Blaschke products of given quantity index for a half-plane

G. V. Mikayelyan and F. V. Hayrapetyan

Abstract

We investigate the growth of the integral logarithmic means of Blaschke products for the half-plane. We prove the existence of Blaschke products of given quantity indices.

Key Words: Blaschke Product, Integral Mean, Quantity Index.
Mathematics Subject Classification 2010: 30J10

Introduction

Let the sequence of complex numbers $\left\{w_{k}\right\}_{1}^{\infty}=\left\{u_{k}+i v_{k}\right\}_{1}^{\infty}$ lying in the lower half-plane $G=\{w: \operatorname{Im}(w)<0\}$ satisfy the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|v_{k}\right|<+\infty . \tag{1}
\end{equation*}
$$

Then the infinite product of Blaschke

$$
B(w)=\prod_{k=1}^{\infty} \frac{w-w_{k}}{w-\bar{w}_{k}}
$$

converges in the half-plane G, defining there an analytic function with ze$\operatorname{ros}\left\{w_{k}\right\}_{1}^{\infty}$.

In order to investigate the asymptotic properties of the function B, we define an integral logarithmic mean of order $q, 1 \leq q<+\infty$ of Blaschke products for the half-plane by the formula

$$
m_{q}(v, B)=\left(\int_{-\infty}^{+\infty}|\log | B(u+i v)| |^{q} d u\right)^{1 / q}, \quad-\infty<v<0 .
$$

Let us denote by $n(v)$ the number of zeros of the function B in the half-plane $\{w: \operatorname{Im} w \leq v\}$.

In the case of a disc the integral logarithmic mean of order $q, 1 \leq q<+\infty$ is defined by the formula

$$
m_{q}(r, B)=\left(\int_{-\pi}^{+\pi}|\log | B\left(r e^{i \varphi}\right)| |^{q} d \varphi\right)^{1 / q}, \quad 0 \leq r<1,
$$

where B is the Blaschke product for the unit disc. In this case, for $q=2$ the problem about the boundedness of the function $m_{2}(r, B)$ was posed by A. Zygmund. In 1969 this problem was solved by the method of Fourier series for meromorphic functions by G.R. MacLane and L.A. Rubel [1]. In [2] V.V. Eiko and A.A. Kondratyuk investigated this problem in the general case when $1 \leq q<+\infty$. L.R. Sons [3] constructed a Blaschke product for which $m_{2}(r, B) \rightarrow \infty$ as $r \rightarrow 1$.

In the case of a half-plane the problem of the connection of the boundedness of $m_{2}\left(v, \pi_{\alpha}\right)$ to the distribution of zeros of the products π_{α} of A.M. Dzhrbashyan [5] was solved by the method of Fourier transforms for meromorphic functions (see [4]). The function π_{α} coincides with B for $\alpha=0$.

In [6] estimates for $m_{q}(v, B)$ were obtained by $n(v)$. It is known that $\lim _{v \rightarrow 0} m_{1}(v, B)=0$ (see, for example [6]).

Let us define the quantity index $p(B)$ of Blaschke products for the halfplane as in [7],

$$
p(B)=p-1,
$$

where $p^{-1}+q^{-1}=1$ and $q=\sup \left\{s \in[1, \infty): m_{s}(v, B)=O(1), v \rightarrow 0\right\}$.
A.A. Kondratyuk and M.O. Girnik constructed Blaschke products of given quantity index for the unit disc [7]. They used asymptotic formulas of R.S. Galoyan [8]. In [9] analogous formulas for the half-plane were proven.

1 Constructing Blaschke products

Theorem 1 . For any $p \in[1,+\infty]$, there exists a Blaschke product of given quantity index $p(B)=p-1$ for the half-plane.

Proof. We will prove the theorem by establishing 3 cases:

1. $p=+\infty$. In this case, we will prove that there exists a Blaschke product such that for any $s \in(1,+\infty), m_{s}(v, B) \rightarrow+\infty$ as $v \rightarrow 0$.
2. $p \in(1,+\infty)$. In this case, using that m_{s} is monotonically increasing with respect to s, we will prove that there exists a Blaschke product such that for any $s \in(q,+\infty), m_{s}(v, B) \rightarrow+\infty$ as $v \rightarrow 0$ and for any $s \in(1, q]$, $m_{s}(v, B)=O(1)$ as $v \rightarrow 0$.
3. $p=1$. In this case, we will prove that there exists a Blaschke product such that for any $s \in(1,+\infty), m_{s}(v, B)=O(1)$ as $v \rightarrow 0$.

For each case we will find B with the zeros $\left\{w_{k}\right\}_{1}^{\infty}=\left\{i v_{k}\right\}_{1}^{\infty}\left(-\infty<v_{k}<0\right)$.

