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ABSTRACT. In this article we prove that for any odd n > 1003

there exist continuum non isomorphic (simple) groups with prop-
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Let GG be an arbitrary group with finite set S of generators.

DEFINITION 1. We will say that a group G has property (U) (with
respect to S) if there exists a number M = M(G) such that for any
generating set P of group G there exists an element t € G for which
holds the inequality

-1
. < M.
(1.1) max [t™ xt|p < M

* Presented at the First International Algebra and Geometry Conference
in Armenia, 16-20 May, 2007, Yerevan
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The lowest boundary of such numbers M that satisfy the inequality (1)
relatively to some generating set S is called the U-constant of the given

group G and is denoted by u(G).

It is not hard to show that if the group has property (U) with respect
to some S then it has property (U) relatively to any finite generating
set. It is obvious that finite groups have property (U).

In the joint work [1] by D.Osin and D.Sonkin is proposed a question
about finding infinite groups with property (U) and is proved that
any non elementary hyperbolic torsion-free group has infinite quotient
group with property (U) (by this result it follows the existence of finite

generated group with non zero uniform Kazhdan constant).

In the paper [2], G.Arzhantseva proved that for given k£ > 0 el-
ements in a word hyperbolic group G, there exists a number M =
M (G, k) > 0 such that at least one of the assertions is true: (i) these
elements generate a free and quasiconvex subgroup of G; (ii) they are
Nielsen equivalent to a system of k elements containing an element of
length at most M up to conjugation in G. The constant M = M (G, k)

can be calculated explicitly.

We are interested in the question of estimation of constant u(G) of

groups with property (U).

It is well known that for any odd n > 1003 in [3] there is constructed
infinite 2-generated group any maximal subgroup of which is cyclic
group of order n (such groups are called Tarskii "monsters”).In [4]
V.Atabekian proved that Adian-Lysenok groups from [3] have property
(U).

Our goal is the following
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THEOREM 1. For any odd n > 1003 there exists an n-periodic group
with property U, whose U-constant satisfies the following inequality

(1.2) u(l) < 37?14.

As a corollary from this result and theorem 2 of article [4] we obtain

COROLLARY 1. For any odd n > 1003 in the variety of groups that
satisfy the identity x™ = 1 there exist continuum non isomorphic simple

groups with property (U), for any one of which holds the inequality (2).

In connection with Corollary 1, note that the above mentioned
Osin-Sonin result implies the existence of at most a countable set
of groups with the property (U), since the set of hyperbolic groups
is countable. Corollary 1 also immediately implies the existence of a
countable set of variety (variety of groups of simple exponent n > 1003)
pairwise intersecting by the trivial variety, each containing a continuum

set of non-isomorphic groups endowed with the property (U).

1. The proof of Theorem 1

In the further description we will use designations of works [3] and

[4] without any references.

Consider the group

Fi<a,b|E”—1,F—1,REU85, F e Ucbﬂ>

£>0 £3>2
(see definition (2.5)[4] and §1[3]). The main result of [3] implies that I'
is an infinite group and its any proper subgroup is contained in some
cyclic subgroup of the order n.
LEMMA 1. If X? LTXET_l, then the group (X°¢, X°, T>r is con-

tained in some cyclic subgroup of the order n.
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Proor. Let X be an arbitrary element of the group I'. It fol-
lows from the equality X°=7 X°T! that |X%| = |X¢| < n. Hence
(X%)r = (X%)p and [ (X, X°, T) | = [(X®,T)| < n?. It follows from
the inequality |(X° T)| < n? that (X°,T) is a proper subgroup of the
group I', and consequently (X¢, T is a subgroup of a cyclic group of

the order n.

LEMMA 2. If P is a generating set of the group T, then it contains

a pair of non-commutable elements X and Y.

PRrROOF. Since I is a finitely generated group, it suffices to prove
our statement only for a finite set P. If the elements of the set P happen
to be pairwise commutable, then they would generate a finite subgroup
[(P)|r < |P|" (the identity z™ = 1 is true in I'). This contradicts the
fact that I is an infinite group.

LEMMA 3. Let n > 1003 be an arbitrary odd number. Then any
noncyclic subgroup A = (X,Y) of group T of work [3] contains such a
noncyclic subgroup of type U (A, CYU™! that C € ¥, and

UCU L S |(U AU, X HUATU X,

where A - minimized elementary period of some rank v, v < o — 2 and
the length of word UAU ™! relatively to generators X andY satisfies to
the inequality

UAU Y (xvy <2(n+1).

PROOF. Let A = (X, Y); - be an arbitrary noncyclic sub-
group of group I'. From VI.2.4[5], VI.1.2 [5] and Lemma 1 we have
X &= TETY T'YT £ Z for some words T, Z and minimized
elementary period E that has rank (. According to VI.2.4[5] and
IV.1.13[5] we can take into consideration that Z € M, N Agyq for
some £ > (3. Let g.cd.(4,n) = k and r is such an integer that

Ir| < n E = E*. By choosing the number s = [n/3k], we will
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obtain n/5 < sk < n/3. Thus X™ = TE"T1 = TEkT!
186 < ks < ”TH — 148, as far as n > 1003. Thus, for the word
X; = X" we have X; =T E*FT1
n—1 n—1
X <
5 1 X x,vy 5

because their is a number p such that |p| < 5% and X™* = XP.

| X1]xyy <

By taking into account the last inequality, then we repeat the proof
of the lemma 3 of work [4] and instead of inequality (6)[4] we obtain
(1.3)

4(n—1
|UAU—1|{X,Y} = | [Xl, Y_1X1Y] l(x, vy < g

5 +4=2(n+1).

