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Abstract.  Modern information theory studies various communication 
channels modelling certain situations. The basic matter of the present 
research is the information transmission process from а source to а 
receiver, and main parameters are the throughput/carrier 
capacity/transmission capacity and the information transmission speed.  
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In the same time in any communication channel transformation of some 

words in others occurs, i.e. certain word function is realized. After focusing 

our attention exactly on this fact, a number of new situations arises.  We 

consider them in the present paper.  

    Let },...,{ 21 maaaB =  is a finite alphabet and let *B  is a set of all words 

of a finite length over the alphabet B . By a word function T  we mean a 

mapping ** BB T→ , which we generally consider as identically defined.  

Instances:  

1) if }1,0{=B and nnB }1,0{= , then a word function of a form 

BB n → is an ordinary/usual  Boolean function depended on no 

more than n variables; 

2) The word function of a form xyyxf =),(   is called a 

concanetation.  
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3) Consider a mapping nn BB →    of the following form  

                                                    yxxTy ⊕=)( ,    

                                     (1) 

where yByx n ,, ∈ is a parameter, which defines a mapping  , andT ⊕  is an 

operation of summation by 2mod . The transformation collection  )}({ xTy  

defines an additive communication channel. It is clear, that a transformation 

(1) is a special case of a general Affine transformation nB   into itself given 

by means of a Boolean matrix  A  and a vector и вектора  b  : 

                                          bAy x +=                                                                                        

(2) 

     In other words, we can think that a collection of matrices },...,{ 21 mAAA  

is given, and every word x  at the entry can be transformed in one of the 

following words at the exit: mmm bxAybxAy +=+= ,...111 . Channels of  a 

form (1) are a generalization of the well-known additive communication 

channel , see [ 3 ], [ 1 ]. 

     In the general case it is convenient to think that there is a finite word set  

M ⊆ *B  and a transformation group }{ iTT =  such that  MMT ⊆)( . 

Thus, every transformation belonging to a family T  transfers a word from 

M   into a word from the same set. 

Definition. A family of transformations TT ⊆* defines an algebraic 

channel, if the following condition is satisfied *1* TTTТ ii ∈→∈ −                                                      

(3) 

    This condition requires that any “transformed” word could be returned at 
the initial form by means of  “the same” transformations. The following 
definition duplicates a standard definition of an error-correcting code.  
  Definition. A set MV ⊆ we call a code correcting errors of a channel *T ,  

if a condition 

 )()( vTuTi ≠                                                                                                                                           

(4) 

 is satisfied for all TTT ji ∈,  and for all words Vvu ∈, .            
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    The condition (4) ensures an invertibility of every transformation from T  

on “the restriction” на "сужении" MV ⊆ and, by virtue of this fact, 

possibility to restore the initial message by its “image”. 

       Definition. A neighbourhood of a 1-st order of a word Mv ∈  we call a 

word set )(1 vS , generated by a family of transformationsT , i.е.   

                    }),({)(1 TTvTvS ii

def
∈=                                                                                           

(5) 

      A neighbourhood of higher orders are defined inductively according to a 

formula                                                                                                                            

                     )))((()( 11 vSSvS KK −=                                                                                                       

(6)           

In standard terms )(1 vS  is a column of the decoding table generated by 

word Vv ∈ . 

       Every maximum efficiency code correcting errors of a channel Каждый 

код максимальной мощности, исправляющий ошибки канала *T we call 

an optimal code, and the efficiencies of the corresponding code we denote 

by мы назовем оптимальным, а мощности   соответствующего кода 

обозначим через ),( *TMA . 

    The following statement represents standard boundary of a density 

packing method and a Varshamov-Hilbert boundary in terms of first and 

second order neighbourhoods [ 1 ], [ 2 ] 

              Let )()( 11 min vSMS
Mv∈

=              
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                          )()( 22 max vSMS
Mv∈

=                                                                                                 

(7) 

   Theorem 1.  The following estimations are valid   

                        
)(

),(
)( 1

*
2 MS

MTMA
MS

M ≤≤     

                           (8) 
        

     A standard algorithm for construction of a code V, whose efficiency 

satisfies lower boundary from equation (8), consists in the following 

1) As a point 1v  of a code V we choose an arbitrary word from a set M  

and construct a second order neighbourhood )( 1
2 vS  of this word. 

2) As a point   2v   we choose an arbitrary word )(/ 1
2

1 vSMM = . 

3) As a point Kv  we choose an arbitrary word 

from U
1

1

2
1 )(/

−

=
− =

K

i
iK vSMM . 

4) An algorithm finishes its work by a choice opportunity absence.  

An efficiency of a code V  constructed by means of this algorithm 

depends on a next point choice strategy. However, there are special classes 

of channels *T , for which described procedure always leads to the code with 

the same efficiency ),( *TMA . 

     Theorem 2. If a family of transformations  *T  is a subgroup of a group 

Т, then an optimal code efficiency is calculated by the following formula: 
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∑
∈

=
TTi

TiN
T

TMA )(1),(
*

*
                         

       (9) 

where )( iTN   is a   number of fixed points of the transformation Тi, i.е 

                          vvTMvTN ii =∈= )(:)(                                      

(10) 

       The formula (9) is a classic Burnside schema (see [4]) applied to the 

described above situation. 

Corollary 1 [1]. If },...,{ 21
*

myyyT =  is an additive channel generated 

by a group },...,{ 21 myyyG = , i.е.                                                            

                yvvTi ⊕=)(   mi ,1=                                                                  

(11) 

then the equity  

                                          
m

GBA
n

n 2),( =                                                                                         

(12) 

is valid. 

Corollary 2. If  }{*
iTT =  is a group of cyclical shift on *B , i.е.  

...)(),...,( 1,21 +−−== кnкnnK xxxxxT  

then we have  

                                                    ∑ 





=

nd

dn

d
n

n
TBA

/

* 21),( ϕ              
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and )( pϕ  is the Euler function (function of a positive integer p  is 

defined to be the number of positive integers less than or equal to p that are 

coprime to p ). 
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