Case 1.

Since

$$
\begin{aligned}
& \log \left|\frac{w-w_{k}}{w-\bar{w}_{k}}\right|=\frac{1}{2} \log \frac{u^{2}+\left(v-v_{k}\right)^{2}}{u^{2}+\left(v+v_{k}\right)^{2}}=\frac{1}{2} \log \left(1-\frac{4 v v_{k}}{u^{2}+\left(v+v_{k}\right)^{2}}\right) \\
& \leq-\frac{2|v|\left|v_{k}\right|}{u^{2}+\left(|v|+\left|v_{k}\right|\right)^{2}},
\end{aligned}
$$

then

$$
\log |B(u+i v)| \leq-2|v| \sum_{k=1}^{+\infty} \frac{\left|v_{k}\right|}{u^{2}+\left(|v|+\left|v_{k}\right|\right)^{2}} .
$$

If $|u|<|v|$ we have

$$
\begin{equation*}
|\log | B(u+i v)||\geq 2| v| \sum_{k=1}^{+\infty} \frac{\left|v_{k}\right|}{u^{2}+\left(|v|+\left|v_{k}\right|\right)^{2}} \geq \frac{2}{5|v|} \sum_{v_{k}>v}\left|v_{k}\right| . \tag{2}
\end{equation*}
$$

From (2) and $|B(-u+i v)|=|B(u+i v)|$ it follows that

$$
\begin{array}{r}
m_{s}(r, B)=2^{\frac{1}{s}}\left(\left.\int_{0}^{+\infty}|\log | B(u+i v)\right|^{s} d u\right)^{1 / s} \\
\geq 2^{\frac{1}{s}}\left(\left.\int_{0}^{|v|}|\log | B(u+i v)\right|^{s} d u\right)^{1 / s} \geq \frac{2^{\frac{1}{s}+1}}{5}|v|^{\frac{1}{s}-1} \sum_{v_{k}>v}\left|v_{k}\right| . \tag{3}
\end{array}
$$

Since

$$
\sum_{v_{k} \leq v}\left|v_{k}\right|=\int_{-\infty}^{v}(-t) d n(t)=-v n(v)+\int_{-\infty}^{v} n(t) d t>\int_{-\infty}^{v} n(t) d t,
$$

we obtain $\int_{-\infty}^{0} n(t) d t<+\infty$. Therefore, there exists

$$
\lim _{v \rightarrow 0} v n(v)=\int_{-\infty}^{0} n(t) d t-\int_{-\infty}^{0}(-t) d n(t) .
$$

Having

$$
\int_{v}^{0}(-t) d n(t)=\lim _{t \rightarrow 0}|t| n(t)-|v| n(v)+\int_{v}^{0} n(t) d t \geq \lim _{t \rightarrow 0}|t| n(t),
$$

we can imply that $\lim _{t \rightarrow 0}|t| n(t)=0$. Hence

$$
\begin{equation*}
\sum_{v_{k}>v}\left|v_{k}\right|=\int_{v}^{0}(-t) d n(t)=-|v| n(v)+\int_{v}^{0} n(t) d t \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
n(v) \sim \frac{1}{|v| \log ^{2}|v|}, \quad v \rightarrow 0 \tag{5}
\end{equation*}
$$

Then from (4) and (5) we obtain that there exists $v_{0}\left(-\infty<v_{0}<0\right)$ such that when $v_{0}<v<0$:

$$
\sum_{v_{k}>v}\left|v_{k}\right|>-\frac{3}{2} \frac{1}{\log ^{2}|v|}+\frac{1}{2} \int_{0}^{|v|} \frac{1}{t \log ^{2} t} d t=-\frac{1}{2 \log |v|}\left(\frac{3}{\log |v|}+1\right) .
$$

If $s>1$, we have

$$
\lim _{v \rightarrow 0} \frac{|v|^{\frac{1}{s}-1}}{\log \frac{1}{|v|}}=+\infty
$$

Then from (3) it follows that for any $s \in(1,+\infty), m_{s}(v, B) \rightarrow \infty$ as $v \rightarrow 0$.

Case 2.