The lemma is proved.
Now lets turn on to the proof of theorem 1.

Choose {a,b} as a generating set S and assume that P is an ar-
bitrary generating set of the group I'. By lemma 2, in P there ex-
ists pair of non-commuting elements X and Y. By lemma 3, for
some U in subgroup (X,Y), one can choose elements UAU~! and
UCU-' S ((UAWUY), XN UAW-YX]2U[A?, Z-'A?Z]U~" where
Z = U7'XU, C is an elementary period of some rank «, A is elemen-
tary period of rank v < a —2 C € VU,. By point 2. of definition of
the set W,[4] there exists a period D € ¥, which is conjugate whether
with C or with C~! and

D= [EY 27 B4 Zy]

where F is minimized elementary period of some rank (3, Z; € M ,_»
0 < a— 2. By lemma 4 the elementary period A is conjugate whether
with E or with E~1. Suppose A = VE™V ! where 7 = £1.
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By (2), (3) [4] we have

a = DQOOEDQOOEQ L. En—1D200 b _ DSOOEDSOOEQ L. En_1D3OO.

Direct calculations show that
a" = DPOEDT0E2. L pn=) pr200 - pr . pratd p om0 p2 L pp(n=1) (a0
In consideration of the equality A = VETV ! we obtain
Va'V—l = (VDY) 20 47(y DY 120 472, L gT(0=1) (7 DY/ —Lym200,
and therefor

(1-4) Vav_l = (VDV_1)2OOA(VDV_1)2OOA2. .. A(n_1)<VDV_1)200,

So, when 7 = £1, the element
VDV =V B4 ZU B Z VT = [AT (VL VT TTAT(V Z V)]

is conjugate with [A, (VZ, V)7t A4(V Z,V~1)] and on the other hand
with [A?, Z71A9Z] or [A?, Z71AYZ]7! where Z = U 'XU. At the

first case by lemma 5[4] for some integers v and v we have 0 < u,v <

n—1or

(1.5) (VZ, VYAV Z V) = AV Z 1A Z AV
or

(1.6) V2,V HAYV Z, VY = AvZ ATz A,

At the second case in (5) and (6) we just need to change Z by Z~! and

conversely because it is obvious that

(A4, z Az |2 7[AY Zz7 Az 7
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We will consider only the first case (in the second case in the proof we

change the places of Z and Z71).

Suppose that (5) holds. Because
(UV)DUV) ™ = U [A™ A"z AT Z A" U~ =
— UA™ [A™, 77 A7 7] AU~
=UAU [(UA™UY), X' (UA™ U X UA U

(in the case of 7 = —1 we need to change places +u Fwv) therefore

from (3) we have

UVDV U ixyy < [v[(2n+2) +4d - (2n+2) + 4+ |[v|(2n + 2) =

= (2n+2)(Jv| +4d) +4 < 2n* —2+4+8d(n+1) = 2n* +1528n + 1530.
Denote M; = 2n? 4+ 1528n + 1530.

Therefore from (4) we obtain

‘n(n—l)'

|UVaV U xyy <2000 - My + (2n + 2) 5

By the same way [UVOV U xyy < 200n-M; + (2n+2)- n(nz_l)'

Now lets suppose that (6) holds. Then
(VZ,Vv YDV (VZ v Y = (V2 VYAV Z V)T AT =
= [A"Z " ATTIZ A, AT
(in the case 7 = —1 we need to change the places of £u and Fv) and
(UVZ)D(Z,V Y =UA U [XTTUATUT' X, UA™MU | UA™ U

From the last equation by (3) we obtain
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(UVZ)D((Z7'V U Y| xyy < 2n° + 15280 + 1530 = M.

Since g.c.d.(d,n) = 1 then for some integer s where |s| < n we have
(VZ, VYAV Z VD = (A Z7 AT Z AV
and

(1.7)
UVZVHAVZYVH WU = (VAU HX Y UA U HYX(UATUY)).

From inequality (3) and equality (7) it follows that for any natural
number r, 1 <7 < n — 1 holds the inequality

U(VZ, VYA (VZ VYUY xyy <

(1.8)
<

P (@nt2) (L) +2) < o (@naDn2) = n(n? 1) 41,

because for every natural number r their is an integer p such that
p| < nT_l and for which holds equality A="4 = AP.

Conjugating both sides of equality (4) by UV Z;V ! and using (7),
(8) we will finally obtain

UV Z1aZ'VU ixyy <2000 - My +n-(n(n® —1) +1).
In the same way we can show that
UV ZibZ7 VU xyy < 200n - My +n - (n(n® — 1) + 1).

Note that for any element R of group I' is valid |R|p < |R|{x,y} because
{X, Y} C P.
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It is not difficult to show that if n > 1003 and M; = 2n? + 1528n +
1530, then

34
200n-M1+n-(n(n2—1)+1)<%.

The theorem is proved.
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