About groups with property (U)

Hamid Reza Rostami
Yerevan State University, Yerevan, Armenia nazavi_ibrahim2008@yahoo.com

Abstract

In this article we prove that for any odd $n \geq 1003$ there exist continuum non isomorphic (simple) groups with property (U), whose U - constant satisfies the inequality $u(G)<\frac{3 n^{4}}{2}$. The question of finding infinite groups with property (U) was proposed in the joint work by D.Osin and D.Sonkin.

Key words: periodical groups, simple groups, variety of groups, (U) property, Adian-Lysenok groups.

Mathematics Subject Classification 2000: 20F50, 20F05

Let G be an arbitrary group with finite set S of generators.
Definition 1. We will say that a group G has property (U) (with respect to S) if there exists a number $M=M(G)$ such that for any generating set P of group G there exists an element $t \in G$ for which holds the inequality

$$
\begin{equation*}
\max _{x \in S}\left|t^{-1} x t\right|_{P} \leq M \tag{1.1}
\end{equation*}
$$

[^0]The lowest boundary of such numbers M that satisfy the inequality (1) relatively to some generating set S is called the U-constant of the given group G and is denoted by $u(G)$.

It is not hard to show that if the group has property (U) with respect to some S then it has property (U) relatively to any finite generating set. It is obvious that finite groups have property (U).

In the joint work [1] by D.Osin and D.Sonkin is proposed a question about finding infinite groups with property (U) and is proved that any non elementary hyperbolic torsion-free group has infinite quotient group with property (U) (by this result it follows the existence of finite generated group with non zero uniform Kazhdan constant).

In the paper [2], G.Arzhantseva proved that for given $k>0$ elements in a word hyperbolic group G, there exists a number $M=$ $M(G, k)>0$ such that at least one of the assertions is true: (i) these elements generate a free and quasiconvex subgroup of G; (ii) they are Nielsen equivalent to a system of k elements containing an element of length at most M up to conjugation in G . The constant $M=M(G, k)$ can be calculated explicitly.

We are interested in the question of estimation of constant $u(G)$ of groups with property (U).

It is well known that for any odd $n \geq 1003$ in [3] there is constructed infinite 2-generated group any maximal subgroup of which is cyclic group of order n (such groups are called Tarskii "monsters").In [4] V.Atabekian proved that Adian-Lysenok groups from [3] have property (U).

Our goal is the following

Theorem 1. For any odd $n \geq 1003$ there exists an n-periodic group with property U, whose U-constant satisfies the following inequality

$$
\begin{equation*}
u(\Gamma)<\frac{3 n^{4}}{2} \tag{1.2}
\end{equation*}
$$

As a corollary from this result and theorem 2 of article [4] we obtain
Corollary 1. For any odd $n \geq 1003$ in the variety of groups that satisfy the identity $x^{n}=1$ there exist continuum non isomorphic simple groups with property (U), for any one of which holds the inequality (2).

In connection with Corollary 1, note that the above mentioned Osin-Sonin result implies the existence of at most a countable set of groups with the property (U), since the set of hyperbolic groups is countable. Corollary 1 also immediately implies the existence of a countable set of variety (variety of groups of simple exponent $n \geq 1003$) pairwise intersecting by the trivial variety, each containing a continuum set of non-isomorphic groups endowed with the property (U).

1. The proof of Theorem 1

In the further description we will use designations of works [3] and [4] without any references.

Consider the group

$$
\Gamma \rightleftharpoons\left\langle a, b \mid E^{n}=1, F=1, R \in \bigcup_{\beta>0} \varepsilon_{\beta}, F \in \bigcup_{\beta>2} \Phi_{\beta}\right\rangle
$$

(see definition (2.5)[4] and $\S 1[3]$). The main result of [3] implies that Γ is an infinite group and its any proper subgroup is contained in some cyclic subgroup of the order n.

Lemma 1. If $X^{\delta} \stackrel{\Gamma}{=} T X^{\varepsilon} T^{-1}$, then the group $\left\langle X^{\varepsilon}, X^{\delta}, T\right\rangle_{\Gamma}$ is contained in some cyclic subgroup of the order n.

Proof. Let X be an arbitrary element of the group Γ. It follows from the equality $X^{\delta} \stackrel{\Gamma}{=} T X^{\varepsilon} T^{-1}$ that $\left|X^{\delta}\right|=\left|X^{\varepsilon}\right| \leq n$. Hence $\left\langle X^{\delta}\right\rangle_{\Gamma}=\left\langle X^{\varepsilon}\right\rangle_{\Gamma}$ and $\left|\left\langle X^{\varepsilon}, X^{\delta}, T\right\rangle_{\Gamma}\right|=\left|\left\langle X^{\varepsilon}, T\right\rangle\right| \leqslant n^{2}$. It follows from the inequality $\left|\left\langle X^{\varepsilon}, T\right\rangle\right| \leqslant n^{2}$ that $\left\langle X^{\varepsilon}, T\right\rangle$ is a proper subgroup of the group Γ, and consequently $\left\langle X^{\varepsilon}, T\right\rangle$ is a subgroup of a cyclic group of the order n.