Let the counter function $n(v)$ satisfy the condition

$$
\begin{equation*}
n(v) \sim \frac{1}{|v|^{\alpha}}, v \rightarrow 0 \tag{6}
\end{equation*}
$$

where $0<\alpha<1$. Then for $0<\varepsilon<\alpha /(2-\alpha)$ we have

$$
\begin{array}{r}
-|v| n(v)+\int_{v}^{0} n(t) d t>-(1+\varepsilon)|v|^{1-\alpha}+(1-\varepsilon) \int_{0}^{|v|} t^{-\alpha} d t \\
=|v|^{1-\alpha}\left(-1-\varepsilon+\frac{1-\varepsilon}{1-\alpha}\right)=\frac{\alpha-(2-\alpha) \varepsilon}{1-\alpha}|v|^{1-\alpha} . \tag{7}
\end{array}
$$

From (3) and (7) we obtain

$$
\begin{equation*}
m_{s}(v, B) \geq \frac{2^{\frac{1}{s}+1}}{5}|v|^{\frac{1}{s}-1} \sum_{v_{k}>v}\left|v_{k}\right| \geq \frac{2^{\frac{1}{s}+1}(\alpha-(2-\alpha) \varepsilon)}{5}|v|^{\frac{1}{s}-\alpha} . \tag{8}
\end{equation*}
$$

In order to find an upperbound estimate for the integral, let's first prove
integral representations. First of all, we have

$$
\begin{array}{r}
\log |B(u+i v)|=\operatorname{Re} \int_{-\infty}^{0} \log \frac{w-i t}{w+i t} d n(t) \\
=R e\left(-2 i w \int_{-\infty}^{0} \frac{n(t)}{t^{2}+w^{2}} d t\right)=2 \operatorname{Im}\left(w \int_{-\infty}^{0} \frac{n(t)}{t^{2}+w^{2}} d t\right) . \tag{9}
\end{array}
$$

Taking $n(t)=n(-t)$ when $t \in[-1,1]$ and $n(t)=0$ when $|t|>1$, from (9) we obtain

$$
\begin{align*}
\log |B(u+i v)|=\operatorname{Re}(& \left.\int_{-\infty}^{0} \frac{n(t)}{t+i w} d t-\int_{-\infty}^{0} \frac{n(t)}{t-i w} d t\right) \\
& =\operatorname{Re}\left(\int_{-\infty}^{+\infty} \frac{n(t)}{t+i w} d t\right)=\int_{-1}^{1} \frac{(t-v) n(t)}{(t-v)^{2}+u^{2}} d t \tag{10}
\end{align*}
$$

Let $n(t)=n_{1}(t)+\varepsilon(t)$, where $|\varepsilon(t)|<1$. Then

$$
\begin{array}{r}
\int_{-1}^{1} \frac{(t-v) \varepsilon(t)}{(t-v)^{2}+u^{2}} d t \leq \int_{-1}^{v} \frac{v-t}{(t-v)^{2}+u^{2}} d t+\int_{v}^{1} \frac{t-v}{(t-v)^{2}+u^{2}} d t \\
\quad=\frac{1}{2} \log \frac{(1-v)^{2}+u^{2}}{(1+v)^{2}+u^{2}}
\end{array}
$$

If $|v|<1 / 2$,

$$
\begin{aligned}
& \frac{1}{2} \log \frac{(1-v)^{2}+u^{2}}{(1+v)^{2}+u^{2}}=\frac{1}{2} \log \left(1+\frac{4|v|}{(1+v)^{2}+u^{2}}\right) \\
& \quad \leq \frac{2|v|}{(1-|v|)^{2}+u^{2}} \leq \frac{2|v|}{\frac{1}{4}+u^{2}}
\end{aligned}
$$

Hence,

$$
\left(\int_{0}^{+\infty}\left(\int_{-1}^{1} \frac{(t-v) \varepsilon(t)}{(t-v)^{2}+u^{2}} d t\right)^{s} d u\right)^{1 / s} \leq 2|v|\left(\int_{0}^{+\infty} \frac{d u}{\left(\frac{1}{4}+u^{2}\right)^{s}}\right)^{1 / s}
$$

for $|v|<1 / 2$.
Since we can approximate any continuous function with step functions, then without loss of generality we can take $n(v)=|v|^{-\alpha}$ where $v_{0}<v<0$.

From the following formula in 10

$$
\int_{0}^{+\infty} \frac{t^{-\alpha}}{t^{2}+w^{2}} d t=\frac{\pi}{2 w^{1+\alpha} \cos \frac{\pi \alpha}{2}}, \quad 0<\alpha<1
$$

and from (9), we obtain

$$
\log |B(u+i v)|=\frac{\pi}{\cos \frac{\pi \alpha}{2}} \operatorname{Im}\left(w^{-\alpha}\right)=-\frac{\pi}{\cos \frac{\pi \alpha}{2}}|w|^{-\alpha} \sin (\alpha \arg w) .
$$

