initial boundary conditions

u(x, 0) = 0 = ut(x, 0), for x ∈ R, (71)

u(x, t)→ 0 as |x| → ∞, t > 0. (72)

Application of the joint Laplace and Fourier transform gives the solution as (see [3, pp.

558-560])

u(x, t) =
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
J0

[
d

c

√
c2(t− τ)2 − (x− ξ)2

]
F (ξ, τ)ρ(ξ, τ)dξ. (73)

Here, J0(x) is the Bessel function of the first kind of order zero, given by ([4, pp. 592-598])

J0(x) =
∞∑
r=0

(−1)r

(r!)2

(x
2

)2r

.

14
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For all T > 0, application of Lemma 2.13 gives∫ T

0

dτ

∫ cτ

0

∣∣∣∣J0

[
d

c

√
c2τ 2 − ξ2

]∣∣∣∣p dξ
≤
∫ T

0

[
∞∑
r=0

1

(r!)2

(
d

2c

)2r

[cτ ]2r+1/p

[
1

2
B

(
1

2
, rp+ 1

)]1/p
]p
dτ

≤

[
∞∑
r=0

1

(r!)2

(
d

2

)2r

c1/p
T 2r+2/p

(2rp+ 2)1/p

[
1

2
B

(
1

2
, rp+ 1

)]1/p
]p
,

which is, by using the inequalities
1

2
B

(
1

2
, rp+ 1

)
≤ 1, 2rp+ 2 ≥ 2, and the representation

of the modified Bessel function of the first kind of order zero I0(x),

≤ cT 2

2
Ip0 (dT ).

By the inequality (47), the formal solution u(x, t) satisfies the following estimate∫ T

0

dt

∫ ∞
−∞
|u(x, t)|pdx ≤ cT 2

(2c)p
Ip0 (dT )

2

(∫ T

0

dt

∫ ∞
−∞

ρ(x, t)dx

)p−1

×
∫ T

0

dt

∫ ∞
−∞
|F (x, t)|pρ(x, t)dx, ∀T > 0,

(74)

for ρ ∈ L1(R× [0, T ], dxdt) and F ∈ Lp(R× [0, T ], ρ(x, t)dxdt).

The two-dimensional linear inhomogeneous Klein-Gordon equation is

utt − c2(uxx + uyy) + d2u = F (x, y, t)ρ(x, y, t), x, y ∈ R, t > 0, ρ ≥ 0. (75)

The initial boundary conditions are

u(x, y, 0) = 0 = ut(x, y, 0), for all x and y, (76)

u(x, y, t)→ 0 as r =
√
x2 + y2 →∞, t > 0. (77)

Application of the joint Laplace and Hankel transform of order zero gives the solution as

u(x, y, t) =

∫ t

0

dτ

∫ ∞
−∞

∫ ∞
−∞

G(x, y, t; ξ, η, τ)dξdη. (78)

Here, the Green function G(x, y, t; ξ, η, τ) assumes the form

G(x, y, t; ξ, η, τ) =
1

2πc2

(
A2 − B2

c2

)−1/2

cos

(
d

√
A2 − B2

c2

)
θ

(
A− B

c

)
, (79)

where A = t− τ and B2 = (x− ξ)2 + (y − η)2.
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For all T > 0 and for 1 < p < 2, we have∫ T

0

dt

∫ ∞
−∞

∫ ∞
−∞
|G(x, y, t; ξ, η, τ)|pdxdy

≤ 4

(2πc2)p

∫ T

0

dt

∫ ct

0

∫ √c2t2−y2

0

(
t2 − x2 + y2

c2

)−p/2
dxdy

=
2

(2πc)p
B

(
1

2
,
2− p

2

)∫ T

0

dt

∫ ct

0

(c2t2 − y2)(1−p)/2dy

=
c2T 3−p

(3− p)(2πc2)p
B

(
1

2
,
2− p

2

)
B

(
1

2
,
3− p

2

)
.

So, for all T > 0 and for 1 < p < 2 we obtain the following estimate∫ T

0

dt

∫ ∞
−∞

∫ ∞
−∞
|u(x, y, t)|pdxdy

≤ c2T 3−p

(3− p)(2πc2)p
B

(
1

2
,
2− p

2

)
B

(
1

2
,
3− p

2

)(∫ T

0

dt

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, t)dxdy

)p−1

×
∫ T

0

dt

∫ ∞
−∞

∫ ∞
−∞
|F (x, y, t)|pρ(x, y, t)dxdy,

(80)

where ρ ∈ L1(R2 × [0, T ], dxdydt) and F ∈ Lp(R2 × [0, T ], ρ(x, y, t)dxdydt).

4.3 The Cauchy Problem for the Inhomogeneous Heat Equation

The equation of heat conduction with sources is given by

ut(t,x)− c2∆nu(t,x) = F (t,x)ρ(t,x), (t,x) ∈ R+ × Rn, ρ ≥ 0, (81)

where Fρ ∈ L1 for every t ∈ R+, under the initial value condition

u(0,x) = 0. (82)

Its solution has the form (see [1, pp. 58-59])

u(t,x) =
1

(4πc2)n/2

∫ t

0

dτ

∫
Rn

F (τ, ξ)ρ(τ, ξ)

(t− τ)n/2
exp

{
− |ξ − x|

2

4c2(t− τ)

}
dξ. (83)

It is easy to check that∫ T

0

dτ

∫
Rn

1

τ pn/2
exp

{
−p|ξ|

2

4c2τ

}
dξ =

(
2c
√
πp

)n
2T 1−n(p−1)/2

2− n(p− 1)
,

for all T > 0 and for 1 < p < 1 + 2/n.

Then, by using (47), for all T > 0 we obtain the inequality∫ T

0

dt

∫
Rn

|u(t,x)|pdx

≤ 1

(πp2)n/2
2T 1−n(p−1)/2

2− n(p− 1)

(∫ T

0

dt

∫
Rn

ρ(t,x)dx

)p−1

×
∫ T

0

dt

∫
Rn

|F (t,x)|pρ(t,x)dx,

(84)
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for ρ ∈ L1([0, T ]× Rn, dtdx) and F ∈ Lp([0, T ]× Rn, ρ(t,x)dtdx), 1 < p < 1 + 2/n.

Finally, let us consider the one-dimensional heat equation with variable conductivity of

material in the form

∂v

∂t
=

∂

∂x

[
p(x)

∂v

∂x

]
+ q(x)v + F (t)ρ(t), a ≤ x ≤ b, t > 0, ρ ≥ 0, (85)

with the boundary conditions for t > 0

a1v(a, t) + a2vx(a, t) = 0; b1v(b, t) + b2vx(b, t) = 0 (86)

and the initial condition

v(x, 0) = 0, a < x < b. (87)

We use the method of separation of variables to seek a solution of the equation (85) in the

form (see [3, pp. 96-99])

v(x, t) =
∞∑
n=1

[
φn(x)

∫ b

a

φ(ξ)dξ

∫ t

0

exp{λn(t− τ)}F (τ)ρ(τ)dτ

]
. (88)

Then, we have the inequality∫ T

0

|v(x, t)|pdt ≤
(∫ T

0

ρ(t)dt

)p−1 ∫ T

0

|F (t)|pρ(t)dt

×

[
∞∑
n=1

∣∣∣∣∣φn(x)

(
exp{pλnT} − 1

pλn

)1/p ∫ b

a

φn(ξ)dξ

∣∣∣∣∣
]p (89)

for all T > 0 and ρ ∈ L1([0, T ]), F ∈ Lp([0, T ], ρ(t)dt).
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[7] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1934, 1952, 1967.
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