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Abstract. We consider convergence acceleration of the modified
Fourier expansions by trigonometric-rational corrections which
lead to the modified Fourier-Pade approximations. Exact con-
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Introduction

The modified Fourier basis

H = {cos πnx : n ∈ Z+} ∪ {sin π(n− 1
2
)x : n ∈ N}

was originally proposed by Krein [1] and then thoroughly investigated in a
series of papers [2, 3, 4, 5, 6, 7, 8, 9]. The set H is an orthonormal basis of
L2[−1, 1] ([2]), as H consists of eigenfunctions of the Sturm-Liouville oper-
ator L = −d2/dx2 with Neumann boundary conditions u′(1) = u′(−1) = 0.
Both the orthogonality and the density in L2[−1, 1] follow from the classical
spectral theory ([10]).

Let MN(f, x) be the truncated modified Fourier series

MN(f, x) =
1

2
f c0 +

N∑
n=1

[f cn cosπnx+ f sn sin π(n− 1
2
)x], (1)

where

f cn =

∫ 1

−1
f(x) cosπnxdx, f sn =

∫ 1

−1
f(x) sinπ(n− 1

2
)xdx. (2)
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Important property of {f cn} and {f sn}, which explains the better convergence
of the modified expansions as compared to the classical truncated Fourier
series, is the faster decay of the coefficients

f cn, f
s
n = O(n−2), n→∞

for smooth but non-periodic functions. The benefit of using such expansions
to approximate a smooth but non-periodic function f is a faster convergence
rate. Moreover the convergence is uniform in [−1, 1] and there is no Gibbs
phenomenon on the boundary.

The first results on the pointwise convergence of the modified series were
proved in [2]:

Theorem 1 [2] Suppose that f is Riemann integrable in [−1, 1] and that

f cn, f
s
n = O(n−1), n� 1.

If f is Lipschitz at x ∈ (−1, 1) then MN(f, x) → f(x) as N → ∞. More-
over, this progression to a limit is uniform in [α, β], where −1 < α < β < 1,
provided that f ∈ C[α, β].

Theorem 2 [2] If f is an odd and analytic function, then MN(f, x) uni-
formly converges to f(x) in [−1, 1] and, moreover,

MN(f,±1) = f(±1) +O(N−1), N →∞.

Given that MN(f,±1) = f(±1) + O(N−1) for any even and analytic f in
[−1, 1], we conclude that the modified Fourier expansions for all analytic
functions converge at the endpoints by the rate O(N−1) ([2]).

Olver in [6] proved the convergence of the modified expansions at the
endpoints without requiring that f is analytic:

Theorem 3 [6] Suppose that f ∈ C2[−1, 1] and f ′′ has bounded variation.
Then

MN(f,±1)→ f(±1).

Olver also proved that the convergence rate of the modified expansions
is O(N−2) away from the endpoints:

Theorem 4 [6] Suppose that f ∈ C2[−1, 1], f ′′ has bounded variation. If
x ∈ (−1, 1), then

f(x)−MN(f, x) = O(N−2), |x| < 1.

Under some additional requirements, the convergence rate is faster:
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Theorem 5 [5, 6] Suppose that f ∈ C2k+2(−1, 1), f (2k+2) has bounded vari-
ation and f obeys the first k derivative conditions

f (2r+1)(±1) = 0, r = 0, . . . , k − 1. (3)

Then, the error
f(x)−MN(f, x) = O(N−2k−2),

uniformly for x in compact subsets of (−1, 1).

We see that the convergence rate remains slow if the function f does
not obey the first derivative conditions (3). The uniform error is O(N−1)
on [−1, 1] and O(N−2) inside. This is due to function jumps in certain
derivatives at the endpoints x = ±1. If these jumps are known, the conver-
gence acceleration can be achieved by well-known polynomial subtraction
approach. For the classical Fourier series this approach has a very long
history (see [11, 12, 13, 14, 15, 16, 17, 9]). For modified expansions these
approach is explored in [4, 8, 9]. More specifically, we write f (see [9]) in
the terms of its Lanczos representation

f = (f − gk) + gk,

where gk is chosen such that conditions

f (2r+1)(±1) = g
(2r+1)
k (±1), r = 0, . . . , k − 1.

Since f − gk obeys the first k derivative conditions, the new approximation

Mk
N(f, x) =MN(f − gk, x) + gk

will converge with the same rate as if f obeyed those conditions. This is the
polynomial subtraction technique known also as Krylov-Lanczos approach.

Adcock in [5, 9] explored the convergence of the modified expansions in
the Sobolev spaces Hq, q > 0. In particular, he proved that the modified
basis is dense in H1(−1, 1) and ‖f − MN(f, x)‖∞ → 0 as N → ∞ for
∀f ∈ H1(−1, 1).

Multivariate modified Fourier expansions were investigated in [3, 7, 8, 9].
In this paper, we consider convergence acceleration of the truncated

modified Fourier series along the ideas of the Fourier-Pade approximations
([18, 19, 20, 21]).

The paper is organized as follows. Section 1 provides exact constants of
the asymptotic errors for the modified expansions. Both L2 and pointwise
(see also [9] for similar results) convergences are considered. We need those
results for further comparisons. Section 2 explains the construction of the
rational approximations by application of trigonometric-rational corrections
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to the errors of modified expansions. Rational corrections contain some un-
known parameters. Their determination is carried out along the ideas of
the Fourier-Pade approximations. That is why those approximations are
named as modified Fourier-Pade approximations. Sections 3 and 4 inves-
tigate the pointwise and L2 convergence, correspondingly. Section 5 gives
some concluding remarks.

