
Armenian Journal of Mathematics

Volume 1, Number 3, 2008, 14–22

About groups with property (U)

Hamid Reza Rostami

Yerevan State University, Yerevan, Armenia

nazavi
¯
ibrahim2008@yahoo.com

Abstract. In this article we prove that for any odd n ≥ 1003

there exist continuum non isomorphic (simple) groups with prop-

erty (U), whose U - constant satisfies the inequality u(G) < 3n4

2 .

The question of finding infinite groups with property (U) was pro-

posed in the joint work by D.Osin and D.Sonkin.
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Let G be an arbitrary group with finite set S of generators.

Definition 1. We will say that a group G has property (U) (with

respect to S) if there exists a number M = M(G) such that for any

generating set P of group G there exists an element t ∈ G for which

holds the inequality

(1.1) max
x∈S
|t−1xt|P ≤M.
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The lowest boundary of such numbers M that satisfy the inequality (1)

relatively to some generating set S is called the U-constant of the given

group G and is denoted by u(G).

It is not hard to show that if the group has property (U) with respect

to some S then it has property (U) relatively to any finite generating

set. It is obvious that finite groups have property (U).

In the joint work [1] by D.Osin and D.Sonkin is proposed a question

about finding infinite groups with property (U) and is proved that

any non elementary hyperbolic torsion-free group has infinite quotient

group with property (U) (by this result it follows the existence of finite

generated group with non zero uniform Kazhdan constant).

In the paper [2], G.Arzhantseva proved that for given k > 0 el-

ements in a word hyperbolic group G, there exists a number M =

M(G, k) > 0 such that at least one of the assertions is true: (i) these

elements generate a free and quasiconvex subgroup of G; (ii) they are

Nielsen equivalent to a system of k elements containing an element of

length at most M up to conjugation in G. The constant M = M(G, k)

can be calculated explicitly.

We are interested in the question of estimation of constant u(G) of

groups with property (U).

It is well known that for any odd n ≥ 1003 in [3] there is constructed

infinite 2-generated group any maximal subgroup of which is cyclic

group of order n (such groups are called Tarskii ”monsters”).In [4]

V.Atabekian proved that Adian-Lysenok groups from [3] have property

(U).

Our goal is the following
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Theorem 1. For any odd n ≥ 1003 there exists an n-periodic group

with property U , whose U-constant satisfies the following inequality

(1.2) u(Γ) <
3n4

2
.

As a corollary from this result and theorem 2 of article [4] we obtain

Corollary 1. For any odd n ≥ 1003 in the variety of groups that

satisfy the identity xn = 1 there exist continuum non isomorphic simple

groups with property (U), for any one of which holds the inequality (2).

In connection with Corollary 1, note that the above mentioned

Osin-Sonin result implies the existence of at most a countable set

of groups with the property (U), since the set of hyperbolic groups

is countable. Corollary 1 also immediately implies the existence of a

countable set of variety (variety of groups of simple exponent n ≥ 1003)

pairwise intersecting by the trivial variety, each containing a continuum

set of non-isomorphic groups endowed with the property (U).

1. The proof of Theorem 1

In the further description we will use designations of works [3] and

[4] without any references.

Consider the group

Γ


〈
a, b | En = 1, F = 1, R ∈

⋃
β>0

Eβ, F ∈
⋃
β>2

Φβ

〉
(see definition (2.5)[4] and §1[3]). The main result of [3] implies that Γ

is an infinite group and its any proper subgroup is contained in some

cyclic subgroup of the order n.

Lemma 1. If Xδ Γ
=T XεT−1, then the group

〈
Xε, Xδ, T

〉
Γ

is con-

tained in some cyclic subgroup of the order n.
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Proof. Let X be an arbitrary element of the group Γ. It fol-

lows from the equality Xδ Γ
=T XεT−1 that |Xδ| = |Xε| ≤ n. Hence

〈Xδ〉Γ = 〈Xε〉Γ and |
〈
Xε, Xδ, T

〉
Γ
| = |〈Xε, T 〉| 6 n2. It follows from

the inequality |〈Xε, T 〉| 6 n2 that 〈Xε, T 〉 is a proper subgroup of the

group Γ, and consequently 〈Xε, T 〉 is a subgroup of a cyclic group of

the order n.

