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Abstract. In this manuscript, we propose new refinements
for the Jensen-Mercer as well as variant of the Jensen-Mercer in-
equalities associated to certain positive tuples. We give some
related integral version and present applications for different
means. At the end, further generalizations are given which are
associated to m finite sequences.2
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Introduction
The celebrated Jensen inequality states that if [a, b] is an interval in R,
yj ∈ [a, b], ζj ∈ R+ (j = 1, 2, . . . , n), and ψ : I → R is a convex function,
then

ψ

(∑n
γ=1 ζγyγ∑n
γ=1 ζγ

)
≤
∑n

γ=1 ζγψ(yγ)∑n
γ=1 ζγ

. (1)

Jensen’s inequality is one of the fundamental inequalities in Mathematics,
and it underlies many vital statistical concepts and proofs. Some important
applications involve derivation of the AM-GM mean inequality, estimations
for Shannon and Zipf-Mandelbrot entropies, the convergence property of
the expectation maximization algorithm, positivity of Kullback-Leibler di-
vergence, etc. [5, 4, 12, 6, 7]. Also this inequality has been applied to solve
many problems in different fields of science and technology e.g engineering,
physics, financial economics, computer science, etc.

There are several classical important inequalities which may be deduced
from (1), for example Hölder, Levinson’s, Ky Fan, Young’s inequalities, etc.

1Corresponding author
2The publication was supported by the Ministry of Education and Science of the

Russian Federation (the Agreement number No. 02.a03.21.0008.

1

http://www.flib.sci.am/eng/journal/Math/


2 M. ADIL KHAN AND J. PEČARIĆ

Due to the great importance of this inequality, several researchers have fo-
cused on this inequality and derived its many improvements, refinements
and extensions. The Jensen inequality also has been given for some other
generalized convex functions such as s-convex, preinvex, h-convex, η-convex
functions, etc. [10, 22, 15, 17, 13, 8, 9, 21, 23].

In 2003 Mercer proved the following variant of Jensen’s inequality [16].

Theorem 1 Let ψ : [a, b] → R be a convex function and let yγ ∈ [a, b],
ζγ ∈ R+, γ = 1, 2, ..., n, ζ̄ =

∑n
γ=1 ζγ. Then

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)
≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ). (2)

The following variant of Jensen-Steffensen’s inequality has been given in [1].

Theorem 2 Let ψ : [a, b] → R be a convex function and let yγ ∈ [a, b],
ζγ ∈ R, ζγ 6= 0, γ = 1, 2, . . . , n, ζ̄ =

∑n
γ=1 ζγ. If y1 ≤ y2 ≤ · · · ≤ yn or

y1 ≥ y2 ≥ · · · ≥ yn and

n∑
γ=1

ζγ > 0, 0 ≤
k∑
γ=1

ζγ ≤
n∑
γ=1

ζγ, k = 1, 2, . . . , n, (3)

then

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)
≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ). (4)

For some of the results concerning to the Jensen-Mercer inequality, we rec-
ommend [2, 18, 20, 11, 19, 3, 14].

The concept of convexity has a great impact on our everyday lives, and
there are various applications of this concept in business, industry, medicine,
art, etc. The applications of the convexity in equilibrium of non-cooperative
games and the problems of optimum allocation of resources are significant.
Jensen’s inequality is one of the most important results which holds for
convex (concave) functions. The classical Jensen’s inequality, the complete
form of Jensen’s inequality, and the generalized Jensen’s inequality for con-
vex functions are important results in theoretical and applied Mathematics.
In 2003 Mercer proved an interesting variant of Jensen’s inequality which
has been studied by many mathematicians in recent years. The purpose
of this paper is to study the Jensen-Mercer inequality and to present new
refinements of the Jensen-Mercer inequality in discrete as well as integral
case. Also, several applications have been given for different means.
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1 Refinements
Theorem 3 Let ψ : [a, b] → R be a convex function and let yγ ∈ [a, b],
ζγ, ηγ, θγ ∈ R+, ηγ + θγ = 1 for each γ ∈ {1, 2, . . . , n}, and let ζ̄ =

∑n
γ=1 ζγ.

Then

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)

≤
n∑
γ=1

ζγηγψ

(∑n
γ=1 ζγηγ(a+ b− yγ)∑n

γ=1 ζγηγ

)

+
n∑
γ=1

ζγθγψ

(∑n
γ=1 ζγθγ(a+ b− yγ)∑n

γ=1 ζγθγ

)

≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ).