1 Convergence of the Modified Fourier Ex-

pansions

In this section, we derive exact estimates for the asymptotic errors of the
modified Fourier expansions that we need for further comparisons. We focus
our attention to L2(−1, 1) and pointwise convergence on (−1, 1).

Let f (2q+1) ∈ C[−1, 1], q ≥ 0 and denote

A2k+1(f) =
(
f (2k+1)(1)− f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q,

B2k+1(f) =
(
f (2k+1)(1) + f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q.

The following lemmas (see also [2, 6, 7] for similar estimates) are the
cornerstones for all asymptotic expansions provided in this paper.

Lemma 1 Assume that f (2q+1) ∈ AC[−1, 1], q ≥ 0. Then, the following
asymptotic expansions are valid

f cn = (−1)n
q∑

k=0

A2k+1(f)

(πn)2k+2
+ o(n−2q−2), n→∞,

f sn = (−1)n+1

q∑
k=0

B2k+1(f)

(π(n− 1
2
))2k+2

+ o(n−2q−2), n→∞.

Proof. The proof immediately follows from the following expansions de-
rived by means of integration by parts

f cn = (−1)n
q∑

k=0

A2k+1(f)

(πn)2k+2
+

(−1)q+1

(πn)2q+2

∫ 1

−1
f (2q+2)(x) cosπnxdx, (4)

f sn = (−1)n+1

q∑
k=0

B2k+1(f)

(π(n− 1
2
))2k+2

+

(−1)q+1

(π(n− 1
2
))2q+2

∫ 1

−1
f (2q+2)(x) sinπ(n− 1

2
)xdx. (5)

�
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In particular, if f (2q+1) ∈ AC[−1, 1], q ≥ 0 and f (2k+1)(±1) = 0,
k = 0, . . . , q − 1, then Lemma 1 implies

f cn = (−1)n
A2q+1(f)

(πn)2q+2
+ o(n−2q−2), n→∞ (6)

and

f sn = (−1)n+1 B2q+1(f)

(π(n− 1
2
))2q+2

+ o(n−2q−2), n→∞. (7)

Lemma 2 Assume that f (2q+2) ∈ AC[−1, 1], q ≥ 0. Then, the following
asymptotic expansions are valid

f cn = (−1)n
q∑

k=0

A2k+1(f)

(πn)2k+2
+ o(n−2q−3), n→∞,

f sn = (−1)n+1

q∑
k=0

B2k+1(f)

(π(n− 1
2
))2k+2

+ o(n−2q−3), n→∞.

Proof. In view of higher smoothness of f , from (4) and (5) we have

f cn = (−1)n
q∑

k=0

A2k+1(f)

(πn)2k+2
+

(−1)q

(πn)2q+3

∫ 1

−1
f (2q+3)(x) sinπnxdx,

f sn = (−1)n+1

q∑
k=0

B2k+1(f)

(π(n− 1
2
))2k+2

+

(−1)q+1

(π(n− 1
2
))2q+3

∫ 1

−1
f (2q+3)(x) cosπ(n− 1

2
)xdx,

which conclude the proof. �

In particular, if f (2q+2) ∈ AC[−1, 1], q ≥ 0 and f (2k+1)(±1) = 0,
k = 0, . . . , q − 1, then Lemma 2 implies

f cn = (−1)n
A2q+1(f)

(πn)2q+2
+ o(n−2q−3), n→∞ (8)

and

f sn = (−1)n+1 B2q+1(f)

(π(n− 1
2
))2q+2

+ o(n−2q−3), n→∞. (9)

Now denote

RN(f, x) = f(x)−MN(f, x).
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Assuming that MN(f, x) converges pointwise to f(x), we can write

RN(f, x) =
∞∑

n=N+1

(
f cn cos πnx+ f sn sin π(n− 1

2
)x
)

= Rc
N(f, x) +Rs

N(f, x),

(10)

where

Rc
N(f, x) =

∞∑
n=N+1

f cn cosπnx, Rs
N(f, x) =

∞∑
n=N+1

f sn sin π(n− 1
2
)x.

Next theorem deals with L2-convergence of the modified Fourier expan-
sions.

Theorem 6 Assume that f (2q+1) ∈ AC[−1, 1], q ≥ 0 and

f (2k+1)(±1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds

lim
N→∞

N2q+ 3
2 ||RN ||L2 = c(q)

√
A2

2q+1(f) +B2
2q+1(f), (11)

where

c(q) =
1

π2q+2
√

4q + 3
.

Proof. Estimates (6) and (7) together with (10) imply

||RN(f, x)||2L2
=

∞∑
n=N+1

(f cn)2 + (f sn)2

=
A2

2q+1(f)

π4q+4

∞∑
n=N+1

1

n4q+4
+
B2

2q+1(f)

π4q+4

∞∑
n=N+1

1

(n− 1
2
)4q+4

+ o(N−4q−3), N →∞.

This concludes the proof. �

Now, we continue with the pointwise convergence. Denote

∆0
n(fn) = fn, ∆k

n(fn) = ∆k−1
n (fn) + ∆k−1

n−1(fn), k ≥ 1. (12)

Lemma 3 Let l ≥ 0, and

Pl,n :=
(−1)n

(πn)2l+2
, Ql,n :=

(−1)n

(π(n− 1
2
))2l+2

.
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Then

∆p
n(Pl,n) = Pl,n

(−1)pp!

np

(
p+ 2l + 1

2l + 1

)
+O(n−2l−p−3),

and

∆p
n(Ql,n) = Ql,n

(−1)pp!

np

(
p+ 2l + 1

2l + 1

)
+O(n−2l−p−3).

