Generic lightlike submanifolds of an indefinite Kaehler manifold with an (ℓ, m)-type metric connection

C. W. Lee and J. W. Lee

Abstract

We study generic lightlike submanifolds M of an indefinite Kaehler manifold \bar{M} or an indefinite complex space form $\bar{M}(c)$ with an (ℓ, m)-type metric connection subject such that the characteristic vector field ζ of \bar{M} belongs to our screen distribution $S(T M)$ of M.

Key Words: Generic lightlike submanifold, (ℓ, m)-type metric connection, Indefinite Kaehler manifold, Indefinite complex space form
Mathematics Subject Classification 2010: 53C25, 53C40, 53C50

1 Introduction

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite Kaehler manifold $(\bar{M} \bar{g})$ of dimension $(m+n)$. Then the radical distribution $\operatorname{Rad}(T M)$ $=T M \cap T M^{\perp}$ of M is a vector subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$ of $\operatorname{rank} r(1 \leq r \leq \min \{m, n\})$. Due to [2], in general, we can take two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and in $T M^{\perp}$, respectively, which are called the screen and co-screen distributions of M, such that

$$
T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), \quad T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{*}=$ $T M / \operatorname{Rad}(T M)$ due to Kupeli [13]. Thus, all screen distributions $S(T M)$ are mutually isomorphic. Therefore, the following definition is well-defined:

A lightlike submanifold M of an indefinite Kaehler manifold \bar{M} with an indefinite almost complex structure J is called a generic submanifold [10] if there exists a screen distribution $S(T M)$ such that

$$
\begin{equation*}
J\left(S(T M)^{\perp}\right) \subset S(T M) \tag{1.1}
\end{equation*}
$$

where the symbol $S(T M)^{\perp}$ denotes the orthogonal complement of $S(T M)$ in the tangent bundle $T \bar{M}$ of \bar{M} such that $T \bar{M}=S(T M) \oplus_{\text {orth }} S(T M)^{\perp}$. The notion of generic lightlike submanifolds was studied by several authors (see, for example, [3, 5, 6, 11). Lightlike hypersurfaces of an indefinite almost complex manifold are important examples of the generic lightlike submanifold.

The notion of symmetric connection of type (ℓ, m) on semi-Riemannian manifolds was introduced by the author of [7, 8] as follows:

From now and in the sequel, we denote by \bar{X}, \bar{Y} and \bar{Z} the vector fields on \bar{M}. A linear connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be a symmetric connection of type (ℓ, m) if its torsion tensor \bar{T} satisfies

$$
\begin{equation*}
\bar{T}(\bar{X}, \bar{Y})=\ell\{\theta(\bar{Y}) \bar{X}-\theta(\bar{X}) \bar{Y}\}+m\{\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y}\} \tag{1.2}
\end{equation*}
$$

where ℓ and m are smooth functions, J is a tensor field of type $(1,1)$, and θ is a 1 -form associated with a smooth vector field ζ, called a characteristic vector field, by $\theta(\bar{X})=\bar{g}(\bar{X}, \zeta)$. Moreover, if this connection is a metric connection, i.e., satisfies $\bar{\nabla} \bar{g}=0$, then $\bar{\nabla}$ is called a symmetric metric connection of type (ℓ, m) or an (ℓ, m)-type metric connection.

In case $(\ell, m)=(1,0)$, this connection becomes a semi-symmetric metric connection, introduced by Hayden [4] and Yano [14]. If $(\ell, m)=(0,1)$, this connection becomes a quarter-symmetric metric connection, introduced by Yano-Imai [15]. In this paper, we shall assume that $(\ell, m) \neq(0,0)$ and, without loss of generality, that the vector field ζ is unit spacelike.
Remark 1 Denote by $\widetilde{\nabla}$ the Levi-Civita connection of a semi-Riemannian manifold (\bar{M}, \bar{g}) with respect to \bar{g}. It is known [9] that a linear connection $\bar{\nabla}$ on \bar{M} is an ($\ell, m)$-type metric connection if and only if it satisfies

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\widetilde{\nabla}_{\bar{X}} \bar{Y}+\ell\{\theta(\bar{Y}) \bar{X}-\bar{g}(\bar{X}, \bar{Y}) \zeta\}-m \theta(\bar{X}) J \bar{Y} . \tag{1.3}
\end{equation*}
$$

The object of this paper is to study generic lightlike submanifolds M of an indefinite Kaehler manifold \bar{M} with an (ℓ, m)-type metric connection $\bar{\nabla}$ subject to the condition that the characteristic vector field ζ of \bar{M} belongs to our screen distribution $S(T M)$ of M. In Section 3, we provide several new results on such a generic lightlike submanifold. In Section 4, we characterize generic lightlike submanifolds of an indefinite complex space form $\bar{M}(c)$ with an (ℓ, m)-type metric connection subject such that ζ belongs to $S(T M)$.

$2(\ell, m)$-type metric connections

Let $\bar{M}=(\bar{M}, \bar{g}, J)$ be an indedinite Kaehler manifold where \bar{g} is a semiRiemannian metric and J is an indefinite almost complex structure;

$$
\begin{equation*}
J^{2} \bar{X}=-\bar{X}, \quad \bar{g}(J \bar{X}, J \bar{Y})=\bar{g}(\bar{X}, \bar{Y}), \quad\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=0 . \tag{2.1}
\end{equation*}
$$

Replacing the Levi-Civita connection $\widetilde{\nabla}$ by the (ℓ, m)-type metric connection $\bar{\nabla}$, the third equation in (2.1) is reduced to

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{X}} J\right)(\bar{Y})=\ell\{\theta(J \bar{Y}) \bar{X}-\theta(\bar{Y}) J \bar{X}-\bar{g}(\bar{X}, J \bar{Y}) \zeta+g(\bar{X}, \bar{Y}) J \zeta\} . \tag{2.2}
\end{equation*}
$$

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite Kaehler manifold (\bar{M}, \bar{g}), of dimension $(m+n)$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_{i}$ the i-th equation of (2.1). We use the same notations for any others. Let X, Y and Z be the vector fields on M, unless otherwise specified. We use the following range of indices:

$$
i, j, k, \ldots \in\{1, \ldots, r\}, \quad a, b, c, \ldots \in\{r+1, \ldots, n\} .
$$

Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary vector bundles to $T M$ in $T \bar{M}_{\mid M}$ and $T M^{\perp}$ in $S(T M)^{\perp}$, respectively, and let $\left\{N_{1}, \cdots, N_{r}\right\}$ be a null basis of $\operatorname{ltr}(T M)_{\mid \boldsymbol{u}}$ where \mathcal{U} is a coordinate neighborhood of M such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0,
$$

and $\left\{\xi_{1}, \cdots, \xi_{r}\right\}$ is a null basis of $\operatorname{Rad}(T M)_{\mid u}$. Then we have

$$
\begin{aligned}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{aligned}
$$

A lightlike submanifold $M=\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of \bar{M} is called an r-lightlike submanifold [2] if $1 \leq r<\min \{m, n\}$. For an r-lightlike M, we see that $S(T M) \neq\{0\}$ and $S\left(T M^{\perp}\right) \neq\{0\}$. In the sequel, by saying that M is a lightlike submanifold we shall mean that it is an r-lightlike submanifold with following local quasi-orthonormal field of frames of \bar{M} :

$$
\left\{\xi_{1}, \cdots, \xi_{r}, N_{1}, \cdots, N_{r}, F_{r+1}, \cdots, F_{m}, E_{r+1}, \cdots, E_{n}\right\},
$$

where $\left\{F_{r+1}, \cdots, F_{m}\right\}$ and $\left\{E_{r+1}, \cdots, E_{n}\right\}$ are orthonormal basis of $S(T M)$ and $S\left(T M^{\perp}\right)$, respectively. Denote $\epsilon_{a}=\bar{g}\left(E_{a}, E_{a}\right)$. Then $\epsilon_{a} \delta_{a b}=\bar{g}\left(E_{a}, E_{b}\right)$.