Lemma 2. If P is a generating set of the group Γ, then it contains

a pair of non-commutable elements X and Y.

Proof. Since Γ is a finitely generated group, it suffices to prove

our statement only for a finite set P . If the elements of the set P happen

to be pairwise commutable, then they would generate a finite subgroup

|〈P 〉|Γ ≤ |P |n (the identity xn = 1 is true in Γ). This contradicts the

fact that Γ is an infinite group.

Lemma 3. Let n > 1003 be an arbitrary odd number. Then any

noncyclic subgroup ∆
 〈X, Y 〉 of group Γ of work [3] contains such a

noncyclic subgroup of type U 〈A , C〉U−1 that C ∈ Ψα and

UCU−1 α−2
= [(UAdU−1) , X−1(UAdU−1)X],

where A - minimized elementary period of some rank γ, γ 6 α− 2 and

the length of word UAU−1 relatively to generators X and Y satisfies to

the inequality

|UAU−1|{X,Y } ≤ 2(n+ 1).

Proof. Let ∆ 
 〈X, Y 〉Γ - be an arbitrary noncyclic sub-

group of group Γ. From VI.2.4[5], VI.1.2 [5] and Lemma 1 we have

X
Γ
= T E i T−1 T−1Y T

Γ
= Z for some words T , Z and minimized

elementary period E that has rank β. According to VI.2.4[5] and

IV.1.13[5] we can take into consideration that Z ∈ M ξ ∩ Aξ+1 for

some ξ > β. Let g.c.d.(i, n) = k and r is such an integer that

|r| < n Ei r = Ek. By choosing the number s 
 [n/3k], we will
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obtain n/5 < sk < n/3. Thus Xrs = T E i rs T−1 = T E ks T−1

186 < ks < n+1
2
− 148, as far as n > 1003. Thus, for the word

X1 
 Xrs we have X1 = T E ks T−1

|X1|{X,Y } 6
n− 1

2
|X|{X,Y } <

n− 1

2
,

because their is a number p such that |p| ≤ n−1
2

and Xrs = Xp.

By taking into account the last inequality, then we repeat the proof

of the lemma 3 of work [4] and instead of inequality (6)[4] we obtain

(1.3)

|UAU−1|{X,Y } = |
[
X1, Y

−1X1Y
]
|{X,Y } ≤

4(n− 1)

2
+ 4 = 2(n+ 1).

The lemma is proved.

Now lets turn on to the proof of theorem 1.

Choose {a, b} as a generating set S and assume that P is an ar-

bitrary generating set of the group Γ. By lemma 2, in P there ex-

ists pair of non-commuting elements X and Y . By lemma 3, for

some U in subgroup 〈X, Y 〉, one can choose elements UAU−1 and

UCU−1 α−2
= [(UAdU−1) , X−1(UAdU−1)X]

0
=U [Ad , Z−1AdZ]U−1 where

Z = U−1XU , C is an elementary period of some rank α, A is elemen-

tary period of rank γ ≤ α − 2 C ∈ Ψα. By point 2. of definition of

the set Ψα[4] there exists a period D ∈ Ψα which is conjugate whether

with C or with C−1 and

D
α−2
=
[
Ed, Z−1

1 EdZ1

]
,

where E is minimized elementary period of some rank β, Z1 ∈ M α−2

β 6 α− 2. By lemma 4 the elementary period A is conjugate whether

with E or with E−1. Suppose A = V EτV −1 where τ = ±1.
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By (2), (3) [4] we have

a = D200ED200E2 · · · En−1D200, b = D300ED300E2 · · · En−1D300.

Direct calculations show that

aτ = Dτ200EDτ200E2· · · E(n−1)Dτ200, bτ = Dτ300EDτ300E2· · · E(n−1)Dτ300.

In consideration of the equality A = V EτV −1 we obtain

V aτV −1 = (V DV −1)τ200Aτ (V DV −1)τ200Aτ2 · · · Aτ(n−1)(V DV −1)τ200.

and therefor

(1.4) V aV −1 = (V DV −1)200A(V DV −1)200A2 · · · A(n−1)(V DV −1)200.