Proof. We have

∆p
n(Pl,n) =

p∑
k=0

(
p

k

)
Pl,n−k =

p∑
k=0

(
p

k

)
(−1)n+k

(π(n− k))2l+2

=
(−1)n

(πn)2l+2

p∑
k=0

(
p

k

)
(−1)k

(1− k
n
)2l+2

= Pl,n

p∑
k=0

(−1)k
(
p

k

) ∞∑
j=2l+1

(
j

2l + 1

)(
k

n

)j−2l−1
= Pl,n

p∑
k=0

(−1)k
(
p

k

) ∞∑
j=0

(
j + 2l + 1

2l + 1

)

= Pl,n

∞∑
j=0

(
j + 2l + 1

2l + 1

)
1

nj

p∑
k=0

(−1)k
(
p

k

)
kj

= Pl,n

∞∑
j=0

(
j + 2l + 1

2l + 1

)
1

nj
αp,j,

where (see [17])

αk,m =
k∑
s=0

(
k

s

)
(−1)ssm, m ≥ 0. (13)

This concludes the proof as αp,j = 0, j = 0, . . . , p− 1 and αp,p = (−1)pp!.
Similarly we prove the second estimate. �

Theorem 7 Let f (2q+2) ∈ AC[−1, 1], q ≥ 0 and

f (2k+1)(±1) = 0, k = 0, . . . , q − 1.

Then, the following estimate holds for |x| < 1

RN(f, x) = A2q+1(f)
(−1)N+1 cos π(N + 1

2
)x

2N2q+2π2q+2 cos πx
2

+B2q+1(f)
(−1)N sin πNx

2N2q+2π2q+2 cos πx
2

+ o(N−2q−2)N →∞.



ON A CONVERGENCE OF THE MODIFIED FOURIER-PADE APPROXIMATIONS 127

Proof. The Abel transformation implies

Rc
N(f, x) =

∞∑
n=N+1

f cn cosπnx = −
f cN cosπ(N + 1

2
)x

2 cos πx
2

+
1

2 cos πx
2

∞∑
n=N+1

∆1
n(f cn) cosπ(n− 1

2
)x,

and

Rs
N(f, x) =

∞∑
n=N+1

f sn sinπ(n− 1
2
)x = −f

s
N sin πNx

2 cos πx
2

+
1

2 cos πx
2

∞∑
n=N+1

∆1
n(f sn) sinπ(n− 1)x.

Reiteration of this transformation leads to the following expansions

Rc
N(f, x) = −

f cN cos π(N + 1
2
)x

2 cos πx
2

− ∆1
N(f cN) cos πNx

4 cos2 πx
2

+
1

4 cos2 πx
2

∞∑
n=N+1

∆2
n(f cn) cosπ(n− 1)x,

and

Rs
N(f, x) = −f

s
N sin πNx

2 cos πx
2

−
∆1
N(f sN) sin π(N − 1

2
)x

4 cos2 πx
2

+
1

4 cos2 πx
2

∞∑
n=N+1

∆2
n(f sn) sinπ(n− 3

2
)x.

According to estimates (8), (9) and Lemma 3, we have

∆1
N(f cN) = O(N−2q−3), ∆2

n(f cn) = o(n−2q−3), (14)

and

∆1
N(f sN) = O(N−2q−3), ∆2

n(f sn) = o(n−2q−3), (15)

which conclude the proof. �

2 Modified Fourier-Pade Approximations

In a series of papers ([21, 20, 22, 23, 24, 25]) the convergence acceleration of
the truncated Fourier series and trigonometric interpolation were achieved
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by application of trigonometric-rational functions as corrections to the cor-
responding errors. Rational corrections contain unknown parameters and
different approaches are known for their determination. One approach leads
to Fourier-Pade approximations ([18, 20]). Here, the same idea we apply for
the modified expansions.

Consider a finite sequence of real numbers {θk}pk=1 , p ≥ 1 and by ∆k
n(θ, fn)

denote the following generalized finite differences

∆0
n(θ, fn) = fn,

∆k
n(θ, fn) = ∆k−1

n (θ, fn) + θk∆
k−1
n−1(θ, fn), k ≥ 1.

If θk = 1, k = 1, . . . , p, we get the classical finite differences

∆k
n(θ, fn) = ∆k

n(fn).

The Abel transformation implies (details see in [20])

Rc
N(f, x) =

1

2

∞∑
n=N+1

f cne
iπnx +

1

2

∞∑
n=N+1

f cne
−iπnx

= −e
iπ(N+1)x

2

p∑
k=1

θck∆
k−1
N (θc, f cn)∏k

r=1(1 + θcre
iπx)
− e−iπ(N+1)x

2

p∑
k=1

θck∆
k−1
N (θc, f cn)∏k

r=1(1 + θcre
−iπx)

+
1

2
∏p

k=1(1 + θcke
iπx)

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx

+
1

2
∏p

k=1(1 + θcke
−iπx)

∞∑
n=N+1

∆p
n(θc, f cn)e−iπnx,

and

Rs
N(f, x) =

e−
iπx
2

2i

∞∑
n=N+1

f sne
iπnx − e

iπx
2

2i

∞∑
n=N+1

f sne
−iπnx

= −e
iπ(N+ 1

2
)x

2i

p∑
k=1

θk∆
k−1
N (θs, f sn)∏k

r=1(1 + θsre
iπx)

