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1.. Introduction

Let’s recall that a hyperidentity is a second-order formula of the

form:

∀X1, . . . , Xm ∀x1, . . . , xn (w1 = w2),

where w1, w2 are words (terms) in the alphabet of functional variables

X1, . . . , Xm and objective variables x1, . . . , xn. However hyperidentities
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are usually presented without universal quantifiers. The hyperidentity

w1 = w2 is said to be satisfied in the algebra (Q; Σ) if this equality

holds whenever every functional variable Xi is replaced by an arbitrary

operation of the corresponding arity from Σ and every objective vari-

able xj is replaced by an arbitrary element from Q. The variety V of

algebras is said to satisfy a certain hyperidentity, if this hyperidentity

is satisfied in any algebra of V . In this case the hyperidentity is called

a hyperidentity of variety V .

For example, if Q(·) is a distributive quasigroup, then an algebra

Q(·, \, /) satisfies the hyperidentities of distributivity:

X(x, Y (y, z)) = Y (X(x, y), X(x, z)), (d1)

X(Y (x, y), z) = Y (X(x, z), X(y, z)). (d2)

Moreover, if Q(A) is a distributive quasigroup, then an algebra

Q
(
A,A−1,−1A,−1(A−1), (−1A)−1, A∗

)
satisfies these hyperidentities.

The identity (set of identities) F is called solid if a quasigroup Q(·)
satisfies F it follows,that an algebra Q(·, \, /) satisfies a hyperidentity

(set of hyperidentities) corresponding to F .

Open Problem: Characterize the solid identities (set of identities).

We consider the category of algebras with bihomomorphisms (ϕ, ψ̃)

as morphisms, where:

ϕ [A(x1, . . . , xn)] = (ψ̃A) (ϕx1, . . . , ϕxn) .

This category we denote by Ãlg. Product in this category is called a

superproduct of algebras. The ”identity relations” of this category are

hyperidentities.

Bilattices, algebras with two separate lattice structures, have found

their main applications in the algebraization of systems of inference in

artificial intelligence and logic programming. The two lattice orderings
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of a bilattice are viewed as respectively representing the relative degree

of truth and knowledge of possible events. Bounded Bilattices were

first introduced by M.Ginsberg and M.Fitting in 1988-90 ([1], [2]).

We will discuss the concepts of interlaced, modular, distributive,

Boolean (DeMorgan) and Ginsberg bilattices with their characteriza-

tions by hyperidentities and superproducts.

2.. Some preliminary results on hyperidentities

For the proofs of the following result see [3] (also see [4], [5]).

Theorem A. The variety of lattices satisfies the following hyperi-

dentities:

X(x, x) = x,(1)

X(x, y) = X(y, x),(2)

X(x,X(y, z)) = X(X(x, y), z),(3)

X(Y (X(x, y), z), Y (y, z)) = Y (X(x, y), z).(4)

Conversely, every hyperidentity of the variety of lattices is a conse-

quence of hyperidentities (1), (2), (3), (4).

Theorem B. The variety of modular lattices satisfies the following

hyperidentities: (1), (2), (3), (4) and

(5) X(Y (x,X(y, z)), Y (y, z)) = Y (X(x, Y (y, z)), X(y, z)).

Conversely, every hyperidentity of the variety of modular lattices is a

consequence of hyperidentities (1), (2), (3), (4), (5).

Theorem C. The variety of distributive lattices satisfies the fol-

lowing hyperidentities: (1), (2), (3) and (d1). Conversely, every hy-

peridentity of the variety of distributive lattices is a consequence of

hyperidentities (1), (2), (3), (d1).
9



Theorem D. The variety of Boolean algebras satisfies the following

hyperidentities: (1), (2), (3), (d1) and

F (F (x)) = x,(6)

X(F (x), y) = X(F (X(x, y)), y),(7)

F (X(F (X(x, y)), F (X(x, F (y))))) = x.(8)

Conversely, every hyperidentity of the variety of Boolean algebras is a

consequence of hyperidentities (1), (2), (3), (d1), (6), (7), (8).

Open Problem: Characterize the hyperidentities of variety of (asso-

ciative) rings. For example, the following hyperidentity is satisfied in

every ring:

X(X(Y (x, x), Y (x, x)), Y (X(x, x), X(x, x)))

= X(Y (X(x, x), X(x, x)), X(Y (x, x), Y (x, x))).