Let P be the projection morphism of $T M$ on $S(T M)$. The local Gauss Weingarten formulae of M and $S(T M)$ are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) E_{a}, \tag{2.3}\\
& \bar{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \tau_{i j}(X) N_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) E_{a}, \tag{2.4}\\
& \bar{\nabla}_{X} E_{a}=-A_{E_{a}} X+\sum_{i=1}^{r} \lambda_{a i}(X) N_{i}+\sum_{b=r+1}^{n} \mu_{a b}(X) E_{b}, \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i} \tag{2.6}\\
& \nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X-\sum_{j=1}^{r} \tau_{j i}(X) \xi_{j} \tag{2.7}
\end{align*}
$$

where ∇ and ∇^{*} are induced linear connections on M and $S(T M)$, respectively, h_{i}^{ℓ} and h_{a}^{s} are called the local second fundamental forms on M, h_{i}^{*} 's are called the local second fundamental forms on $S(T M)$. $A_{N_{i}}, A_{E_{a}}$ and $A_{\xi_{i}}^{*}$ are called the shape operators, and $\tau_{i j}, \rho_{i a}, \lambda_{a i}$ and $\mu_{a b}$ are 1-forms on M.

Let M be a generic lightlike submanifold of \bar{M}. From (1.1), we see that the distributions $J(\operatorname{Rad}(T M)), J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are subbundles of $S(T M)$. Thus, there exist two non-degenerate almost complex distributions H_{o} and H with respect to J, i.e., $J\left(H_{o}\right)=H_{o}$ and $J(H)=H$, such that

$$
\begin{aligned}
S(T M)= & \{J(\operatorname{Rad}(T M)) \oplus J(l t r(T M))\} \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{o r t h} H_{o} \\
& H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o}
\end{aligned}
$$

In this case, the tangent bundle $T M$ of M is decomposed as follows:

$$
\begin{equation*}
T M=H \oplus J(l t r(T M)) \oplus_{o r t h} J\left(S\left(T M^{\perp}\right)\right) \tag{2.8}
\end{equation*}
$$

Consider r-th local null vector fields U_{i} and $V_{i},(n-r)$-th local non-null unit vector fields W_{a}, and their 1-forms u_{i}, v_{i} and w_{a} defined by

$$
\begin{align*}
U_{i}=-J N_{i}, & V_{i} & =-J \xi_{i}, & W_{a} \tag{2.9}
\end{align*}=-J E_{a}, ~ 子 r\left(X, U_{i}\right), \quad w_{a}(X)=\epsilon_{a} g\left(X, W_{a}\right) .
$$

Denote by S the projection morphism of $T M$ on H and by F the tensor field of type $(1,1)$ globally defined on M by $F=J \circ S$. Then $J X$ is expressed as

$$
\begin{equation*}
J X=F X+\sum_{i=1}^{r} u_{i}(X) N_{i}+\sum_{a=r+1}^{n} w_{a}(X) E_{a} \tag{2.11}
\end{equation*}
$$

Applying J to (2.11) and using 2.1 , 2.9) and 2.11 we obtain

$$
\begin{equation*}
F^{2} X=-X+\sum_{i=1}^{r} u_{i}(X) U_{i}+\sum_{a=r+1}^{n} w_{a}(X) W_{a} \tag{2.12}
\end{equation*}
$$

By $(2.1)_{2}$ and (2.11) we have

$$
\begin{align*}
g(F X, F Y)= & g(X, Y)-\sum_{i=1}^{r}\left\{u_{i}(X) v_{i}(Y)+u_{i}(Y) v_{i}(X)\right\} \tag{2.13}\\
& -\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(X) w_{a}(Y)
\end{align*}
$$

According to $(1.2),(1.3),(2.3)$, and (2.11) we see that

$$
\begin{align*}
& \left(\nabla_{X} g\right)(Y, Z)=\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y) \eta_{i}(Z)+h_{i}^{\ell}(X, Z) \eta_{i}(Y)\right\}, \tag{2.14}\\
& T(X, Y)=\ell\{\theta(Y) X-\theta(X) Y\}+m\{\theta(Y) F X-\theta(X) F Y\}, \tag{2.15}\\
& h_{i}^{\ell}(X, Y)-h_{i}^{\ell}(Y, X)=m\left\{\theta(Y) u_{i}(X)-\theta(X) u_{i}(Y)\right\}, \tag{2.16}\\
& h_{a}^{s}(X, Y)-h_{a}^{s}(Y, X)=m\left\{\theta(Y) w_{a}(X)-\theta(X) w_{a}(Y)\right\} . \tag{2.17}
\end{align*}
$$

where η_{i} 's are 1-forms such that $\eta_{i}(X)=\bar{g}\left(X, N_{i}\right)$. From the facts that $h_{i}^{\ell}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi_{i}\right)$ and $\epsilon_{a} h_{a}^{s}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, E_{a}\right)$, we know that h_{i}^{ℓ} and h_{a}^{s} are independent of the choice of $S(T M)$. The above local second fundamental forms are related to their shape operators by

$$
\begin{align*}
& h_{i}^{\ell}(X, Y)=g\left(A_{\xi_{i}}^{*} X, Y\right)-\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{i}\right) \eta_{k}(Y), \tag{2.18}\\
& \epsilon_{a} h_{a}^{s}(X, Y)=g\left(A_{E_{a}} X, Y\right)-\sum_{k=1}^{r} \lambda_{a k}(X) \eta_{k}(Y), \tag{2.19}\\
& h_{i}^{*}(X, P Y)=g\left(A_{N_{i}} X, P Y\right) . \tag{2.20}
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $\bar{g}\left(E_{a}, E_{b}\right)=\epsilon \delta_{a b}, g\left(\xi_{i}, \xi_{j}\right)=0, \bar{g}\left(\xi_{i}, E_{a}\right)=0, \bar{g}\left(N_{i}, N_{j}\right)=$ 0 and $\bar{g}\left(N_{i}, E_{a}\right)=0$ by turns, we obtain $\epsilon_{b} \mu_{a b}+\epsilon_{a} \mu_{b a}=0$ and

$$
\begin{array}{lc}
h_{i}^{\ell}\left(X, \xi_{j}\right)+h_{j}^{\ell}\left(X, \xi_{i}\right)=0, & h_{a}^{s}\left(X, \xi_{i}\right)=-\epsilon_{a} \lambda_{a i}(X), \tag{2.21}\\
\eta_{j}\left(A_{N_{i}} X\right)+\eta_{i}\left(A_{N_{j}} X\right)=0, & \bar{g}\left(A_{E_{a}} X, N_{i}\right)=\epsilon_{a} \rho_{i a}(X) .
\end{array}
$$