+
e−iπ(N+ 1

2
)x

2i

p∑
k=1

θk∆
k−1
N (θs, f sn)∏k

r=1(1 + θsre
−iπx)

− e
iπx
2

2i
∏p

k=1(1 + θske
−iπx)

∞∑
n=N+1

∆p
n(θs, f sn)e−iπnx

+
e−

iπx
2

2i
∏p

k=1(1 + θske
iπx)

∞∑
n=N+1

∆p
n(θs, f sn)eiπnx.
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After some algebraic manipulations, we derive

Rc
N(f, x) =

−
p∑

k=1

θck∆
k−1
N (θc, f cn)∏k

r=1(1 + 2θcr cos πx+ (θcr)
2)

k∑
t=0

γt(k, θ
c) cosπ(N + 1− t)x

+Rc
N,p(f, x),

and

Rs
N(f, x) =

−
p∑

k=1

θsk∆
k−1
N (θs, f sn)∏k

r=1(1 + 2θsr cos πx+ (θsr)
2)

k∑
t=0

γt(k, θ
s) sinπ(N +

1

2
− t)x

+Rs
N,p(f, x),

where

Rc
N,p(f, x) =

1

2
∏p

k=1(1 + θcke
iπx)

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx

+
1

2
∏p

k=1(1 + θcke
−iπx)

∞∑
n=N+1

∆p
n(θc, f cn)e−iπnx, (16)

Rs
N,p(f, x) =

e−
iπx
2

2i
∏p

k=1(1 + θske
iπx)

∞∑
n=N+1

∆p
n(θs, f sn)eiπnx

− e
iπx
2

2i
∏p

k=1(1 + θske
−iπx)

∞∑
n=N+1

∆p
n(θs, f sn)e−iπnx,

and γt(k, θ) are defined by the following identity

k∏
t=1

(1 + θtx) =
k∑
t=0

γt(k, θ)x
t. (17)

These expansions lead to modified Fourier-Pade (MFP) approximations

MN,p(f, x) = MN(f, x)

−
p∑

k=1

θck∆
k−1
N (θc, f cn)∏k

r=1(1 + 2θcr cos πx+ (θcr)
2)

k∑
t=0

γt(k, θ
c) cosπ(N + 1− t)x

−
p∑

k=1

θsk∆
k−1
N (θ, f sn)∏k

r=1(1 + 2θsr cosπx+ (θsr)
2)

k∑
t=0

γt(k, θ
s) sinπ(N + 1

2
− t)x (18)
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with the error

RN,p(f, x) = f(x)−MN,p(f, x) = Rc
N,p(f, x) +Rs

N,p(f, x),

where unknown parameters {θck} and {θsk}, k = 1, ..., p are determined from
the following systems of equations

∆p
n(θc, f cn) = 0, n = N,N − 1, . . . , N − p+ 1, (19)

and

∆p
n(θs, f sn) = 0, n = N,N − 1, . . . , N − p+ 1. (20)

Systems (19) and (20) can be reformulated as linear systems of equations
with unknowns γk(p, θ

c) and γk(p, θ
s)

∆p
n(θc, f cn) = f cn +

p∑
k=1

γk(p, θ
c)f cn−k = 0, n = N,N − 1, . . . , N − p+ 1, (21)

and

∆p
n(θs, f sn) = f sn +

p∑
k=1

γk(p, θ
s)f sn−k = 0, n = N,N − 1, . . . , N − p+ 1. (22)

Then, {θck} and {θsk}, k = 1, . . . , p, can be determined from (17), with k = p,
as the roots of the corresponding polynomials.

According to systems (21) and (22), coefficients γk(p, θ) would have the
following asymptotic expansions (if f is enough smooth, see below)

γj(p, θ
c) =

∞∑
t=0

γcj,t
N t

, γj(p, θ
s) =

∞∑
t=0

γsj,t
N t

(23)

with some constants γcj,t and γsj,t. In particular,

γj(p, θ
c) = O(1), γj(p, θ

s) = O(1), N →∞. (24)

More precisely,

γsj,0 = γcj,0 =

(
p

j

)
. (25)

In the further sections, we investigate the convergence of the MFP–appro-
ximations in the frameworks of the pointwise and L2(−1, 1) convergences.
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3 Pointwise Convergence

First, we prove some lemmas.

Lemma 4 Let f (2q+2p+2) ∈ AC[−1, 1], q ≥ 0, p ≥ 1, and let the systems
(21), (22) have unique solutions. If

f (2k+1)(±1) = 0, k = 0, . . . , q − 1,

then, the following estimates are valid

∆w
n (∆p

n(θc, f cn)) = O(n−w−2q−2) + o(n−2q−2p−3), n ≥ N + 1, N →∞,

and

∆w
n (∆p

n(θs, f sn)) = O(n−w−2q−2) + o(n−2q−2p−3), n ≥ N + 1, N →∞.

Proof. We provide the proof for the coefficients f cn only. According to the
estimate (8)

f cn = (−1)n
q+p∑
l=q

A2l+1(f)

(πn)2l+2
+ o(n−2q−2p−3). (26)

Then,

∆w
n (∆p

n(θ, f cn)) =

p∑
s=0

γs(p, θ
c)∆w

n (f cn−s)

=

p∑
s=0

γs(p, θ
c)

q+p∑
l=q

A2l+1(f)∆w
n (Pl,n) + o(n−2q−2p−3).