Historical Notes: Hyperidentities of associativity and distributivity

was first considered in binary algebras with quasigroup operations in

[6] and [7]. The general concept of hyperidentity in algebras is studied

in monographs [8], [9].

Let J (A) be the term (or polynomial) algebra of algebra A. We call

the hyperidentities of algebra J (A) term hyperidentities of A. Term

hyperidentities were first considered in [10] and [11], and studied in

monographs [12], [13].

Many related papers can be found in these references.

3.. Bilattices

An algebra (B,∧,∨, ·,+) with four binary operations is called a

bilattice if both the reducts B1 = (B,∧,∨) and B2 = (B, ·,+) are lat-

tices. A bilattice is bounded if both its reducts B1 and B2 are bounded
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lattice. A bilattice is called interlaced if each of the four basic opera-

tions preserves both the ordering relations: 61 in the lattice B1 and

62 in the lattice B2. A bilattice is called distributive if it satisfies dis-

tributive hyperidentity (d1). An interlaced bilattice is called modular

if it satisfies the hyperidentity (5). Define a bilattice B with one unary

operation ′ to be Boolean (see [14]) if it is distributive and satisfies the

hyperidentities

x′′ = x,

X(x,X(y, y′)′) = x.

Theorem E. A bilattice is interlaced iff it satisfies the hyperiden-

tities satisfied in the variety of lattices.A bilattice is modular iff it sat-

isfies the hyperidentities satisfied in the variety of modular lattices.A

bilattice is distributive iff it satisfies the hyperidentities satisfied in the

variety of distributive lattices.A bilattice is Boolean iff it satisfies the

hyperidentities satisfied in the variety of Boolean algebras.

Let (L1,∧1,∨1) and (L2,∧2,∨2) be lattices. Let B = L1 ./ L2 be

the superproduct of the lattices L1 and L2, i.e.

B = (L1 × L2,∧,∨, ·,+)

with basic operations defined by

∧ = (∧1,∨2), ∨ = (∨1,∧2),

· = (∧1,∧2), + = (∨1,∨2).

Theorem F. An algebra (B,∧,∨, ·,+) is an interlaced bilattice iff

it is isomorphic to the superproduct of two lattices.An algebra (B,∧,∨, ·,+)

is a modular bilattice iff it is isomorphic to the superproduct of two mod-

ular lattices.An algebra (B,∧,∨, ·,+) is a distributive bilattice iff it is

isomorphic to the superproduct of two distributive lattices.An algebra

(B,∧,∨, ·,+) is a Boolean bilattice iff it is isomorphic to the super-

product of two Boolean algebras.

The paper [15] contains a representation theorem for bounded in-

terlaced bilattices with the unary negation introduced by Ginsberg and
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Fitting . We now provide a general version of the representation the-

orem considering arbitrary (unbounded) interlaced bilattices with the

unary negation.

The Ginsberg negation ′ is defined on a bilattice (B,∧,∨, ·,+) as a

unary operation satisfying the following identities

x′′ = x, (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′,

(x+ y)′ = x′ + y′, (x · y)′ = x′ · y′

A bilattice with Ginsberg negation is called a Ginsberg bilattice.An

interlaced (modular, distributive) bilattice with Ginsberg negation is

called a Ginsberg interlaced (modular, distributive) bilattice.

A Ginsberg bilattice B(L) is a superproduct L ./ L with Ginsberg

negation

(x, y)′ = (y, x).

Theorem G. An algebra (B,∧,∨, ·,+,′ ) is a Ginsberg interlaced

bilattice iff it is isomorphic to the B(L) for some lattice L.An algebra

(B,∧,∨, ·,+,′ ) is a Ginsberg modular bilattice iff it is isomorphic to

the B(L) for some modular lattice L.An algebra (B,∧,∨, ·,+,′ ) is a

Ginsberg distributive bilattice iff it is isomorphic to the B(L) for some

distributive lattice L.

These results are extended to the DeMorgan bilattices. An algebra

(B,∧,∨, ·,+,′ ) with four binary and one unary operations is called

a DeMorgan bilattice if both the reducts B1 = (B,∧,∨,′ ) and B2 =

(B, ·,+,′ ) are DeMorgan algebras and (B,∧,∨, ·,+) is a distributive

bilattice.

Open Problem: Characterize the Ginsberg bilattices.
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