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Canonical heights on Pell conics
over number fields

M. Okazaki

Abstract. In [2], Lemmermeyer introduced the canonical
heights on the groups of rational points on Pell conics, which
are analogues of the canonical heights on elliptic curves. In this
paper, we generalize this: We introduce the canonical heights on
the groups of Q-rational points on Pell conics over number fields.
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Introduction
Let K be a number field, E be an elliptic curve over K, and E(Q) be the set
of Q-rational points on E. It is well known that E(Q) is an abelian group.
To study the group E(Q), it is useful to define a good function that measures
a certain kind of arithmetic complexity of P ∈ E(Q). This function is called
the canonical height, defined by

ĥ(P ) := lim
n→∞

h(2nP )

4n
,

where h(Q) := h(1, x(Q)) for each Q = (x(Q), y(Q)) ∈ E(Q), and h is
the logarithmic Weil height on the projective line P1(Q) (we will recall the
definition of h in Section 1).

We set a Pell conic C : X2 − dY 2 = c2, where c, d ∈ K. We denote by
C(F ) the set of F -rational points on C, where F ⊂ Q is any subfield with
K ⊂ F . For each P = (x(P ), y(P )), Q = (x(Q), y(Q)) ∈ C(F ), we set

P +Q :=

(
x(P )x(Q) + dy(P )y(Q)

c
,
x(P )y(Q) + x(Q)y(P )

c

)
.

Under this binary operation +, C(F ) becomes an abelian group. The zero
of C(F ) is O = (c, 0) and −(x, y) = (x,−y). P +Q is the intersection of C
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and the line which is through O and is parallel to the line PQ. If Q = P ,
then we regard the line PP as the tangent line of C at P . Thus, if F ⊂ R,
we can describe the addition as follow (see, e.g., [2], [3], [4], [6]):

This figure implies that the addition of Pell conics is analogous to that of
elliptic curves.

In [2], Lemmermeyer introduced an analogue of the canonical height ĥ
for Pell conics over Q:

h̃(P ) := lim
n→∞

h(2nP )

2n
,

where h(Q) := h(1, x(Q)) for each rational point Q on the Pell conic. In this
paper, we generalize this canonical heights to C, a Pell conic over a number
field:

Theorem 1 (Canonical heights on Pell conics over Q) For each P ∈
C(Q), set h(P ) := h(1, x(P )).

1. The limit
h̃(P ) = lim

n→∞

h(nP )

n

does exist.
2. Fix

√
d ∈ Q and set the group isomorphism

ϕ : C(Q) 3 (x, y) 7−→ x+
√
dy

c
∈ Q×.

Then
h̃(P ) = 2h(1, ϕ(P )).

We call h̃ the canonical height on C.
Further, we give some applications of Theorem 1 in Section 4: We will

study the group C(Q) by using Theorem 1.

1 The Weil height
In this section, we recall the definition of the classical Weil height and sum-
marize some basic properties of it which we will use later. Throughout the
section, we employ the following notation:
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• OK : the ring integers of K;

• M0
K : the set of all non-zero prime ideals of OK ;

• M∞
K : the set of all field homomorphisms from K to C;

• MK :=M0
K ∪M∞

K .

Let v ∈MK and x ∈ K. We set an absolute value | · |v as

|x|v :=

{
#(OK/v)−ordv(x), v ∈M0

K ,

|v(x)|, v ∈M∞
K ,

where ordv(x) is the order of x ∈ K for each v ∈ M0
K , i.e., if x 6= 0 and

(x) =
∏n

k=1 v
ek
k is the prime factorization, then

ordv(x) :=

{
ek, v = vk for some k,
0, v 6= vk for any k,

and ordv(0) := ∞ for all v ∈ M0
K . We note that | · |v satisfies the product

formula ∏
v∈MK

|x|v = 1 for all x ∈ K×.