Taking into account the estimates (24) and Lemma 3 we get the desired
estimate.�

Lemma 5 Let f (2q+2p+2) ∈ AC[−1, 1], q ≥ 0, p ≥ 1, and let the systems
(21), (22) have unique solutions. If

f (2k+1)(±1) = 0, k = 0, . . . , q − 1,

and
A2q+1(f)B2q+1(f) 6= 0,

then, the following estimates are valid

∆w
N(∆p

n(θc, f cn)) =

A2q+1(f)
(−1)N+w(2q + w + 1)!

π2q+2N2q+p+w+2(2q + 1)!

p∑
t=0

βct (p− t)
(

2q + w + t+ 1

2q + w + 1

)
+O(N−2q−w−p−3) + o(N−2q−2p−3), (27)
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∆w
N(∆p

n(θs, f sn)) =

B2q+1(f)
(−1)N+1+w(2q + w + 1)!

π2q+2N2q+p+w+2(2q + 1)!

p∑
t=0

βst (p− t)
(

2q + w + t+ 1

2q + w + 1

)
+O(N−2q−w−p−3) + o(N−2q−2p−3), (28)

where

βcu(t) =

p∑
j=0

(−1)jγcj,tj
u, βsu(t) =

p∑
j=0

(−1)jγsj,tj
u (29)

and γcj,t, γ
s
j,t are the coefficients of the asymptotic expansions

γj(p, θ
c) =

2p+1∑
t=0

γcj,t
N t

+ o(N−2p−1), γj(p, θ
s) =

2p+1∑
t=0

γsj,t
N t

+ o(N−2p−1). (30)

Proof. We will prove only the estimate (27). The estimate (28) can be
handled similarly. The existence of the asymptotic expansions (30) follows
from the smoothness of f and the solutions of the systems (21), (22) specified
applying the Crammer rule. Then, we have

∆w
N(∆p

n(θc, f cn)) =

p∑
s=0

γs(p, θ
c)∆w

N−s(f
c
n)

=
w∑
k=0

(
w

k

) p∑
s=0

γs(p, θ
c)f cN−k−s,

(31)

where γs(p, θ
c) are the solutions of the system (21). From (26), we derive

f cN−s−k = (−1)N−s−k
q+p∑
l=q

A2l+1(f)

(π(N − k − s))2l+2
+ o(N−2q−2p−3)

=(−1)N−s−k
q+p∑
l=q

A2l+1(f)

π2l+2

∞∑
j=2l+1

(
j

2l + 1

)
(k + s)j−2l−1

N j+1

+ o(N−2q−2p−3)

=
(−1)N−s−k

(πN)2q+2

2p+1∑
j=0

1

N j

[ j
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + j + 1

2q + 2l + 1

)
(k + s)j−2l

+ o(N−2q−2p−3).
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Substituting this and the first equation of (30) into (31), we obtain

∆w
N(∆p

n(θ, f cn)) =
w∑
k=0

(
w

k

) p∑
s=0

γs(p, θ)f
c
N−k−s

=
(−1)N

(πN)2q+2

2p+1∑
j=0

1

N j

j∑
t=0

[ j−t
2

]∑
l=0

A2q+2l+1(f)

π2l

(
2q + j − t+ 1

2q + 2l + 1

)
×

×
j−t−2l∑
u=0

(
j − t− 2l

u

)
αw,uβ

c
j−t−2l−u(t)

+ o(N−2q−2p−3),

where αw,u is defined by (13).
Taking into account that (see[17])

αw,u = 0, u = 0, . . . , w − 1,

we get

∆w
N(∆p

n(θ, f cn)) =
(−1)N

(πN)2q+2

2p+1∑
j=w

1

N j

j−w∑
t=0

[ j−t−w
2

]∑
l=0

A2q+2l+1(f)

π2l

(
2q + j − t+ 1

2q + 2l + 1

)

×
j−t−2l∑
u=w

(
j − t− 2l

u

)
αw,uβ

c
j−t−2l−u(t) + o(N−2q−2p−3)

=
(−1)N

π2q+2Nw+2q+2

2p−w+1∑
j=0

1

N j

j∑
t=0

[ j−t
2

]∑
l=0

A2q+2l+1(f)

π2l

(
2q + j + w − t+ 1

2q + 2l + 1

)

×
j−t−2l∑
u=0

(
j + w − t− 2l

u+ w

)
αw,u+wβ

c
j−t−2l−u(t) + o(N−2q−2p−3)

=
(−1)N

π2q+2Nw+2q+2

2p−w+1∑
j=0

1

N j

j∑
t=0

[ t
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + t+ w + 1

2q + 2l + 1

)

×
t−2l∑
u=0

(
t+ w − 2l

u+ w

)
αw,u+wβ

c
t−2l−u(j − t) + o(N−2q−2p−3).

Finally, we derive

∆w
N(∆p

n(θ, f cn)) =

(−1)N

π2q+2Nw+2q+2

2p−w+1∑
j=0

1

N j

j∑
t=0

[ t
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + t+ w + 1

2q + 2l + 1

)

×
t−2∑̀
u=0

(
t+ w − 2l

u

)
αw,t−2`−u+wβ

c
u(j − t) + o(N−2q−2p−3). (32)
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By similar arguments as in [20], it is possible to show that

βcu(j − t) = 0, j = 0, . . . , p− 1; 0 ≤ t ≤ j; 0 ≤ u ≤ t. (33)

Thus, from (32), we obtain

∆w
N(∆p

n(θ, f cn)) =

(−1)N

π2q+2Np+w+2q+2

p∑
t=0

[ t
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + t+ w + 1

2q + 2l + 1

)

×
t−2∑̀
u=0

(
t+ w − 2l

u

)
αw,t−2`−u+wβ

c
u(p− t)

+O(N−p−w−2q−3) + o(N−2q−2p−3).