(5)

Proof. Since ηγ + θγ = 1 for γ ∈ {1, 2, . . . , n}, we can write

ψ

(
a+ b − 1

ζ̄

n∑
γ=1

ζγyγ

)
= ψ

(
1

ζ̄

n∑
γ=1

ζγ(a+ b− yγ)
)

= ψ

(
1

ζ̄

n∑
γ=1

ζγηγ(a+ b− yγ) +
1

ζ̄

n∑
γ=1

ζγθγ(a+ b− yγ)
)

= ψ

(∑n
γ=1 ζγηγ

ζ̄

∑n
γ=1 ζγηγ(a+ b− yγ)∑n

γ=1 ζγηγ

+

∑n
γ=1 ζγθγ

ζ̄

∑n
γ=1 ζγθγ(a+ b− yγ)∑n

γ=1 ζγθγ

)
≤
∑n

γ=1 ζγηγ

ζ̄
ψ

(∑n
γ=1 ζγηγ(a+ b− yγ)∑n

γ=1 ζγηγ

)
+

∑n
γ=1 ζγθγ

ζ̄
ψ

(∑n
γ=1 ζγθγ(a+ b− yγ)∑n

γ=1 ζγθγ

)
≤
∑n

γ=1 ζγηγ

ζ̄

(
ψ(a) + ψ(b)−

∑n
γ=1 ζγηγψ(yγ)∑n

γ=1 ζγηγ

)
+

∑n
γ=1 ζγθγ

ζ̄

(
ψ(a) + ψ(b)−

∑n
γ=1 ζγθγψ(yγ)∑n

γ=1 ζγθγ

)
= ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ).

The first inequality holds due to the definition of convexity, and the second
inequality holds due to Theorem 1. �
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In the following theorem we present integral version of the above theorem.

Theorem 4 Let ψ : [a, b]→ R be a convex function defined on the interval
[a, b]. Let p, u, v, g : [α, β] → R be integrable functions such that g(ω) ∈
[a, b], u(ω), v(ω), p(ω) ∈ R+ for all ω ∈ [α, β], v(ω) + u(ω) = 1, and let
P =

∫ β
α
p(ω)dω. Then

ψ

(
a+ b− 1

P

∫ β

α

p(ω)g(ω)dω

)
≤ 1

P

∫ β

α

u(ω)p(ω)dωψ

(∫ β
α
p(ω)u(ω)(a+ b− g(ω))dω∫ β

α
p(ω)u(ω)dω

)

+
1

P

∫ β

α

p(ω)v(ω)dωψ

(∫ β
α
p(ω)v(ω)(a+ b− g(ω))dω∫ β

α
p(ω)v(ω)dω

)

≤ ψ(a) + ψ(b)− 1

P

∫ β

α

p(ω)ψ(g(ω))dω. (6)

If the function ψ is concave, then the reverse inequalities hold in (6).

In the following theorem we present a refinement of variant of Jensen-
Steffensen’s inequality:

Theorem 5 Let ψ : [a, b] → R be a convex function. Let yγ ∈ [a, b],
ζγ, ηγ, θγ ∈ R, ζγηγ, ζγθγ 6= 0 and ηγ + θγ = 1 for all γ ∈ {1, 2, . . . , n},
and let ζ̄ =

∑n
γ=1 ζγ. If y1 ≤ y2 ≤ · · · ≤ yn or y1 ≥ y2 ≥ · · · ≥ yn and

n∑
γ=1

ζγηγ > 0, 0 ≤
k∑
γ=1

ζγηγ ≤
n∑
γ=1

ζγηγ, k = 1, 2, . . . , n, (7)

n∑
γ=1

ζγθγ > 0, 0 ≤
k∑
γ=1

ζγθγ ≤
n∑
γ=1

ζγθγ, k = 1, 2, . . . , n, (8)

then

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)
≤ 1

ζ̄

n∑
γ=1

ηγζγψ

(
a+ b−

∑n
γ=1 ζγηγ(a+ b− yγ)∑n

γ=1 ζγηγ

)

+
1

ζ̄

n∑
γ=1

ζγθγψ

(∑n
γ=1 ζγθγ(a+ b− yγ)∑n

γ=1 ζγθγ

)

≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ).