Lemma 2. If P is a generating set of the group Γ, then it contains a pair of non-commutable elements X and Y.

Proof. Since Γ is a finitely generated group, it suffices to prove our statement only for a finite set P. If the elements of the set P happen to be pairwise commutable, then they would generate a finite subgroup $|\langle P\rangle|_{\Gamma} \leq|P|^{n}$ (the identity $x^{n}=1$ is true in Γ). This contradicts the fact that Γ is an infinite group.

Lemma 3. Let $n \geqslant 1003$ be an arbitrary odd number. Then any noncyclic subgroup $\Delta \rightleftharpoons\langle X, Y\rangle$ of group Γ of work [3] contains such a noncyclic subgroup of type $U\langle A, C\rangle U^{-1}$ that $C \in \Psi_{\alpha}$ and

$$
U C U^{-1} \stackrel{\alpha-2}{=}\left[\left(U A^{d} U^{-1}\right), X^{-1}\left(U A^{d} U^{-1}\right) X\right],
$$

where A - minimized elementary period of some rank $\gamma, \gamma \leqslant \alpha-2$ and the length of word $U A U^{-1}$ relatively to generators X and Y satisfies to the inequality

$$
\left|U A U^{-1}\right|_{\{X, Y\}} \leq 2(n+1)
$$

Proof. Let $\Delta \rightleftharpoons\langle X, Y\rangle_{\Gamma}$ - be an arbitrary noncyclic subgroup of group Γ. From VI.2.4[5], VI.1.2 [5] and Lemma 1 we have $X \stackrel{\Gamma}{=} T E^{i} T^{-1} T^{-1} Y T \stackrel{\Gamma}{=} Z$ for some words T, Z and minimized elementary period E that has rank β. According to VI.2.4[5] and IV.1.13[5] we can take into consideration that $Z \in \mathcal{M}_{\xi} \cap \mathcal{A}_{\xi+1}$ for some $\xi \geqslant \beta$. Let g.c.d. $(i, n)=k$ and r is such an integer that $|r|<n \quad E^{i r}=E^{k}$. By choosing the number $s \rightleftharpoons[n / 3 k]$, we will
obtain $n / 5<s k<n / 3$. Thus $X^{r s}=T E^{i r s} T^{-1}=T E^{k s} T^{-1}$ $186<k s<\frac{n+1}{2}-148$, as far as $n \geqslant 1003$. Thus, for the word $X_{1} \rightleftharpoons X^{r s}$ we have $X_{1}=T E^{k s} T^{-1}$

$$
\left|X_{1}\right|_{\{X, Y\}} \leqslant \frac{n-1}{2}|X|_{\{X, Y\}}<\frac{n-1}{2},
$$

because their is a number p such that $|p| \leq \frac{n-1}{2}$ and $X^{r s}=X^{p}$.
By taking into account the last inequality, then we repeat the proof of the lemma 3 of work [4] and instead of inequality (6)[4] we obtain

$$
\begin{equation*}
\left|U A U^{-1}\right|_{\{X, Y\}}=\left|\left[X_{1}, Y^{-1} X_{1} Y\right]\right|_{\{X, Y\}} \leq \frac{4(n-1)}{2}+4=2(n+1) . \tag{1.3}
\end{equation*}
$$

The lemma is proved.

Now lets turn on to the proof of theorem 1.

Choose $\{a, b\}$ as a generating set S and assume that P is an arbitrary generating set of the group Γ. By lemma 2 , in P there exists pair of non-commuting elements X and Y. By lemma 3, for some U in subgroup $\langle X, Y\rangle$, one can choose elements $U A U^{-1}$ and $U C U^{-1} \stackrel{\alpha-2}{=}\left[\left(U A^{d} U^{-1}\right), X^{-1}\left(U A^{d} U^{-1}\right) X\right] \stackrel{0}{=} U\left[A^{d}, Z^{-1} A^{d} Z\right] U^{-1}$ where $Z=U^{-1} X U, C$ is an elementary period of some rank α, A is elementary period of rank $\gamma \leq \alpha-2 \quad C \in \Psi_{\alpha}$. By point 2 . of definition of the set $\bar{\Psi}_{\alpha}[4]$ there exists a period $D \in \bar{\Psi}_{\alpha}$ which is conjugate whether with C or with C^{-1} and

$$
D \stackrel{\alpha-2}{=}\left[E^{d}, Z_{1}^{-1} E^{d} Z_{1}\right],
$$

where E is minimized elementary period of some rank $\beta, Z_{1} \in \mathcal{M}_{\alpha-2}$ $\beta \leqslant \alpha-2$. By lemma 4 the elementary period A is conjugate whether with E or with E^{-1}. Suppose $A=V E^{\tau} V^{-1}$ where $\tau= \pm 1$.