So, when τ = ±1, the element

V DV −1 = V
[
Ed, Z−1

1 EdZ1

]
V −1 =

[
Aτd, (V Z1V

−1)−1Aτd(V Z1V
−1)
]

is conjugate with
[
Ad, (V Z1V

−1)−1Ad(V Z1V
−1)
]

and on the other hand

with [Ad , Z−1AdZ] or [Ad , Z−1AdZ]−1 where Z = U−1XU. At the

first case by lemma 5[4] for some integers u and v we have 0 ≤ u, v ≤
n− 1 or

(1.5) (V Z1V
−1)−1Ad(V Z1V

−1) = AuZ−1AdZAv

or

(1.6) (V Z1V
−1)Ad(V Z1V

−1)−1 = AuZ−1A−dZAv.

At the second case in (5) and (6) we just need to change Z by Z−1 and

conversely because it is obvious that[
Ad, Z AdZ−1

] 0
=Z

[
Ad, Z−1AdZ

]−1
Z−1.
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We will consider only the first case (in the second case in the proof we

change the places of Z and Z−1).

Suppose that (5) holds. Because

(UV )D(UV )−1 = U
[
Aτd, AuZ−1AτdZAv

]
U−1 =

= UA−v
[
Aτd, Z−1AτdZ

]
AvU−1

= UA−vU−1
[
(UAτdU−1), X−1(UAτdU−1)X

]
UAvU−1

(in the case of τ = −1 we need to change places ±u ∓v) therefore

from (3) we have

|UV DV −1U−1|{X,Y } ≤ |v|(2n+ 2) + 4d · (2n+ 2) + 4 + |v|(2n+ 2) =

= (2n+2)(|v|+4d)+4 ≤ 2n2−2+4+8d(n+1) = 2n2 +1528n+1530.

Denote M1 
 2n2 + 1528n+ 1530.

Therefore from (4) we obtain

|UV aV −1U−1|{X,Y } ≤ 200n ·M1 + (2n+ 2) · n(n− 1)

2
.

By the same way |UV bV −1U−1|{X,Y } ≤ 200n ·M1 +(2n+2) · n(n−1)
2

.

Now lets suppose that (6) holds. Then

(V Z1V
−1)V DV −1(V Z1V

−1)−1 =
[
(V Z1V

−1)Aτd(V Z1V
−1)−1, Aτd

]
=

=
[
AuZ−1A−τdZAv, Aτd

]
(in the case τ = −1 we need to change the places of ±u and ∓v) and

(UV Z1)D(Z1V
−1)−1 = UAvU−1

[
X−1UA−τdU−1X,UAτdU−1

]
UA−vU−1.

From the last equation by (3) we obtain
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(UV Z1)D((Z−1
1 V −1U−1)|{X,Y } ≤ 2n2 + 1528n+ 1530 = M1.

Since g.c.d.(d, n) = 1 then for some integer s where |s| < n we have

(V Z1V
−1)A(V Z1V

−1)−1 = (AuZ−1A−dZAv)s

and

(1.7)

U(V Z1V
−1)A(V Z1V

−1)−1U−1 = ((UAuU−1)X−1(UA−dU−1)X(UAvU−1))s.

From inequality (3) and equality (7) it follows that for any natural

number r, 1 ≤ r ≤ n− 1 holds the inequality

|U(V Z1V
−1)Ar(V Z1V

−1)−1U−1|{X,Y } ≤

(1.8)

≤ n− 1

2
((2n+2)(|u|+1+|v|)+2) ≤ n− 1

2
((2n+2)n+2) = n(n2−1)+1,

because for every natural number r their is an integer p such that

|p| ≤ n−1
2

and for which holds equality A−rds = Ap.

Conjugating both sides of equality (4) by UV Z1V
−1 and using (7),

(8) we will finally obtain

|UV Z1aZ
−1
1 V −1U−1|{X,Y } < 200n ·M1 + n · (n(n2 − 1) + 1).

In the same way we can show that

|UV Z1bZ
−1
1 V −1U−1|{X,Y } < 200n ·M1 + n · (n(n2 − 1) + 1).

Note that for any element R of group Γ is valid |R|P ≤ |R|{X,Y } because

{X, Y } ⊆ P .
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It is not difficult to show that if n ≥ 1003 and M1 = 2n2 + 1528n+

1530, then

200n ·M1 + n · (n(n2 − 1) + 1) <
3n4

2
.

The theorem is proved.
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