For (x0, . . . , xn) ∈ Kn+1, we set

h(x0, . . . , xn) :=
1

[K : Q]

∑
v∈MK

log max
0≤i≤n

{|xi|v}.

It is known that the value of h(x0, . . . , xn) is independent of the choice of K
and, by the product formula, h(cx1, . . . , cxn) = h(x0, . . . , xn) for all c ∈ Q×.
Thus we can consider h to be a function on the projective space Pn(Q). The
function h is called the logarithmic Weil height.

Lemma 1 Let x, x1, . . . , xn ∈ Q and p, p1, . . . , pn ∈ N with p1 ≤ . . . ≤ pn.
Then:

1. h(1, xp1, . . . , x
p
n) = ph(1, x1, . . . , xn);

2. h(1, xp1 , . . . , xpn) = h(1, xpn);

3. h(1, x1 · . . . · xn) ≤ h(1, x1) + · · ·+ h(1, xn).

Proof. Fix an algebraic number field K such that x, x1, . . . , xn ∈ K. Let
v ∈MK .
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1. This is clear since

max{|1|v, |xp1|v, . . . , |xpn|v} = max{|1|v, |x1|v, . . . , |xn|v}p.

2. If |x|v ≤ 1, then |x|piv ≤ 1 for all 1 ≤ i ≤ n. Hence we have

max{1, |x|p1v , . . . , |x|pnv } = 1 = max{1, |x|pnv }.

If |x|v > 1, then |x|piv ≤ |x|pnv for all 1 ≤ i ≤ n, and therefore

max{1, |x|p1v , . . . , |x|pnv } = |x|pnv = max{1, |x|pnv }.

3. The inequality holds since

max{|1|v, |x1 · . . . · xn|v} = max{|1|v, |x1|v · . . . · |xn|v}
≤ max{|1|v, |x1|v} · . . . ·max{|1|v, |xn|v}.

These complete the proof. �

Now we recall the definition of a morphism between projective spaces:
A map F : Pm(Q) → Pn(Q) is called a morphism of degree d between
projective spaces if there exist homogeneous polynomials F0, F1, . . . , Fn ∈
Q[X0, X1, . . . , Xm] of degree d such that F (P ) = (F0(P ), F1(P ), . . . , Fn(P ))
for each P ∈ Pm(Q) and F0(x0, x1, . . . , xm) = F1(x0, x1, . . . , xm) = · · · =
Fn(x0, x1, . . . , xm) = 0 implies that x0 = x1 = · · · = xm = 0. We shall
frequently use the following fact:

Fact 1 ([5], p227, Theorem 5.6) Let F : Pm(Q) → Pn(Q) be a mor-
phism of degree d between projective spaces. Then there exists a constant
C > 0 such that for all P ∈ Pm(Q),

|h(F (P ))− dh(P )| ≤ C.

Corollary 1 Let f1(t), . . . , fn(t) be polynomials over Q of degree d. Then
there exists a constant C > 0 such that for all x ∈ Q,

|h(1, f1(x), . . . , fn(x))− dh(1, x)| ≤ C.

Proof. For each 1 ≤ i ≤ n, we write

fi(t) := ai0 + ai1t+ · · ·+ aidt
d, (aid 6= 0)

and set
Fi(t, u) := ai0u

d + ai1tu
d−1 + · · ·+ aidt

d.

Then we know that

F : P1(Q) 3 [x : y] 7−→ [yd : F1(x, y) : · · · : Fn(x, y)] ∈ Pn(Q)

is a morphism of projective spaces of degree d. Thus we have

dh(1, x)− C ≤ h(F ([1 : x]) = h(1, f1(x), . . . , fn(x)) ≤ dh(1, x) + C

for a constant C > 0 in Fact 1. �
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2 The naive height on C

In the statement of Theorem 1, we set

h(P ) := h(1, x(P ))

for each P = (x(P ), y(P )) ∈ C(Q). We call this the naive height on C, as
is the same case with elliptic curves.