(9)
If the function ψ is concave, then the reverse inequalities hold in (9).
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Proof. Since ηγ + θγ = 1 for all γ ∈ {1, 2, . . . , n}, we have

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)
= ψ

(
1

ζ̄

∑n
γ=1 ζγ(a+ b− yγ)

)
= ψ

(
1

ζ̄

n∑
γ=1

ζγηγ(a+ b− yγ) +
1

ζ̄

n∑
γ=1

ζγθγ(a+ b− yγ)

)

= ψ

(∑n
γ=1 ζγηγ

ζ̄
·
∑n

γ=1 ζγηγ(a+ b− yγ)∑n
γ=1 ζγηγ

+

∑n
γ=1 ζγθγ

ζ̄
·
∑n

γ=1 ζγθγ(a+ b− yγ)∑n
γ=1 ζγθγ

)
.

(10)

Note, that
∑n

γ=1 ζγηγ > 0 and
∑n

γ=1 ζγθγ > 0, and therefore
∑n

γ=1 ζγηγ +∑n
γ=1 ζγθγ > 0, which gives ζ̄ > 0.
Further, by applying convexity of ψ on the right side of (10) and Theo-

rem 2, one can obtain

ψ

(
1

ζ̄

n∑
γ=1

ζγ(a+ b− yγ)

)
≤

∑n
γ=1 ζγηγ

ζ̄
ψ

(∑n
γ=1 ζγηγ(a+ b− yγ)∑n

γ=1 ζγηγ

)

+

∑n
γ=1 ζγθγ

ζ̄
ψ

(∑n
γ=1 ζγθγ(a+ b− yγ)∑n

γ=1 ζγθγ

)

≤ 1

ζ̄

n∑
γ=1

ζγηγ

(
ψ(a) + ψ(b)−

∑n
γ=1 ζγηγψ(yγ)∑n

γ=1 ζγηγ

)

+
1

ζ̄

n∑
γ=1

ζγθγ

(
ψ(a) + ψ(b)−

∑n
γ=1 ζγθγψ(yγ)∑n

γ=1 ζγθγ

)

= ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ).

�

Remark 1 If we add (7) and (8), then the variant of Jensen-Steffensen
inequality conditions (3) will be obtained.

2 Applications to means

Let yγ ∈ [a, b], γ = 1, 2, .., n, and let ζ1, ..., ζn > 0 with ζ̄ =
∑n

γ=1 ζγ. Let
An(y; ζ), Ãn(y; ζ), Gn(y; ζ), G̃n(y; ζ), Hn(y; ζ), H̃n(y; ζ), and M

[r]
n (y; ζ),
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M̃
[r]
n (y; ζ) denote the weighted arithmetic, geometric, harmonic, and power

means defined as:

An(y; ζ) :=
1

ζ̄

n∑
γ=1

ζγyγ, Ãn := a+ b− 1

ζ̄

n∑
γ=1

ζγyγ = a+ b− An(y; ζ),

Gn(y; ζ) :=

(
n∏
γ=1

yζγγ

) 1
ζ̄

, G̃n(y; ζ) :=
ab(

n∏
γ=1

y
ζγ
γ

) 1
ζ̄

=
ab

Gn(y; ζ)
,

Hn(y; ζ) :=
1

ζ̄

n∑
γ=1

ζγy
−1
γ , H̃n(y; ζ) :=

(
a−1 + b−1 −H−1

n (y; ζ)
)−1

,

M [s]
n (y; ζ) :=


(

1
ζ̄

∑n
γ=1 ζγy

s
γ

) 1
s
, s 6= 0,

Gn(y; ζ), s = 0,

M̃ [s]
n (y; ζ) :=


(
as + bs −

(
M

[s]
n (y; ζ)

)s) 1
s

, s 6= 0,

G̃n(y; ζ), s = 0.

Also, assume that ηγ, θγ ∈ R+ are such that ηγ + θγ = 1 for each γ ∈
{1, 2, . . . , n}.

Under the above assumptions we give the following corollaries.