Furthermore, using $(2.21)_{1}$ we see that

$$
\begin{equation*}
h_{i}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{i}^{\ell}\left(\xi_{j}, \xi_{k}\right)=0, \quad A_{\xi_{i}}^{*} \xi_{i}=0 \tag{2.22}
\end{equation*}
$$

Definition 1 We say that a lightlike submanifold M is
(1) irrotational [13] if $\bar{\nabla}_{X} \xi_{i} \in \Gamma(T M)$ for all $i \in\{1, \cdots, r\}$;
(2) solenoidal [12] if $A_{E_{a}}$ and $A_{N_{i}}$ are $S(T M)$-valued;
(3) statical [12] if M is both irrotational and solenoidal.

Remark 2 From (2.3) and (2.21)2, the item (1) is equivalent to

$$
\begin{equation*}
h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{s}\left(X, \xi_{i}\right)=\lambda_{a i}(X)=0 \tag{2.23}
\end{equation*}
$$

By (2.21) the item (2) is equivalent to

$$
\begin{equation*}
\eta_{j}\left(A_{N_{i}} X\right)=0, \quad \rho_{i a}(X)=\eta_{i}\left(A_{E_{a}} X\right)=0 . \tag{2.24}
\end{equation*}
$$

Now we shall assume that the characteristic vector field ζ belongs to the screen distribution $S(T M)$. Applying $\bar{\nabla}_{X}$ to 2.9$)_{1,2,3}$ and (2.11) by turns and using (2.2), (2.3) $\sim(2.7), 2.18) \sim(2.20)$ and (2.9) $\sim 2.11)$ we get

$$
\begin{align*}
& h_{j}^{\ell}\left(X, U_{i}\right)=h_{i}^{*}\left(X, V_{j}\right)-\ell \theta\left(V_{j}\right) \eta_{i}(X), \\
& \epsilon_{a} h_{a}^{s}\left(X, U_{i}\right)=h_{i}^{*}\left(X, W_{a}\right)-\ell \theta\left(W_{a}\right) \eta_{i}(X), \\
& h_{j}^{\ell}\left(X, V_{i}\right)=h_{i}^{\ell}\left(X, V_{j}\right) \text {, } \tag{2.25}\\
& h_{a}^{s}\left(X, V_{i}\right)=\epsilon_{a} h_{i}^{\ell}\left(X, W_{a}\right) \text {, } \\
& \epsilon_{b} h_{b}^{s}\left(X, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(X, W_{b}\right), \\
& \nabla_{X} U_{i}=F\left(A_{N_{i}} X\right)+\sum_{j=1}^{r} \tau_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) W_{a} \tag{2.26}\\
& +\ell\left\{\theta\left(U_{i}\right) X-v_{i}(X) \zeta-\eta_{i}(X) F \zeta\right\}, \\
& \nabla_{X} V_{i}=F\left(A_{\xi_{i}}^{*} X\right)-\sum_{j=1}^{r} \tau_{j i}(X) V_{j}+\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) U_{j} \tag{2.27}\\
& -\sum_{a=r+1}^{n} \epsilon_{a} \lambda_{a i}(X) W_{a}+\ell\left\{\theta\left(V_{i}\right) X-u_{i}(X) \zeta\right\}, \\
& \nabla_{X} W_{a}=F\left(A_{E_{a}} X\right)+\sum_{i=1}^{r} \lambda_{a i}(X) U_{i}+\sum_{b=r+1}^{n} \mu_{a b}(X) W_{b}, \tag{2.28}\\
& +\ell\left\{\theta\left(W_{a}\right) X-\epsilon_{a} w_{a}(X) \zeta\right\}, \\
& \left(\nabla_{X} F\right) Y=\sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \tag{2.29}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a} \\
& +\ell\{\theta(F Y) X-\theta(Y) F X \\
& -\bar{g}(X, J Y) \zeta+g(X, Y) F \zeta\} .
\end{align*}
$$

3 Some results

Theorem 1 Let M be a generic lightlike submanifold of an indefinite Kaehler manifold \bar{M} with an (ℓ, m)-type metric connection $\bar{\nabla}$ such that ζ belongs to $S(T M)$. If F is parallel with respect to the connection ∇, then
(1) $\ell=0$ and $\bar{\nabla}$ is a quarter-symmetric metric connection,
(2) M is statical,
(3) $H, J(\operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are parallel distributions on M,
(4) M is locally a product manifold $M_{r} \times M_{n-r} \times M^{\sharp}$, where M_{r}, M_{n-r} and M^{\sharp} are leaves of $J(\operatorname{tr}(T M))$, $J\left(S\left(T M^{\perp}\right)\right)$ and H, respectively.

Proof. (1) Replacing Y by ξ_{j} in (2.29) in order that $\nabla_{X} F=0$, we get

$$
\begin{equation*}
\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{j}\right) U_{k}+\sum_{b=r+1}^{n} h_{b}^{s}\left(X, \xi_{j}\right) W_{b}+\ell\left\{\theta\left(V_{j}\right) X-u_{j}(X) \zeta\right\}=0 . \tag{3.1}
\end{equation*}
$$

Taking the scalar product of U_{i} and (3.1) and then taking in turns $X=V_{j}$ and $X=U_{j}$ in the resulting equation, we obtain

$$
\ell \theta\left(V_{i}\right)=0, \quad \ell \theta\left(U_{i}\right)=0 .
$$

Taking the scalar product of V_{i} and W_{a} in (3.1) in turns, it becomes

$$
\begin{equation*}
h_{i}^{\ell}\left(X, \xi_{j}\right)=0, \quad \epsilon_{a} h_{a}^{s}\left(X, \xi_{j}\right)=\ell \theta\left(W_{a}\right) u_{j}(X) . \tag{3.2}
\end{equation*}
$$

Replacing Y by W_{a} in 2.29) and using the fact that $F W_{a}=0$, we have

$$
\begin{gathered}
A_{E_{a}} X=\sum_{i=1}^{r} h_{i}^{\ell}\left(X, W_{a}\right) U_{i}+\sum_{b=r+1}^{n} h_{b}^{s}\left(X, W_{a}\right) W_{b} \\
+\ell\left\{\theta\left(W_{a}\right) F X-\epsilon_{a} w_{a}(X) F \zeta\right\} .
\end{gathered}
$$