It remains to notice that only the term u = t, l = 0 is not zero, and therefore,

∆w
N(∆p

n(θ, f cn)) =

A2q+1(f)
(−1)Nαw,w

π2q+2Np+w+2q+2

p∑
t=0

(
2q + t+ w + 1

2q + 1

)(
t+ w

t

)
βct (p− t)

+O(N−p−w−2q−3) + o(N−2q−2p−3).

This concludes the proof since αw,w = (−1)ww!. �

Theorem 8 Let f (2q+2p+2) ∈ AC[−1, 1], q ≥ 0, p ≥ 1, and let the systems
(21), (22) have unique solutions. If

f (2k+1)(±1) = 0, k = 0, . . . , q − 1,

and
A2q+1(f)B2q+1(f) 6= 0,

then, the following estimates are valid for x ∈ (−1, 1)

Rc
N,p(f, x) =

A2q+1(f)
(−1)N+1(2q + p+ 1)!p!

22p+1π2q+2N2q+2p+2(2q + 1)!

cos πx
2

(2N − 2p+ 1)

cos2p+1 πx
2

+ o(N−2q−2p−2),

and

Rs
N,p(f, x) =

B2q+1(f)
(−1)N(2q + p+ 1)!p!

22p+1π2q+2N2q+2p+2(2q + 1)!

sin πx
2

(2N − 2p)

cos2p+1 πx
2

+ o(N−2q−2p−2).
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Proof. We estimate Rc
N,p(f, x). According to the estimate (25), we have

p∏
k=1

(1 + θcke
iπx)→ (1 + eiπx)p, N →∞,

and it remains to estimate only the sum in the right hand side of (16)

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx = −eiπ(N+1)x

2p+1∑
w=0

∆w
N(∆p

n(θc, f cn))

(1 + eiπx)w+1

+
1

(1 + eiπx)2p+2

∞∑
n=N+1

∆2p+2
n (∆p

n(θc, f cn))eiπnx.

Taking into account that

∆k
N(∆p

n(θc, f cn)) =
k∑
s=0

(
k

s

)
∆p
N−s(θ

c, f cn)

we see from (19) that

∆k
N(∆p

n(θc, f cn)) = 0, k = 0, . . . , p− 1.

Therefore

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx =

− eiπ(N+1)x∆p
N(∆p

n(θc, f cn))

(1 + eiπx)p+1
− eiπ(N+1)x

2p+1∑
w=p+1

∆w
N(∆p

n(θc, f cn))

(1 + eiπx)w+1

+
1

(1 + eiπx)2p+2

∞∑
n=N+1

∆2p+2
n (∆p

n(θc, f cn))eiπnx. (34)

Lemma 4 shows that

∆2p+2
n (∆p

n(θc, f cn)) = o(n−2q−2p−3), n→∞.

Hence, the last term in the right hand side of (34) is o(N−2p−2q−2), as
N →∞. According to Lemma 5

∆w
N(∆p

n(θc, f cn)) = O(N−2q−w−p−2) + o(N−2q−w−p−2), N →∞.

As in the second term of the right hand side of (34), the parameter w is
ranging from w = p + 1 to w = 2p + 1, then this term is O(N−2q−2p−3).
Hence,

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx = −eiπ(N+1)x∆p

N(∆p
n(θc, f cn))

(1 + eiπx)2p+1
+ o(N−2q−2p−2),
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where N →∞. Similarly

∞∑
n=N+1

∆p
n(θc, f cn)e−iπnx = −e−iπ(N+1)x∆p

N(∆p
n(θc, f cn))

(1 + e−iπx)2p+1
+o(N−2q−2p−2), (35)

where N →∞. Therefore,

Rc
N,p(f, x) = −eiπ(N+1)x∆p

N(∆p
n(θc, f cn))

(1 + eiπx)2p+1
− e−iπ(N+1)x∆p

N(∆p
n(θc, f cn))

(1 + e−iπx)2p+1

+ o(N−2q−2p−2), N →∞.
(36)

Finally, we need to estimate ∆p
N(∆p

n(θc, f cn)). Again by Lemma 5, we have

∆p
N(∆p

n(θc, f cn)) = A2q+1(f)
(−1)N+p

N2p+2q+2π2q+2(2q + 1)!

×
p∑
t=0

βct (p− t)
(2q + p+ t+ 1)!

t!
+ o(N−2q−2p−2).

(37)

It is possible to show (details see in [20]) that the sum in the right-hand
side of (37) equals to (−1)pp!(p+ 2q + 1)!.

Hence,

∆p
N(∆p

n(θc, f cn)) = A2q+1(f)
(−1)N(2q + 1 + p)!(p)!

N2p+2q+2π2q+2(2q + 1)!
+ o(N−2q−2p−2).

Together with (36) it implies

Rc
N,p(f, x) =

A2q+1(f)
(−1)N+1(2q + 1 + p)!p!

N2p+2q+2π2q+2(2q + 1)!
Re

[
eiπ(N+1)x

(1 + eiπx)2p+1

]
+ o(N−2q−2p−2). (38)

Similarly, we can show that

Rs
N,p(f, x) =

B2q+1(f)
(−1)N(2q + 1 + p)!p!

N2p+2q+2π2q+2(2q + 1)!
Re

[
eiπ(N+ 1

2
)x

i(1 + eiπx)2p+1

]
+

o(N−2q−2p−2)

which completes the proof.�
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4 L2-Convergence

In this section, we investigate L2-convergence of the Fourier-Pade approx-
imation. Taking into account (25), we see that θck, θ

s
k → 1, as N → ∞.