Corollary 1 The following inequalities are valid

G̃n(y; ζ) ≤
n∑
γ=1

ζγηγG̃n(y; ζ.η) +
n∑
γ=1

ζγθγG̃n(y; ζ.θ) ≤ Ãn(y; ζ). (11)

Proof. Using the function ψ(x) = exp(x) and replacing a, b, and yγ by
ln a, ln b, and ln yγ in (5), we get (11). �

Corollary 2 By taking a→ 1
a
, b→ 1

b
, yγ → 1

yγ
, in (11) we have

1

G̃n(y; ζ)
≤
∑n

γ=1 ζγηγ

G̃n(y; ζ.η)
+

∑n
γ=1 ζγθγ

G̃n(y; ζ.θ)
≤ 1

H̃n(y; ζ)
. (12)

Corollary 3 The following inequalities hold:

G̃n(y; ζ) ≤
(
Ãn(y; ζ.η)

)∑n
γ=1 ζγηγ

(
Ãn(y; ζ.θ)

)∑n
γ=1 ζγθγ ≤ Ãn(y; ζ). (13)

Proof. Using the function f(x) = − lnx in (5) and then applying the ex-
ponential function, we get (13). �
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Corollary 4 For s 6= 0 and s ≤ 1, we have

M̃n
[s]

(y; ζ) ≤
n∑
γ=1

ζγηγM̃n
[s]

(y; ζ.η)+
n∑
γ=1

ζγθγM̃n
[s]

(y; ζ.θ) ≤ Ãn(y; ζ). (14)

Proof. Use the function ψ(x) = x
1
s and replace a, b, and xi by as, bs, and

xsγ respectively in (5) to get (14). �

Corollary 5 For t, s ∈ R with 0 < t ≤ s, we have(
M̃ [t]

n (y; ζ)
)s
≤

n∑
γ=1

ζγηγ

(
M̃ [t]

n (y; ζ.η)
)s

+
n∑
γ=1

ζγθγ

(
M̃ [t]

n (y; ζ.θ)
)s

≤ M̃ [s]
n (y; ζ).

(15)

Proof. Use the function ψ(x) = x
s
t and replace a, b, and xγ by at, bt, and

xtγ respectively in (5) to get (15). �

Now, we generalize the given applications for the quasi-arithmetic mean.
Let φ : [a, b] → R be a strictly monotonic and continuous function.

Then for a given n-tuple y = (y1, ..., yn) ∈ [a, b]n and positive n-tuple ζ =
(ζ1, ..., ζn) with ζ̄ =

∑n
γ=1 ζγ, the value

M
[n]
φ (y; ζ) = φ−1

(
n∑
γ=1

ζγφ(yγ)

)

is well defined and is called quasi-arithmetic mean of y with wight ζ. If we
define

M̃
[n]
φ (y; ζ) = φ−1

(
φ(a) + φ(b)−

n∑
γ=1

ζγφ(yγ)

)
,

then we have the following result.

Corollary 6 The following inequalities hold:

ψ

(
M̃φ

[n]
(y; ζ)

)
≤

n∑
γ=1

ζγηγψ

(
M̃φ

[n]
(y; ζ.η)

)
+

n∑
γ=1

ζγθγψ

(
M̃φ

[n]
(y; ζ.θ)

)
≤ ψ

(
M̃ψ

[n]
(y; ζ)

)
(16)

provided that ψ ◦ φ−1 is convex and ψ is strictly increasing.

Proof. Replace ψ(x) by ψ ◦ φ−1(x) and a, b, yγ by φ(a), φ(b), φ(yγ) respec-
tively in (5), then apply ψ−1 to get (16). �
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3 Further generalizations
In this section, we present a further refinement of the Jensen-Mercer as well
as variant of the Jensen-Mercer inequalities concerning tom sequences whose
sum is equal to unity.

Theorem 6 Let ψ : [a, b]→ R be a convex function defined on the interval
[a, b]. Let yγ ∈ [a, b], ζγ, θlγ ∈ R+, γ = 1, 2, . . . , n, l = 1, 2, . . . ,m, be
such that

∑m
l=1 θ

l
γ = 1 for each γ ∈ {1, 2, . . . , n}, and let ζ̄ =

∑n
γ=1 ζγ.

Assume that L1 and L2 are non-empty disjoint subsets of {1, 2, ...,m} such
that L1 ∪ L2 = {1, 2, ...,m}. Then

ψ

(
a+ b − 1

ζ̄

n∑
γ=1

ζγyγ

)

≤ 1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγψ

(∑n
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L1

θlγζγ

)

+
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγψ

(∑n
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L2

θlγζγ

)

≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ). (17)

If the function ψ is concave, then the reverse inequalities hold in (17).

Proof. Since
∑m

l=1 θ
l
γ = 1 for each γ ∈ {1, 2, . . . , n}, we can write

a+ b− 1

ζ̄

n∑
γ=1

ζγyγ =
1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ) +
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ).