Taking the scalar product of U_{i} and the above equation and using (2.19), we obtain

$$
\epsilon_{a} h_{a}^{s}\left(X, U_{i}\right)=-\ell \theta\left(W_{a}\right) \eta_{i}(X) .
$$

After substitution $X=\xi_{j}$ into this equation, it becomes $\epsilon_{a} h_{a}^{s}\left(\xi_{j}, U_{i}\right)=$ $-\ell \theta\left(W_{a}\right) \delta_{i j}$. Further, substituting $X=U_{i}$ into $(3.2)_{2}$, we get $\epsilon_{a} h_{a}^{s}\left(U_{i}, \xi_{j}\right)=$ $\ell \theta\left(W_{a}\right) \delta_{i j}$. From (2.17), we see that $h_{a}^{s}\left(U_{i}, \xi_{j}\right)=h_{a}^{s}\left(\xi_{j}, U_{i}\right)$. Thus, $\ell \theta\left(W_{a}\right)=$ 0 , and we have (2.23). Hence, M is irrotational. Eq. (3.1) reduces to $\ell u_{j}(X)=0$. It follows that $\ell=0$.
(2) Taking the scalar product of N_{j} and (2.29) and using the fact that $\ell=0$, we get

$$
\sum_{k=1}^{r} u_{k}(Y) \eta_{j}\left(A_{N_{k}} X\right)+\sum_{b=r+1}^{n} w_{b}(Y) \eta_{j}\left(A_{E_{b}} X\right)=0 .
$$

Substituting $Y=U_{i}$ and $Y=W_{a}$ into this equation, we obtain (2.24). Thus, M is solenoidal, and, therefore, M is statical.
(3) Taking the scalar product of V_{i} and (2.29), as well as the scalar product of W_{b} and (2.29), we get

$$
\begin{aligned}
& h_{i}^{\ell}(X, Y)=\sum_{j=1}^{r} u_{j}(Y) u_{i}\left(A_{N_{j}} X\right)+\sum_{a=r+1}^{n} w_{a}(Y) u_{i}\left(A_{E_{a}} X\right), \\
& \epsilon_{a} h_{a}^{s}(X, Y)=\sum_{j=1}^{r} u_{i}(Y) w_{a}\left(A_{N_{i}} X\right)+\sum_{b=r+1}^{n} w_{b}(Y) w_{a}\left(A_{E_{b}} X\right) .
\end{aligned}
$$

Putting $Y=V_{j}$ and $Y=F Z$ in turns into these two equations, we obtain

$$
\begin{array}{ll}
h_{i}^{\ell}\left(X, V_{j}\right)=0, & h_{i}^{\ell}(X, F Z)=0 \\
h_{a}^{s}\left(X, V_{j}\right)=0, & h_{a}^{s}(X, F Z)=0
\end{array}
$$

Using (2.7), (2.11), (2.18), (2.19), (2.23), (2.25) , (2.27), and (2.28), we derive

$$
\begin{array}{ll}
g\left(\nabla_{X} \xi_{i}, V_{j}\right)=-h_{i}^{\ell}\left(X, V_{j}\right)=0, & g\left(\nabla_{X} \xi_{i}, W_{a}\right)=-\epsilon_{a} h_{a}^{s}\left(X, V_{i}\right)=0 \\
g\left(\nabla_{X} V_{i}, V_{j}\right)=h_{j}^{\ell}\left(X, \xi_{i}\right)=0, & g\left(\nabla_{X} V_{i}, W_{a}\right)=h_{a}^{s}\left(X, \xi_{i}\right)=0 \\
g\left(\nabla_{X} Z_{o}, V_{j}\right)=h_{j}^{\ell}\left(X, F Z_{o}\right)=0, & g\left(\nabla_{X} Z_{o}, W_{a}\right)=h_{a}^{s}\left(X, F Z_{o}\right)=0
\end{array}
$$

for all $Z_{o} \in \Gamma\left(H_{o}\right)$. It follows that H is a parallel distribution on M, i.e.,

$$
\nabla_{X} Y \in \Gamma(H), \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H)
$$

Further, substituting $Y=U_{i}$ and $Y=W_{a}$ into (2.29) in turns, we have

$$
\begin{align*}
& A_{N_{i}} X=\sum_{j=1}^{r} h_{j}^{\ell}\left(X, U_{i}\right) U_{j}+\sum_{a=r+1}^{n} h_{a}^{s}\left(X, U_{i}\right) W_{a}, \tag{3.3}\\
& A_{E_{a}} X=\sum_{i=1}^{r} h_{i}^{\ell}\left(X, W_{a}\right) U_{j}+\sum_{b=r+1}^{n} h_{b}^{s}\left(X, W_{a}\right) W_{b} .
\end{align*}
$$

Applying F to the last two equations, we obtain

$$
F\left(A_{N_{i}} X\right)=0, \quad F\left(A_{E_{a}} X\right)=0
$$

respectively. From the last two equations, (2.26) and (2.28), it follows that

$$
\begin{equation*}
\nabla_{X} U_{i}=\sum_{j=1}^{r} \tau_{i j}(X) U_{j}, \quad \nabla_{X} W_{a}=\sum_{b=r+1}^{n} \mu_{a b}(X) W_{b} \tag{3.4}
\end{equation*}
$$

Thus, $J(\operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are parallel distributions on M, i.e.,

$$
\nabla_{X} U_{i} \in \Gamma(J(\operatorname{tr}(T M))), \quad \nabla_{X} W_{a} \in \Gamma\left(J\left(S\left(T M^{\perp}\right)\right)\right), \quad \forall X \in \Gamma(T M)
$$

(4) As $J(\operatorname{tr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H are parallel distributions satisfying (2.8), by the decomposition theorem [1] M is locally a product manifold $M_{r} \times M_{n-r} \times M^{\sharp}$, where M_{r}, M_{n-r} and M^{\sharp} are leaves of the distributions $J(\operatorname{tr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H, respectively.

Theorem 2 Let M be a generic lightlike submanifold of an indefinite Kaehler manifold \bar{M} with an ($\ell, m)$-type metric connection subject such that ζ belongs to $S(T M)$. If U_{i} 's are parallel with respect to the connection ∇ and the 1-forms $\rho_{i a}$ satisfying $\rho_{i a}=0$, then M is solenoidal and

$$
\begin{equation*}
(X \ell) \theta\left(U_{i}\right)+\ell\left(\bar{\nabla}_{X} \theta\right)\left(U_{i}\right)=0 . \tag{3.5}
\end{equation*}
$$

Proof. Taking the scalar product of W_{a} and (2.26) with $\nabla_{X} U_{i}=0$ and using the fact that $\rho_{i a}=0$, we get $\ell\left\{\epsilon_{a} \theta\left(U_{i}\right) w_{a}(X)-\theta\left(W_{a}\right) v_{i}(X)\right\}=0$. Taking $X=W_{a}$ and $X=V_{i}$ in this equation in turns, we have

$$
\begin{equation*}
\ell \theta\left(U_{i}\right)=0, \quad \ell \theta\left(W_{a}\right)=0 . \tag{3.6}
\end{equation*}
$$

Taking the scalar product of U_{j} in 2.26), we obtain $\eta_{j}\left(A_{N_{i}} X\right)=0$. From this and the fact that $\rho_{i a}(X)=\eta_{i}\left(A_{E_{a}} X\right)=0$, we see that M is solenoidal. Applying $\bar{\nabla}_{X}$ to $\ell \theta\left(U_{i}\right)=0$ and using the fact that $\nabla_{X} U_{i}=0$, we get (3.5).