Let

θck = 1− τ ck
N

+ o(N−1), θsk = 1− τ sk
N

+ o(N−1), k = 1, . . . , p. (39)

To determinate {τ ck} and {τ sk} we compare two results that outline the be-
havior of ∆p

n(θc, f cn) and ∆p
n(θs, f sn).

Lemma 6 Let f (2q+p+1) ∈ AC[−1, 1], q ≥ 0. Let

f (2k+1)(±1) = 0, k = 0, . . . , q − 1

and

A2q+1(f)B2q+1(f) 6= 0.

If systems (21), (22) have unique solutions, then, the following estimates are
valid

∆p
n(θck, f

c
n) = A2q+1(f)

(−1)n(2q + p+ 1)!

Npn2q+2π2q+2(2q + 1)!

(
1− n

N

)p
+ o(N−p)

1

n2q+2
, n > N,N →∞,

(40)

∆p
n(θsk, f

s
n) = B2q+1(f)

(−1)n+1(2q + p+ 1)!

Npn2q+2π2q+2(2q + 1)!

(
1−

n− 1
2

N

)p
+ o(N−p)

1

n2q+2
, n > N,N →∞.

Proof. We will prove only the first estimate. The proof, in general, imitate
the one of Lemma 5, so we omit some details. Let γcs,t be the coefficients of
the asymptotic expansion

γs(p, θ
c) =

p∑
t=0

γcs,t
N t

+ o(N−p).

We replicate the arguments in the proof of Lemma 5, then apply Lemma 1
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(when p is even) or Lemma 2 (when p is odd), and at last we obtain

∆p
n(θc, f cn) =

p∑
s=0

γs(p, θ
c)f cn−s =

p∑
s=0

(
p∑
t=0

γcs,t
N t

+ o(N−p)

)
×

×

 (−1)n−s

(πn)2q+2

p∑
j=0

1

nj

[ j
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + j + 1

2q + 2l + 1

)
sj−2l + o(n−2q−p−2)


=

(−1)n

(πn)2q+2

p∑
j=0

1

N j

j∑
t=0

1(
n
N

)t [ t
2
]∑

l=0

A2q+2l+1(f)

π2l

(
2q + 2l + 1

2q + t+ 1

)
βct−2l(j − t)

+ o(N−p)
1

n2q+2
,

where βcu(j − t) are defined by (29). From the proof of Lemma 5, we know
that

βcu(j − t) = 0, j = 0, . . . , p− 1; 0 ≤ p ≤ j; 0 ≤ u ≤ t.

Therefore

∆p
n(θc, f cn) =

A2q+1(f)
(−1)n

Np(πn)2q+2

p∑
t=0

1(
n
N

)t(2q + t+ 1

2q + 1

)
βct (p− t)+

o(N−p)
1

n2q+2
.

This concludes the proof as (see [20])
p∑
t=0

1(
n
N

)t(2q + t+ 1

2q + 1

)
βct (p− t) =

p∑
t=0

(−1)t(
n
N

)t (pt
)
.

�

Lemma 7 Let f (2q+p+1) ∈ AC[−1, 1], q ≥ 0. Let

f (2k+1)(±1) = 0, k = 0, . . . , q − 1,

A2q+1(f)B2q+1(f) 6= 0,

and

θck = 1− τ ck
N
, θsk = 1− τ sk

N
, k = 1, . . . , p.

Then, the following estimates hold for n > N , as N →∞

∆p
n(θck, f

c
n) =

A2q+1(f)
(−1)n+p

n2q+2(2q + 1)!π2q+2

p∑
k=0

(2q + p− k + 1)!(−1)kγk(τ
c)

Nknp−k

+ o(N−p)
1

n2q+2
,
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∆p
n(θsk, f

s
n) =

B2q+1(f)
(−1)n+p+1

n2q+2(2q + 1)!π2q+2

p∑
k=0

(2q + p− k + 1)!(−1)kγk(τ
s)

Nk(n− 1
2
)p−k

+ o(N−p)
1

n2q+2
,

where
p∏

k=1

(1 + τ ckx) =

p∑
k=0

γk(τ
c)xk,

p∏
k=1

(1 + τ skx) =

p∑
k=0

γk(τ
s)xk.

Proof. We will prove only the estimate for ∆p
n(θck, f

c
n). It is not hard to

prove by induction that

∆p
n(θc, f cn) =

p∑
k=0

(−1)kγk(τ
c)

Nk
∆p−k
n−k(f

c
n). (41)

From Lemma 1 (when p is even) or Lemma 2, (when p is odd), and from
Lemma 3, we get

∆k
n(f cn) = A2q+1(f)

(−1)n+k(2q + k + 1)!

n2q+k+2(2q + 1)!π2q+2
+ o(n−2q−k−2) + o(n−2q−p−2).

This estimate, together with (41), completes the proof.
�

Comparing Lemmas 6 and 7 we get that

γk(τ
c) = γk(τ

s) =
(p+ q)!

(q + p− k)!

(
p

k

)
. (42)

Now, we are ready to estimate the L2 - error.
Let hck and hsk be the complete homogeneous symmetric polynomials (see

[26]) of degree k in variables θc1, θ
c
2, ..., θ

c
p and θs1, θ

s
2, ..., θ

s
p

hck(θ
c
1, θ

c
2, ..., θ

c
p) =

∑
1≤i1≤i2≤···≤ik≤p

θci1 · · · θ
c
ik
,

and

hsk(θ
s
1, θ

s
2, ..., θ

s
p) =

∑
1≤i1≤i2≤···≤ik≤p

θsi1 · · · θ
s
ik
.