By (2), (3) [4] we have
$a=D^{200} E D^{200} E^{2} \cdots E^{n-1} D^{200}, b=D^{300} E D^{300} E^{2} \cdots E^{n-1} D^{300}$.

Direct calculations show that
$a^{\tau}=D^{\tau 200} E D^{\tau 200} E^{2} \cdots E^{(n-1)} D^{\tau 200}, \quad b^{\tau}=D^{\tau 300} E D^{\tau 300} E^{2} \cdots E^{(n-1)} D^{\tau 300}$.
In consideration of the equality $A=V E^{\tau} V^{-1}$ we obtain
$V a^{\tau} V^{-1}=\left(V D V^{-1}\right)^{\tau 200} A^{\tau}\left(V D V^{-1}\right)^{\tau 200} A^{\tau 2} \cdots A^{\tau(n-1)}\left(V D V^{-1}\right)^{\tau 200}$.
and therefor
(1.4) $V a V^{-1}=\left(V D V^{-1}\right)^{200} A\left(V D V^{-1}\right)^{200} A^{2} \cdots A^{(n-1)}\left(V D V^{-1}\right)^{200}$.

So, when $\tau= \pm 1$, the element

$$
V D V^{-1}=V\left[E^{d}, Z_{1}^{-1} E^{d} Z_{1}\right] V^{-1}=\left[A^{\tau d},\left(V Z_{1} V^{-1}\right)^{-1} A^{\tau d}\left(V Z_{1} V^{-1}\right)\right]
$$

is conjugate with $\left[A^{d},\left(V Z_{1} V^{-1}\right)^{-1} A^{d}\left(V Z_{1} V^{-1}\right)\right]$ and on the other hand with $\left[A^{d}, Z^{-1} A^{d} Z\right]$ or $\left[A^{d}, Z^{-1} A^{d} Z\right]^{-1}$ where $Z=U^{-1} X U$. At the first case by lemma 5[4] for some integers u and v we have $0 \leq u, v \leq$ $n-1$ or

$$
\begin{equation*}
\left(V Z_{1} V^{-1}\right)^{-1} A^{d}\left(V Z_{1} V^{-1}\right)=A^{u} Z^{-1} A^{d} Z A^{v} \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(V Z_{1} V^{-1}\right) A^{d}\left(V Z_{1} V^{-1}\right)^{-1}=A^{u} Z^{-1} A^{-d} Z A^{v} . \tag{1.6}
\end{equation*}
$$

At the second case in (5) and (6) we just need to change Z by Z^{-1} and conversely because it is obvious that

$$
\left[A^{d}, Z A^{d} Z^{-1}\right] \stackrel{0}{=} Z\left[A^{d}, Z^{-1} A^{d} Z\right]^{-1} Z^{-1}
$$

We will consider only the first case (in the second case in the proof we change the places of Z and Z^{-1}).

Suppose that (5) holds. Because

$$
\begin{gathered}
(U V) D(U V)^{-1}=U\left[A^{\tau d}, A^{u} Z^{-1} A^{\tau d} Z A^{v}\right] U^{-1}= \\
=U A^{-v}\left[A^{\tau d}, Z^{-1} A^{\tau d} Z\right] A^{v} U^{-1} \\
=U A^{-v} U^{-1}\left[\left(U A^{\tau d} U^{-1}\right), X^{-1}\left(U A^{\tau d} U^{-1}\right) X\right] U A^{v} U^{-1}
\end{gathered}
$$

(in the case of $\tau=-1$ we need to change places $\pm u \mp v$) therefore from (3) we have

$$
\begin{aligned}
& \left|U V D V^{-1} U^{-1}\right|_{\{X, Y\}} \leq|v|(2 n+2)+4 d \cdot(2 n+2)+4+|v|(2 n+2)= \\
& =(2 n+2)(|v|+4 d)+4 \leq 2 n^{2}-2+4+8 d(n+1)=2 n^{2}+1528 n+1530 .
\end{aligned}
$$

Denote $M_{1} \rightleftharpoons 2 n^{2}+1528 n+1530$.