Theorem 3 Let M be a generic lightlike submanifold of an indefinite Kaehler manifold \bar{M} with an (ℓ, m)-type metric connection subject such that ζ belongs to $S(T M)$. If V_{i} 's are parallel with respect to ∇ and the 1 -form $\lambda_{a i}$ satisfy $\lambda_{a i}=0$, then (1) M is irrotational, (2) $\ell=0$ and (3) $\tau_{i j}=0$.

Proof. Taking the scalar product of W_{a} in 2.27) with $\nabla_{X} V_{i}=0$ and using the fact that $\lambda_{a i}=0$, we get $\ell\left\{\epsilon_{a} \theta\left(V_{i}\right) w_{a}(X)-\theta\left(W_{a}\right) u_{i}(X)\right\}=0$. Substituting $X=W_{a}$ and $X=U_{i}$ into this equation in turns, we get

$$
\begin{equation*}
\ell \theta\left(V_{i}\right)=0, \quad \ell \theta\left(W_{a}\right)=0 . \tag{3.7}
\end{equation*}
$$

Taking the scalar product of V_{j} and 2.27), we obtain $h_{j}^{\ell}\left(X, \xi_{i}\right)=0$. From this and the fact that $\lambda_{a i}(X)=h_{a}^{s}\left(X, \xi_{i}\right)=0$, we see that M is irrotational. Taking in turns the scalar product of N_{j}, U_{j}, ζ and (2.27) with $\nabla_{X} V_{i}=0$ and using (2.23) and (3.7) , it becomes

$$
\begin{gather*}
h_{i}^{\ell}\left(X, U_{j}\right)=0, \tag{3.8}\\
g\left(F\left(\tau_{\xi_{i}}^{*} X\right), \zeta\right)=\ell u_{i}(X) . \tag{3.9}
\end{gather*}
$$

Replacing Y by U_{j} in (2.16) and using $(3.8)_{1}$, we have

$$
\begin{equation*}
h_{i}^{\ell}\left(U_{j}, X\right)=m\left\{\theta(X) \delta_{i j}-\theta\left(U_{j}\right) u_{i}(X)\right\} . \tag{3.10}
\end{equation*}
$$

From this, (2.18), (2.23), and the fact that $S(T M)$ is non-degenerate, we get

$$
A_{\xi_{i}}^{*} U_{j}=m\left\{\delta_{i j} \zeta-\theta\left(U_{j}\right) V_{i}\right\}
$$

Taking $X=U_{i}$ in (3.9) and using the last equation, we obtain

$$
\ell=g\left(F\left(A_{\xi_{i}}^{*} U_{i}\right), \zeta\right)=m\left\{g(F \zeta, \zeta)-\theta\left(U_{i}\right) g\left(\xi_{i}, \zeta\right)\right\}=0 .
$$

Since $\ell=0$, from $(3.8)_{2}$, we see that $\tau_{i j}=0$.

4 Indefinite complex space forms

Definition 2 An indefinite complex space form $\bar{M}(c)$ is a connected indefinite Kaehler manifold of constant holomorphic sectional curvature c;

$$
\begin{align*}
\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z}= & \frac{c}{4}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y} \tag{4.1}\\
& +\bar{g}(J \bar{Y}, \bar{Z}) J \bar{X}-\bar{g}(J \bar{X}, \bar{Z}) J \bar{Y}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\}
\end{align*}
$$

where \widetilde{R} is the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \bar{M}.

Denote by \bar{R} the curvature tensor of the (ℓ, m)-type metric connection $\bar{\nabla}$ on \bar{M}. By direct calculations from (1.2) and (1.3), we see that

$$
\begin{align*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z} & =\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z} \tag{4.2}\\
+ & (X \ell)\{\theta(Z) Y-g(Y, Z) \zeta\}-(X m) \theta(Y) J Z \\
- & (Y \ell)\{\theta(Z) X-g(X, Z) \zeta\}+(Y m) \theta(X) J Z \\
+ & \ell\left\{\left(\bar{\nabla}_{X} \theta\right)(Z) Y-\left(\bar{\nabla}_{Y} \theta\right)(Z) X\right. \\
& +g(X, Z) \bar{\nabla}_{Y} \zeta-g(Y, Z) \bar{\nabla}_{X} \zeta \\
& \quad+\ell[g(Y, Z) X-g(X, Z) Y]\} \\
- & m\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right. \\
& \quad+m[\theta(Y) \theta(J X)-\theta(X) \theta(J Y)]\} J Z \\
+ & \ell m\{[\theta(Y) J X-\theta(X) J Y] \theta(Z) \\
& \quad-[\theta(Y) g(J X, Z)-\theta(X) g(J Y, Z)] \zeta\} .
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $\bar{g}\left(\zeta, \xi_{i}\right)=0$ and $\bar{g}\left(\zeta, N_{i}\right)=0$ by turns and using (2.3), (2.4), (2.7), 2.18), 2.20, and the fact that $\bar{\nabla}$ is metric, we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} \zeta, \xi_{i}\right)=h_{i}^{\ell}(X, \zeta), \quad \bar{g}\left(\bar{\nabla}_{X} \zeta, N_{i}\right)=h_{i}^{*}(X, \zeta) \tag{4.3}
\end{equation*}
$$

In general, applying $\bar{\nabla}_{X}$ to $\theta\left(\xi_{i}\right)=0$ and using (2.3), (2.7), (2.18), and the facts that $\theta\left(N_{i}\right)=\theta\left(E_{a}\right)=0$ we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)\left(\xi_{i}\right)=h_{i}^{\ell}(X, \zeta) . \tag{4.4}
\end{equation*}
$$

Denote by R and R^{*} the curvature tensor of the induced linear connections ∇ and ∇^{*} on M and $S(T M)$, respectively. Using the Gauss-Weingarten
formulae, we obtain Gauss equations for M and $S(T M)$, respectively:

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z \tag{4.5}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\} \\
& +\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Z) A_{E_{a}} Y-h_{a}^{s}(Y, Z) A_{E_{a}} X\right\} \\
+ & \sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
& +\sum_{j=1}^{r}\left[\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right] \\
& +\sum_{a=r+1}^{n}\left[\lambda_{a i}(X) h_{a}^{s}(Y, Z)-\lambda_{a i}(Y) h_{a}^{s}(X, Z)\right] \\
& -\ell\left[\theta(X) h_{i}^{\ell}(Y, Z)-\theta(Y) h_{i}^{\ell}(X, Z)\right] \\
& \left.-m\left[\theta(X) h_{i}^{\ell}(F Y, Z)-\theta(Y) h_{i}^{\ell}(F X, Z)\right]\right\} N_{i} \\
& +\sum_{a=r+1}^{n}\left\{\left(\nabla_{X} h_{a}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{a}^{s}\right)(X, Z)\right. \\
& +\sum_{i=1}^{r}\left[\rho_{i a}(X) h_{i}^{\ell}(Y, Z)-\rho_{i a}(Y) h_{i}^{\ell}(X, Z)\right] \\
& +\sum_{b=r+1}^{n}\left[\mu_{b a}(X) h_{b}^{s}(Y, Z)-\mu_{b a}(Y) h_{b}^{s}(X, Z)\right] \\
& -\ell\left[\theta(X) h_{a}^{s}(Y, Z)-\theta(Y) h_{a}^{s}(X, Z)\right] \\
& \left.-m\left[\theta(X) h_{a}^{s}(F Y, Z)-\theta(Y) h_{a}^{s}(F X, Z)\right]\right\} E_{a},
\end{align*}
$$

$$
\begin{align*}
R(X, Y) P Z= & R^{*}(X, Y) P Z \tag{4.6}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Z) A_{\xi_{i}}^{*} Y-h_{i}^{*}(Y, P Z) A_{\xi_{i}} X\right\} \\
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z)\right. \\
& +\sum_{k=1}^{r}\left[\tau_{i k}(Y) h_{k}^{*}(X, P Z)-\tau_{i k}(X) h_{k}^{*}(Y, P Z)\right] \\
& -\ell\left[\theta(X) h_{i}^{*}(Y, P Z)-\theta(Y) h_{i}^{*}(X, P Z)\right] \\
& \left.-m\left[\theta(X) h_{i}^{*}(F Y, P Z)-\theta(Y) h_{i}^{*}(F X, P Z)\right]\right\} \xi_{i} .
\end{align*}
$$

Taking the scalar product of N_{i} and (4.2) and using (4.1), 4.5), (4.6),
(4.3) ${ }_{1}$, and the facts that ζ belongs to $S(T M)$ and $\bar{\nabla}$ is a metric, we obtain

$$
\begin{align*}
& \left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z) \tag{4.7}\\
& -\sum_{k=1}^{r}\left\{\tau_{i k}(X) h_{k}^{*}(Y, P Z)-\tau_{i k}(Y) h_{k}^{*}(X, P Z)\right\} \\
& -\sum_{k=1}^{r}\left\{h_{k}^{\ell}(Y, P Z) \eta_{i}\left(A_{N_{k}} X\right)-h_{k}^{\ell}(X, P Z) \eta_{i}\left(A_{N_{k}} Y\right)\right\} \\
& -\quad \sum_{a=r+1}^{n}\left\{h_{a}^{s}(Y, P Z) \eta_{i}\left(A_{E_{a}} X\right)-h_{a}^{s}(X, P Z) \eta_{i}\left(A_{E_{a}} Y\right)\right\} \\
& -\ell\left\{\theta(X) h_{i}^{*}(Y, P Z)-\theta(Y) h_{i}^{*}(X, P Z)\right\} \\
& -\quad m\left\{\theta(X) h_{i}^{*}(F Y, P Z)-\theta(Y) h_{i}^{*}(F X, P Z)\right\} \\
& -\left\{(X \ell) \eta_{i}(Y)-(Y \ell) \eta_{i}(X)\right\} \theta(P Z) \\
& +\{(X m) \theta(Y)-(Y m) \theta(X)\} v_{i}(P Z) \\
& -\ell\left\{\left(\bar{\nabla}_{X} \theta\right)(P Z) \eta_{i}(Y)-\left(\bar{\nabla}_{Y} \theta\right)(P Z) \eta_{i}(X)\right\} \\
& -\ell\left\{g(X, P Z) h_{i}^{*}(Y, \zeta)-g(Y, P Z) h_{i}^{*}(X, \zeta)\right\} \\
& -\ell^{2}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\} \\
& +\quad m\left\{\left(\bar{\nabla} \bar{X}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right. \\
& \quad \quad+m[\theta(Y) \theta(F X)-\theta(X) \theta(F Y)]\} v_{i}(P Z) \\
& -\ell m\left\{\theta(Y) v_{i}(X)-\theta(X) v_{i}(Y)\right\} \theta(P Z) \\
& =\frac{c}{4}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)+v_{i}(X) \bar{g}(J Y, P Z)\right. \\
& \quad \\
& \left.\quad-v_{i}(Y) \bar{g}(J X, P Z)+2 v_{i}(P Z) \bar{g}(X, J Y)\right\} .
\end{align*}
$$

Theorem 4 Let M be a generic lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with an ($\ell, m)$-type metric connection subject such that ζ belongs to $S(T M)$. If (1) F is parallel with respect to ∇ or (2) U_{i} 's are parallel with respect to ∇ and $\rho_{i a}=0$, then $c=0$ and $\bar{M}(c)$ is flat.

Proof. (1) If F is parallel with respect to the connection ∇, then by Theorem $1 \ell=0$ and M is statical. Thus, (2.24) holds. Taking the scalar product of U_{j} and 3.3$)_{1}$ and using (2.20), we have

$$
h_{i}^{*}\left(X, U_{j}\right)=0 .
$$

Applying ∇_{X} to $h_{i}^{*}\left(Y, U_{j}\right)=0$ and using (3.4) ${ }_{1}$, we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Taking $P Z=U_{j}$ in (4.7) and using (2.24) and the above equations, we get

$$
\frac{c}{4}\left\{\eta_{i}(X) v_{j}(Y)-\eta_{i}(Y) v_{j}(X)-\eta_{j}(Y) v_{i}(X)+\eta_{j}(X) v_{i}(Y)\right\}=0,
$$

since $\ell=0$. Substituting $X=\xi_{i}$ and $Y=V_{j}$ here, we obtain $c=0$.
(2) If U_{i} 's are parallel with respect to ∇ and $\rho_{i a}=0$, then by Theorem $3.2 M$ is solenoidal and (3.5) and (3.6) hold. Further, $g(F \zeta, \zeta)=0$ since $\bar{g}(J \zeta, \zeta)=0$. Taking in turns the scalar product of $F \zeta, N_{j}$ and (2.26) with $\nabla_{X} U_{i}=0$ and using (2.1) 2 , (2.11), (2.13), and (3.6) ${ }_{1,2}$, we have

$$
\begin{equation*}
\ell h_{i}^{*}(X, \zeta)=\ell^{2} \eta_{i}(X), \quad h_{i}^{*}\left(X, U_{j}\right)=0 . \tag{4.8}
\end{equation*}
$$

Applying ∇_{X} to $h_{i}^{*}\left(Y, U_{j}\right)=0$ and using the fact that $\nabla_{X} U_{j}=0$, we get