The complete homogeneous symmetric polynomials hck are characterized by
the following identity of formal power series

1∏p
k=1(1 + θckx)

=
∞∑
k=0

(−1)khck(θ
c
1, θ

c
2, ..., θ

c
p)x

k,
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where

hck(θ
c
1, θ

c
2, ..., θ

c
p) =

p∑
i=1

θp+k−1i∏p
j=1,j 6=i(θ

c
i − θcj)

. (43)

The same we can argue for hsk.
For (16), we have

Rc
N,p(f, x) =

1

2
∏p

k=1(1 + θcke
iπx)

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx

+
1

2
∏p

k=1(1 + θcke
−iπx)

∞∑
n=N+1

∆p
n(θc, f cn)e−iπnx

=
1

2

∞∑
k=0

(−1)khcke
iπkx

∞∑
n=N+1

∆p
n(θc, f cn)eiπnx

+
1

2

∞∑
k=0

(−1)khcke
−iπkx

∞∑
n=N+1

∆p
n(θc, f cn)e−iπnx

=
1

2

∞∑
s=N+1

(−1)keiπsx
s∑

n=N+1

(−1)n∆p
n(θc, f cn)hcs−n

+
1

2

∞∑
s=N+1

(−1)ke−iπsx
s∑

n=N+1

(−1)n∆p
n(θc, f cn)hcs−n

=
∞∑

s=N+1

(−1)k cos πsx
s∑

n=N+1

(−1)n∆p
n(θc, f cn)hcs−n.

Performing similar manipulations for Rs
N,p(f, x), we get

Rs
N,p(f, x) =

∞∑
s=N+1

(−1)k sin π(s− 1
2
)x

s∑
n=N+1

(−1)n∆p
n(θs, f sn)hss−n.

Now from orthogonality of modified Fourier series we receive

||RN,p(f, x)||2L2
= S1 + S2, (44)

where

S1 =
∞∑

s=N+1

∣∣∣∣∣
s∑

n=N+1

(−1)n∆p
n(θ, f cn)hcs−n

∣∣∣∣∣
2

,

and

S2 =
∞∑

s=N+1

∣∣∣∣∣
s∑

n=N+1

(−1)n∆p
n(θ, f sn)hss−n

∣∣∣∣∣
2

.
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Theorem 9 Let f (2q+p+1) ∈ AC[−1, 1], q ≥ 0, p ≥ 1. Let

f (2k+1)(±1) = 0, k = 0, . . . , q − 1,

and

A2
2q+1(f) +B2

2q+1(f) 6= 0.

If the systems (21) and (22) have unique solutions, then

lim
N→∞

N2q+ 3
2 ||RN,p(f, x)||L2 = cp,q

√
A2

2q+1(f) +B2
2q+1(f),

where

cp,q =
1

π2q+2
×

× (p+ 2q + 1)!

(2q + 1)!

∫ ∞
1

dt

∣∣∣∣∣
∫ t

1

(1− x)p

x2q+p+2

p∑
j=1

e−τj(t−x)∏p
k=1,k 6=j(τj − τk)

dx

∣∣∣∣∣
2
 1

2

and τk are the roots of the following Laguerre polynomial

p∏
k=1

(1 + τkx) =

p∑
k=0

γk(τ)xk

with γk(τ) defined by (42).

Proof. We use the equation (44). In view of(43) and (39) we have as
N →∞

hcs−k =

p∑
i=1

(θci )
p+s−n−1∏p

j=1,j 6=i(θ
c
i − θcj)

= Np−1
p∑
i=1

(1− τi
N

+ o(N−1))p+s−n−1∏p
j=1,j 6=i(τj − τi + o(1))

.

Substituting this and estimate (40) into the first term of the right-hand side
of (44), and tending N to infinity, we derive the limit

lim
N→∞

N4q+3S1 = c2p,qA
2
2q+1.

Similarly,

lim
N→∞

N4q+3S2 = c2p,qB
2
2q+1

which conclude the proof. �
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5 Conclusion

In this article, we have considered convergence acceleration of the modified
expansions (see (1)) by application of trigonometric-rational error-correction
functions. Corrections contain some unknown parameters determined ac-
cording to the idea of the Fourier-Pade approximations. The resulting ap-
proximations we have named modified Fourier-Pade (MFP-) approximations
(see (18)). We investigated pointwise and L2 convergence of the MFP-
approximations.

Section 3 deals with the pointwise convergence. The main result of this
section is Theorem 8 shows that if f obeys first q derivative conditions,
then, the convergence rate of the MFP-approximation is O(N−2p−2q−2) if
f (2q+2p+2) ∈ AC[−1, 1]. Comparing this with the corresponding estimate for
the modified expansions (see Theorem 7), we get the additional convergence
rate by factor O(N−2p). However, for modified expansions we required less
smoothness f (2q+2) ∈ AC[−1, 1]. As we mentioned in the Introduction, if a
function f does not obey the first derivative conditions, then by polynomial
subtraction method, we can get the same convergence rate for the modified
and MFP-approximations.

Section 4 deals with L2-convergence. Comparison of Theorems 6 and 9
shows the same convergence rates O(N−2q−3/2) for smooth functions. How-
ever, the constant cp,q (independent of f) is much smaller than the constant
cq (see [21]) and the difference is so greater, how the larger are the values of
q and p.
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