The following lemma plays a crucial role in the proof of Theorem 1:

Lemma 2 There exists a constant D > 0 such that for all P ∈ C(Q),

|h(P )− 2h(1, ϕ(P ))| ≤ D,

where ϕ is the isomorphism in the statement of Theorem 1.

Proof. First, we consider ϕ to be the composition of some maps. We set:

ι : C(Q) 3 (x, y) 7−→ [x : y : 1] ∈ P2(Q);

F : P2(Q) 3 [x : y : z] 7−→ [x+ y
√
d : x− y

√
d : cz] ∈ P2(Q);

π : U 3 [u : v : w] 7−→ u/w ∈ Q×,

where U := { [u : v : w] ∈ P2(Q) | uv = w2, w 6= 0 }. We can easily check
that F ◦ ι(C(Q)) ⊂ U and ϕ = π◦F ◦ ι: The following commutative diagram
holds:

C(Q)
ϕ //

ι
��

Q×

P2(Q)
F

// U

π

OO

(2.1)

By Corollary 1, there exists a constant C1 > 0 such that for all x ∈ Q,∣∣∣∣h(1, x2,
x2 − c2

d

)
− 2h(1, x)

∣∣∣∣ ≤ C1.

Now, note that for all P ∈ C(Q), it holds that y(P )2 =
x(P )2 − c2

d
. Hence

we have

h

(
1, x(P )2,

x(P )2 − c2

d

)
= h(1, x(P )2, y(P )2)

= 2h(1, x(P ), y(P )) (by Lemma 1.1)

= 2h(ι(P )).

Thus we obtain
|h(P )− h(ι(P ))| ≤ C2, (2.2)

where C2 := C1/2.
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Clearly, F is a morphism of degree 1 between projective planes. There-
fore, by Fact 1, there exists a constant C3 > 0 such that for all A ∈ P2(Q),

|h(A)− h(F (A))| ≤ C3. (2.3)

For all [u : v : w] ∈ U , it holds that v = w2/u. Therefore,

h(u, v, w) = h

(( u
w

)2
, 1,

u

w

)
= h

(
1,
( u
w

)2)
(by Lemma 1.2)

= 2h
(

1,
u

w

)
(by Lemma 1.1)

= 2h(1, π([u : v : w])). (2.4)

Finally, for all P ∈ C(Q), we have

|h(P )− 2h(ϕ(P ))|
≤ |h(P )− h(ι(P ))|+ |h(ι(P ))− h(F ◦ ι(P ))|

+ |h(F ◦ ι(P ))− 2h(1, ϕ(P ))|
≤ C2 + C3 + |2h(1, π ◦ F ◦ ι(P ))− 2h(1, ϕ(P ))| (by (2.2), (2.3), (2.4))

= C2 + C3. (by (2.1))

Therefore, setting D := C2 + C3, we complete the proof. �

3 The canonical height on C

In this section, first, we shall prove Theorem 1:

Proof. Let n ∈ N and P ∈ C(Q). Since ϕ is a group isomorphism, we have

h(1, ϕ(nP )) = h(1, ϕ(P )n)

= nh(1, ϕ(P )). (by Lemma 1.1)

Thus, for a positive constant D > 0 in Lemma 2,

lim
n→∞

∣∣∣∣h(nP )

n
− 2h(1, ϕ(P ))

∣∣∣∣ ≤ lim
n→∞

D

n
= 0.

This completes the proof. �

Further, we will give some corollaries of Theorem 1.

Corollary 2 For all P ∈ C(Q) and m ∈ N, it holds that

h̃(mP ) = mh̃(P ).
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Proof. Indeed,

h̃(mP ) = lim
n→∞

h(nmP )

n
= m lim

n→∞

h(mnP )

mn
= mh̃(P ).

�

Next, we will show that h̃ satisfies the subadditivity:

Corollary 3 For all P,Q ∈ C(Q), it holds that

h̃(P +Q) ≤ h̃(P ) + h̃(Q).