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Taking $P Z=U_{j}$ in (4.7) and using (2.24), (3.5), (3.6), (4.8), and the last two equations, we obtain

$$
\frac{c}{4}\left\{\eta_{i}(X) v_{j}(Y)-\eta_{i}(Y) v_{j}(X)+\eta_{j}(X) v_{i}(Y)-\eta_{j}(Y) v_{i}(X)\right\}=0 .
$$

Substituting $X=\xi_{i}$ and $Y=V_{j}$ into this equation, we have $c=0$.
Theorem 5 Let M be a solenoidal generic lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with an ($\ell, m)$-type metric connection such that ζ is tangent to M. If V_{i} 's are parallel with respect to ∇ and $\lambda_{i a}=0$, then the function m satisfies the partial differential equation

$$
\begin{equation*}
\left(\xi_{i} m\right) \theta\left(U_{j}\right)+m\left\{\left(\bar{\nabla}_{\xi_{i}} \theta\right)\left(U_{j}\right)-\delta_{i j}\right\}=\frac{3}{4} c \delta_{i j} . \tag{4.9}
\end{equation*}
$$

Proof. If V_{i} 's are parallel with respect to ∇ and $\lambda_{a i}=0$, then $\ell=0, \tau_{i j}=0$ and M is irrotational. Taking $X=U_{j}$ in (4.4) and using (3.10), we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{U_{j}} \theta\right)\left(\xi_{i}\right)=m\left\{\delta_{i j}-\theta\left(U_{j}\right) \theta\left(V_{i}\right)\right\} . \tag{4.10}
\end{equation*}
$$

From $(2.25)_{1},(3.7)$ and 3.8$)_{1}$, we get

$$
h_{i}^{*}\left(X, V_{k}\right)=0 .
$$

Applying ∇_{X} to $h_{i}^{*}\left(Y, V_{k}\right)=0$ and using the fact that $\nabla_{X} V_{k}=0$, we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{k}\right)=0 .
$$

Taking $P Z=V_{k}$ in (4.7) and using the last two equations and the fact that $\ell=0$, we get

$$
\begin{aligned}
& \{(X m) \theta(Y)-(Y m) \theta(X)\} \delta_{i k} \\
& +m\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right. \\
& \quad \quad \quad+m[\theta(Y) \theta(F X)-\theta(X) \theta(F Y)]\} \delta_{i k} \\
& =\frac{c}{4}\left\{u_{k}(Y) \eta_{i}(X)-u_{k}(X) \eta_{i}(Y)+2 \bar{g}(X, J Y) \delta_{i k}\right\} .
\end{aligned}
$$

Substituting $X=\xi_{k}$ and $Y=U_{j}$ into this equation and using (4.10), we see that (4.9) holds.

Definition 3 We say that $S(T M)$ is totally umbilical [2] in M if there exist smooth functions $\gamma_{i}, i \in\{1, \cdots, r\}$ on a coordinate neighborhood \mathcal{U} of M such that

$$
\begin{equation*}
h_{i}^{*}(X, P Y)=\gamma_{i} g(X, P Y) \quad \text { for any } i \tag{4.11}
\end{equation*}
$$

In case $\gamma_{i}=0$ on \mathcal{U}, we say that $S(T M)$ is totally geodesic in M.
Theorem 6 Let M be a statical generic lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with an (ℓ, m)-type metric connection such that ζ belongs to $S(T M)$. If $S(T M)$ is totally umbilical in M, then

$$
\begin{equation*}
U_{k} \ell-\ell^{2} \theta\left(U_{k}\right)-m \gamma_{k}-\gamma_{i}\left\{\gamma_{i}+m\left(U_{i}\right)\right\} \theta\left(V_{k}\right)=0 . \tag{4.12}
\end{equation*}
$$

Moreover, if $S(T M)$ is totally geodesic in M, then

$$
\begin{equation*}
\left(\xi_{k} m\right) \theta\left(U_{i}\right)+m\left(\bar{\nabla}_{\xi_{k}} \theta\right)\left(U_{i}\right)-m^{2} \delta_{k i}=\frac{3}{4} c \delta_{k i} \tag{4.13}
\end{equation*}
$$

Proof. Since M is statical, we obtain (2.23) and (2.24). Also, since $S(T M)$ is totally umbilical, from 2.25$)_{1}$ and (4.11), we see that

$$
h_{j}^{\ell}\left(X, U_{i}\right)=\gamma_{i} u_{j}(X)-\ell \theta\left(V_{j}\right) \eta_{i}(X)
$$

Substituting $X=\xi_{j}$ into this equation and using (2.16) and 2.23$)_{1}$, we have

$$
\begin{align*}
& \ell \theta\left(V_{i}\right)=0, \quad h_{j}^{\ell}\left(X, U_{i}\right)=\gamma_{i} u_{j}(X), \tag{4.14}\\
& h_{j}^{\ell}\left(U_{i}, X\right)=\left\{\gamma_{i}-m \theta\left(U_{i}\right)\right\} u_{j}(X)+m \theta(X) \delta_{i j} .
\end{align*}
$$

Replacing X by V_{k} and ζ in $(4.14)_{3}$ in turns, we obtain

$$
\begin{equation*}
h_{j}^{\ell}\left(U_{i}, V_{k}\right)=m \theta\left(V_{k}\right) \delta_{i j}, \quad h_{j}^{\ell}\left(U_{i}, \zeta\right)=\left\{\gamma_{i}-m \theta\left(U_{i}\right)\right\} \theta\left(V_{j}\right)+m \delta_{i j} . \tag{4.15}
\end{equation*}
$$

Taking $X=U_{j}$ in (4.4) and using (4.15) 2 , we have

$$
\begin{equation*}
\left(\bar{\nabla}_{U_{i}} \theta\right)\left(\xi_{j}\right)=\left\{\gamma_{i}-m \theta\left(U_{i}\right)\right\} \theta\left(V_{j}\right)+m \delta_{i j} . \tag{4.16}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\ell \theta\left(V_{i}\right)=0$ and using (2.18), (2.27) and (4.14 1_{1}, we obtain

$$
(X \ell) \theta\left(V_{i}\right)+\ell\left(\bar{\nabla}_{X} \theta\right)\left(V_{i}\right)=\ell\left\{h_{i}^{\ell}(X, F \zeta)+\ell u_{i}(X)\right\},
$$

since $\lambda_{a i}=0$. Taking $X=F \zeta$ in (4.14) $)_{2}$ and using (2.16), we have

$$
h_{j}^{\ell}\left(U_{i}, F \zeta\right)=0
$$

Replacing X by U_{j} in the last equation, we obtain

$$
\begin{equation*}
\left(U_{j} \ell\right) \theta\left(V_{i}\right)+\ell\left(\bar{\nabla}_{U_{j}} \theta\right)\left(V_{i}\right)=\ell^{2} \delta_{i j} . \tag{4.17}
\end{equation*}
$$