Therefore from (4) we obtain

$$
\left|U V a V^{-1} U^{-1}\right|_{\{X, Y\}} \leq 200 n \cdot M_{1}+(2 n+2) \cdot \frac{n(n-1)}{2}
$$

By the same way $\left|U V b V^{-1} U^{-1}\right|_{\{X, Y\}} \leq 200 n \cdot M_{1}+(2 n+2) \cdot \frac{n(n-1)}{2}$.
Now lets suppose that (6) holds. Then

$$
\begin{gathered}
\left(V Z_{1} V^{-1}\right) V D V^{-1}\left(V Z_{1} V^{-1}\right)^{-1}=\left[\left(V Z_{1} V^{-1}\right) A^{\tau d}\left(V Z_{1} V^{-1}\right)^{-1}, A^{\tau d}\right]= \\
=\left[A^{u} Z^{-1} A^{-\tau d} Z A^{v}, A^{\tau d}\right]
\end{gathered}
$$

(in the case $\tau=-1$ we need to change the places of $\pm u$ and $\mp v$) and $\left(U V Z_{1}\right) D\left(Z_{1} V^{-1}\right)^{-1}=U A^{v} U^{-1}\left[X^{-1} U A^{-\tau d} U^{-1} X, U A^{\tau d} U^{-1}\right] U A^{-v} U^{-1}$.

From the last equation by (3) we obtain

$$
\left(U V Z_{1}\right) D\left(\left.\left(Z_{1}^{-1} V^{-1} U^{-1}\right)\right|_{\{X, Y\}} \leq 2 n^{2}+1528 n+1530=M_{1} .\right.
$$

Since g.c.d. $(d, n)=1$ then for some integer s where $|s|<n$ we have

$$
\left(V Z_{1} V^{-1}\right) A\left(V Z_{1} V^{-1}\right)^{-1}=\left(A^{u} Z^{-1} A^{-d} Z A^{v}\right)^{s}
$$

and
$U\left(V Z_{1} V^{-1}\right) A\left(V Z_{1} V^{-1}\right)^{-1} U^{-1}=\left(\left(U A^{u} U^{-1}\right) X^{-1}\left(U A^{-d} U^{-1}\right) X\left(U A^{v} U^{-1}\right)\right)^{s}$.

From inequality (3) and equality (7) it follows that for any natural number $r, 1 \leq r \leq n-1$ holds the inequality

$$
\begin{equation*}
\left|U\left(V Z_{1} V^{-1}\right) A^{r}\left(V Z_{1} V^{-1}\right)^{-1} U^{-1}\right|_{\{X, Y\}} \leq \tag{1.8}
\end{equation*}
$$

$\leq \frac{n-1}{2}((2 n+2)(|u|+1+|v|)+2) \leq \frac{n-1}{2}((2 n+2) n+2)=n\left(n^{2}-1\right)+1$, because for every natural number r their is an integer p such that $|p| \leq \frac{n-1}{2}$ and for which holds equality $A^{-r d s}=A^{p}$.

Conjugating both sides of equality (4) by $U V Z_{1} V^{-1}$ and using (7), (8) we will finally obtain

$$
\left|U V Z_{1} a Z_{1}^{-1} V^{-1} U^{-1}\right|_{\{X, Y\}}<200 n \cdot M_{1}+n \cdot\left(n\left(n^{2}-1\right)+1\right) .
$$

In the same way we can show that

$$
\left|U V Z_{1} b Z_{1}^{-1} V^{-1} U^{-1}\right|_{\{X, Y\}}<200 n \cdot M_{1}+n \cdot\left(n\left(n^{2}-1\right)+1\right) .
$$

Note that for any element R of group Γ is valid $|R|_{P} \leq|R|_{\{X, Y\}}$ because $\{X, Y\} \subseteq P$.

It is not difficult to show that if $n \geq 1003$ and $M_{1}=2 n^{2}+1528 n+$ 1530, then

$$
200 n \cdot M_{1}+n \cdot\left(n\left(n^{2}-1\right)+1\right)<\frac{3 n^{4}}{2}
$$

The theorem is proved.

References

[1] D. Osin and D. Sonkin, Uniformly Kazhdan Groups, preprint, 2006.
[2] G.N. Arzhantseva, "A dichotomy for finitely generated subgroups of word hyperbolic groups".Contemporary Mathematics, 394, Amer. Math.Soc., Providence, RI, (2006), 1-11.
[3] S. I. Adian, I. G. Lysenok, "On Groups All Whose Proper Subgroups of Which Are Finite Cyclic" (Russian) Izv. Ac. of Sci. of USSR, Ser. Mat. 55 (5), 933-990 (1991).
[4] V. S. Atabekyan, "On Periodic Groups of Odd Period $n>1001 "$, (Russian) Mat. Zametki 82 (4), 495-500, (2007).
[5] S. I. Adian, The Burnside Problem and Identities in Groups (Nauka, Moscow, 1975).

[^0]: * Presented at the First International Algebra and Geometry Conference in Armenia, 16-20 May, 2007, Yerevan