Therefore, we have

ψ

(
a+ b− 1

ζ̄

n∑
γ=1

ζγyγ

)

= ψ

(
1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ) +
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ)

)

= ψ

(
1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγ

∑n
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L1

θlγζγ

+
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγ

∑n
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L2

θlγζγ

)
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≤ 1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγψ

(∑n
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L1

θlγζγ

)

+
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγψ

(∑n
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L2

θlγζγ

)

≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ). (18)

The first inequality takes place due to the definition of convexity, and the
second one holds by virtue of Jensen-Mercer’s inequality. �

Remark 2 We can give applications of Theorem 6 for means as given in
Section 2.

The following theorem is the integral analogue of Theorem 6.

Theorem 7 Let ψ : G → R be a convex function defined on the interval G.
Let p, g, ul ∈ L[a, b] be such that g(ω) ∈ G, p(ω), ul(ω) ∈ R+ for all ω ∈ [a, b]

(l = 1, 2, ..., n), and let
n∑
l=1

ul(ω) = 1, P =
∫ b
a
p(ω)dω. Assume that L1

and L2 are non-empty disjoint subsets of {1, 2, ..., n} such that L1 ∪ L2 =
{1, 2, ..., n}. Then

1

P

∫ b

a

p(ω)ψ(g(ω))dω

≥ 1

P

∫ b

a

∑
l∈L1

ul(ω)p(ω)dωψ

(∫ b
a

∑
l∈L1

ul(ω)p(ω)g(ω)dω∫ b
a

∑
l∈L1

ul(ω)p(ω)dω

)

+
1

P

∫ b

a

∑
l∈L2

ul(ω)p(ω)dωψ

(∫ b
a

∑
l∈L2

ul(ω)p(ω)g(ω)dω∫ b
a

∑
l∈L2

ul(ω)p(ω)dω

)

≥ ψ

(
1

P

∫ b

a

p(ω)g(ω)dω

)
. (19)

If the function ψ is concave, then the reverse inequalities hold in (19).

In the following theorem, we present a further refinement of the variant
of Jensen-Steffensen’s inequality associated to m certain sequences.

Theorem 8 Let ψ : [a, b]→ R be a convex function defined on the interval
[a, b]. Let yγ ∈ I, let ζγ, θlγ ∈ R, γ = 1, 2, . . . , n, l = 1, 2, . . . ,m, be such
that ζγηγ, ζγθlγ 6= 0 and

∑m
l=1 θ

l
γ = 1 for each γ ∈ {1, 2, . . . , n}, and let

ζ̄ =
∑n

γ=1 ζγ. Assume that L1 and L2 are non-empty disjoint subsets of
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{1, 2, ...,m} such that L1 ∪ L2 = {1, 2, ...,m}. If y1 ≤ y2 ≤ · · · ≤ yn or
y1 ≥ y2 ≥ · · · ≥ yn and for each l ∈ {1, 2, . . . ,m}

n∑
γ=1

ζγθ
l
γ > 0, 0 ≤

k∑
γ=1

ζγθ
l
γ ≤

n∑
γ=1

ζγθ
l
γ, k = 1, 2, . . . , n, (20)

then

ψ

(
a+ b − 1

ζ̄

n∑
γ=1

ζγyγ

)

≤ 1

ζ̄

n∑
γ=1

∑
l∈L1

θlγζγψ

(∑n
γ=1

∑
l∈L1

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L1

θlγζγ

)

+
1

ζ̄

n∑
γ=1

∑
l∈L2

θlγζγψ

(∑n
γ=1

∑
l∈L2

θlγζγ(a+ b− yγ)∑n
γ=1

∑
l∈L2

θlγζγ

)

≤ ψ(a) + ψ(b)− 1

ζ̄

n∑
γ=1

ζγψ(yγ).

(21)

If the function ψ is concave, then the reverse inequalities hold in (21).

Proof. Since
n∑
γ=1

ζγθ
l
γ > 0 for each l ∈ {1, 2, . . . ,m}, one has

m∑
l=1

n∑
γ=1

ζγθ
l
γ > 0.

Also,
m∑
l=1

θlγ = 1. Hence, we can conclude that ζ̄ > 0.

Further, proceeding in the same way as in the proof of Theorem 6 but
using variant of Jensen-Steffensen’s inequality instead of Jensen-Steffensem’s
inequality, we obtain (21). �
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