Applying ∇_{X} to $h_{i}^{*}(Y, P Z)=\gamma_{i} g(Y, P Z)$ and using (2.14), we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)=\left(X \gamma_{i}\right) g(Y, P Z)+\gamma_{i} \sum_{j=1}^{r} h_{j}^{\ell}(X, P Z) \eta_{j}(Y)
$$

Substituting this equation and (4.11) into (4.7) and using (2.24), we get

$$
\begin{aligned}
& \left\{X \gamma_{i}-\sum_{j=1}^{r} \gamma_{j} \tau_{i j}(X)\right\} g(Y, P Z)-\left\{Y \gamma_{i}-\sum_{j=1}^{r} \gamma_{j} \tau_{i j}(Y)\right\} g(X, P Z) \\
& +\gamma_{i} \sum_{j=1}^{r}\left\{h_{j}^{\ell}(X, P Z) \eta_{j}(Y)-h_{j}^{\ell}(Y, P Z) \eta_{j}(X)\right\} \\
& -m \gamma_{i}\{\theta(X) g(F Y, P Z)-\theta(Y) g(F X, P Z)\} \\
& - \\
& \text { - }\left\{(X \ell) \theta(P Z)+\ell\left(\bar{\nabla}_{X} \theta\right)(P Z)-\ell^{2} g(X, P Z)\right\} \eta_{i}(Y) \\
& + \\
& \text { \{\{(Y } \left.) \theta(P Z)+\ell\left(\bar{\nabla}_{Y} \theta\right)(P Z)-\ell^{2} g(Y, P Z)\right\} \eta_{i}(X) \\
& + \\
& +\quad\{(X m) \theta(Y)-(Y m) \theta(X)\} v_{i}(P Z) \\
& +m\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right. \\
& \quad+m[\theta(Y) \theta(F X)-\theta(X) \theta(F Y)]\} v_{i}(P Z) \\
& -\quad \ell m\left\{\theta(Y) v_{i}(X)-\theta(X) v_{i}(Y)\right\} \theta(P Z) \\
& = \\
& \quad \frac{c}{4}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right. \\
& \left.\quad+v_{i}(X) \bar{g}(J Y, P Z)-v_{i}(Y) \bar{g}(J X, P Z)+2 v_{i}(P Z) \bar{g}(X, J Y)\right\} .
\end{aligned}
$$

Replacing Y by ξ_{k} in this equation and using (2.25), 2.9) and (2.10), we have

$$
\begin{align*}
& \left\{\xi_{k} \gamma_{i}-\sum_{j=1}^{r} \gamma_{j} \tau_{i j}\left(\xi_{k}\right)\right\} g(X, P Z)-\gamma_{i} h_{k}^{\ell}(X, P Z) \tag{4.18}\\
& -m \gamma_{i} \theta(X) u_{k}(P Z)+\left(\xi_{k} m\right) \theta(X) v_{i}(P Z) \\
& +\left\{(X \ell) \theta(P Z)+\ell\left(\bar{\nabla}_{X} \theta\right)(P Z)-\ell^{2} g(X, P Z)\right\} \delta_{i k} \\
& -\left\{\left(\xi_{k} \ell\right) \theta(P Z)+\ell\left(\bar{\nabla}_{\xi_{k}} \theta\right)(P Z)\right\} \eta_{i}(X) \\
& -m\left\{\left(\bar{\nabla}_{X} \theta\right)\left(\xi_{k}\right)-\left(\bar{\nabla}_{\xi_{k}} \theta\right)(X)+m \theta(X) \theta\left(V_{k}\right)\right\} v_{i}(P Z) \\
& =\frac{c}{4}\left\{g(X, P Z) \delta_{i k}+v_{i}(X) u_{k}(P Z)+2 v_{i}(P Z) u_{k}(X)\right\} .
\end{align*}
$$

Taking $X=U_{h}, P Z=V_{h}$ and using (4.15) , 4.16) and 4.17, we get

$$
\begin{align*}
& \xi_{k} \gamma_{i}-\sum_{j=1}^{r} \gamma_{j} \tau_{i j}\left(\xi_{k}\right)-2 m \gamma_{i} \theta\left(V_{k}\right) \tag{4.19}\\
& +\left(\xi_{k} m\right) \theta\left(U_{i}\right)+m\left(\bar{\nabla}_{\xi_{k}} \theta\right)\left(U_{i}\right)-m^{2} \delta_{i k}=\frac{3}{4} c \delta_{i k} .
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $\theta(\zeta)=1$ and using the fact that $\bar{\nabla}$ is a metric, we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(\zeta)=0 . \tag{4.20}
\end{equation*}
$$

Taking $X=U_{i}$ and $P Z=\zeta$ in (4.18) and using (4.15) 2 , (4.16), (4.19), and (4.20), we obtain (4.12). If (TM) is totally geodesic in M, that is, $\gamma_{i}=0$, then, from 4.19), we get 4.13).

References

[1] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv., 26 (1952), 328-344.
[2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of SemiRiemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[3] K. L. Duggal and D. H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Elec. J. Geo., 5 (2012), no. 1, 108-119.
[4] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
[5] D. H. Jin, Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc., 51 (2014), no. 6, 1711-1726.
[6] D. H. Jin, Generic lightlike submanifolds of an indefinite transSasakian manifold of a quasi-constant curvature, Appl. Math. Sci., 9 (2015), no. 60, 2985-2997.
[7] D. H. Jin, Lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (ℓ, m), Commun. Korean Math. Soc., 31 (2016), no. 3, 613-624.
[8] D. H. Jin, Lightlike hypersurfaces of an indefinite Kaehler manifold with a symmetric metric connection of type (ℓ, m), Bull. Korean Math. Soc., 53 (2016), no. 4, 1171-1184.
[9] D. H. Jin, Lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (ℓ, m)-type metric connection, Far East J. Math. Sci., 103 (2008), no. 8, 1323-1343.
[10] D. H. Jin and J. W. Lee, Generic lightlike submanifolds of an indefinite cosymplectic manifold, Math. Probl. in Engin., 2011 (2011), Art ID 610986, 1-16.
[11] D. H. Jin and J. W. Lee, Generic lightlike submanifolds of an indefinite Kaehler manifold, Inter. J. Pure and Appl. Math., 101 (2015), no. 4, 543-560.
[12] D. H. Jin and J. W. Lee, A semi-Riemannian manifold of quasiconstant curvature admits lightlike submanifolds, Inter. J. of Math. Analysis, 9 (2015), no. 26, 1215-1229.
[13] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 1996.
[14] K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 15 (1970), 1579-1586.
[15] K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor, N.S., 38 (1982), 13-18.

Chul Woo Lee
Department of Mathematics, Kyungpook National University
Daegu 41566, Republic of Korea. mathisu@knu.ac.kr

Jae Won Lee (Corresponding author)
Department of Mathematics and RINS,
Gyeongsang National University
Jinju 52828, Republic of Korea.
leejaew@gnu.ac.kr
Please, cite to this paper as published in
Armen. J. Math., V. 12, N. 6(2020), pp. 117