Proof. Since ϕ is a group isomorphism, we can write

h̃(P +Q) = 2h(1, ϕ(P +Q)) (by Theorem 1.2)

= 2h(1, ϕ(P )ϕ(Q))

≤ 2h(1, ϕ(P )) + 2h(1, ϕ(Q)) (by Lemma 1.3)

= h̃(P ) + h̃(Q). (by Theorem 1.2)

�

Finally, we will show that C(K) has a kind of finiteness property relative
to h̃:

Corollary 4 1. There exists a constant D > 0 such that for all P ∈ C(Q),

|h̃(P )− h(P )| ≤ D;

2. For all algebraic number field K and constant C > 0, the set

{P ∈ C(K) | h̃(P ) ≤ C }

is a finite set.

Proof. 1. This immediately follows from Lemma 2 and Theorem 1.2.
2. This immediately follows from 1 and the Northcott finiteness theorem;

see, e.g., [1], Theorem 1.6.8. �

Remark. Corollary 4.2 holds not only for the algebraic number fields but
also for the fields with the Northcott property; see, e.g., [1], p117.
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4 Two applications
In this section, we will apply Theorem 1 and its corollaries to study the
group C(Q). However, what we will do in this section are only routines; we
can see the same discussions in most of the books on elliptic curves (see,
e.g., [5]).

First, as a simple application, we give a criterion for torsion points:

Proposition 1 P ∈ C(Q) is a torsion point if and only if h̃(P ) = 0.

Proof. Suppose that P is a torsion point. Then there are only finitely many
possibilities for the value of h(nP ). Thus, h̃(P ) = 0.

Conversely, suppose that h̃(P ) = 0. Fix an algebraic number fieldK such
that c, d, x(P ), y(P ) ∈ K. Note that x(mP ), y(mP ) ∈ K for all m ∈ N. By
Corollary 2, we have

h̃(mP ) = mh̃(P ) = 0.

According to Corollary 4.2, the set

Ω0 := {Q ∈ C(K) | h(Q) = 0 }

is finite. Therefore, {mP | m ∈ N } ⊂ Ω0 is also a finite set. Thus, for some
k ∈ N, it holds that kP = O. �

Next, we will apply the subadditivity of h̃ to decent.

Proposition 2 Assume that the weak Mordell–Weil theorem holds for a
subgroup G ⊂ C(Q), i.e., for some natural number m ≥ 2, it holds that
#(G/mG) <∞. Then G is finitely generated.

Proof. Let Γ := {Q1, . . . , Qr} be a complete system of representatives of
G/mG, M := max1≤i≤r{h̃(Qi)}, and Ω := {R ∈ G | h̃(R) ≤ 1 +M }. Note
that Ω is a finite set by Corollary 4.2. We claim that G is generated by
Ω ∪ Γ. Take any P = P0 ∈ G. Then there exist 1 ≤ i1 ≤ r and P1 ∈ G such
that P0−Qi1 = mP1. Repeating this, we have {P0, . . . , Pn} and {i1, . . . , in}
with

Pj−1 −Qij = mPj (for all 1 ≤ j ≤ n) (4.1)

for each n ∈ N. Further,

h̃(Pj) =
1

m
h̃(Pj−1 −Qij) (by Corollary 2)

≤ 1

m
(h̃(Pj−1) + h̃(Qij)) (by Corollary 3)

≤ 1

2
(h̃(Pj−1) +M). (4.2)
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Using (4.2) repeatedly, we obtain

h̃(Pn) ≤
(

1

2

)n
h̃(P ) +M.

Letting n be sufficiently large such that
(
1
2

)n
h̃(P ) ≤ 1, we achieve Pn ∈ Ω.

By (4.1), we have

P = P0 = 2nPn + (Qi1 + 2Qi2 + · · ·+ 2n−1Qin) ∈ 〈Ω ∪ Γ〉.

This completes the proof. �
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