Hence, when $v \rightarrow 0$,

$$
\begin{aligned}
& m_{s}(v, B)=2^{\frac{1}{s}}\left(\int_{0}^{+\infty}(\log |B(u+i v)|)^{s}\right)^{1 / s} \\
& \leq 2^{\frac{1}{s}} \frac{\pi}{\cos \frac{\pi \alpha}{2}}\left(\int_{0}^{+\infty}\left(u^{2}+v^{2}\right)^{-\frac{\alpha s}{2}}\left|\sin \left(\alpha \arctan \frac{|v|}{u}\right)\right|^{s} d u\right)^{1 / s}+o(1) \\
& =2^{\frac{1}{\alpha}} \frac{\pi}{\cos \frac{\pi \alpha}{2}}|v|^{-\alpha+\frac{1}{s}}\left(\int_{0}^{+\infty}\left(x^{2}+1\right)^{-\frac{\alpha s}{2}}\left|\sin \left(\alpha \arctan \frac{1}{x}\right)\right|^{s} d x\right)^{1 / s}+o(1) .
\end{aligned}
$$

From here and (8) it follows that $m_{s}(v, B)$ is unbounded when $s>\alpha^{-1}$ and that it is bounded when $s \leq \alpha^{-1}$. Therefore, $q=\alpha^{-1}$.

Case 3. $q=+\infty$.
Let us take $n(v) \sim \log |v|^{-1}$ as $v \rightarrow 0$ and $n(v)=0$ as $v<-1$. First note that

$$
\begin{aligned}
|\log | \frac{w-w_{k}}{w-\bar{w}_{k}}\left|\left\lvert\,=\frac{1}{2} \log \frac{u^{2}+\left(v+v_{k}\right)^{2}}{u^{2}+\left(v-v_{k}\right)^{2}}\right.\right. & =\frac{1}{2} \log \left(1+\frac{4 v v_{k}}{u^{2}+\left(v-v_{k}\right)^{2}}\right) \\
& \leq \frac{2|v|\left|v_{k}\right|}{u^{2}+\left(v-v_{k}\right)^{2}} \leq \frac{2|v|\left|v_{k}\right|}{u^{2}} .
\end{aligned}
$$

From here it follows that when $u>1 / 4$,

$$
|\log | B(u+i v)\left|\left|\leq \frac{2|v|}{u^{2}} \sum_{k=1}^{+\infty}\right| v_{k}\right| .
$$

Hence,

$$
\begin{align*}
& m_{s}^{s}(v, B)=2 \int_{0}^{\frac{1}{4}}|\log | B(u+i v)\left\|^{s} d u+2 \int_{\frac{1}{4}}^{+\infty}|\log | B(u+i v)\right\|^{s} d u \\
& \leq\left. 2 \int_{0}^{\frac{1}{4}}|\log | B(u+i v)\right|^{s} d u+2^{s+1}|v|^{s}\left(\sum_{k=1}^{+\infty}\left|v_{k}\right|\right)^{s} \int_{\frac{1}{4}}^{+\infty} \frac{d u}{u^{2 s}} . \tag{11}
\end{align*}
$$

As in the previous case, without loss of generality, we can take $n(v)=$ $\log |v|^{-1},-1<v<0$. From (9) it follows that

$$
\log |B(u+i v)|=2 \operatorname{Im}\left(w \int_{-1}^{0} \frac{\log |t|^{-1}}{t^{2}+w^{2}} d t\right)=-2 \operatorname{Im}\left(w \int_{0}^{1} \frac{\log t}{t^{2}+w^{2}} d t\right) .
$$

From the formulas above and the following one (see [10])

$$
\int_{0}^{+\infty} \frac{\log t}{t^{2}+w^{2}} d t=\frac{\pi}{2 w} \log w, \quad|\arg w|<\frac{\pi}{2}
$$

we obtain

$$
\begin{aligned}
\log |B(u+i v)|=-2(\operatorname{Im} & \left.\left(w \int_{0}^{+\infty} \frac{\log t}{t^{2}+w^{2}} d t\right)-\operatorname{Im}\left(w \int_{1}^{+\infty} \frac{\log t}{t^{2}+w^{2}} d t\right)\right) \\
& =-2\left(\frac{\pi}{2} \operatorname{Im} \log w-\operatorname{Im}\left(w \int_{1}^{+\infty} \frac{\log t}{t^{2}+w^{2}} d t\right)\right)
\end{aligned}
$$

Then, from the last inequality it follows that

$$
\begin{equation*}
|\log | B(u+i v)\left|\left|\leq \pi \arctan \frac{|v|}{u}+2\right| w\right| \int_{1}^{+\infty} \frac{\log t}{\left|t^{2}+w^{2}\right|} d t, \quad u>0 \tag{12}
\end{equation*}
$$

Let now $u \in(0,1 / 4]$ and $|v| \in(0,1 / 4)$. Since $|w|<(2 \sqrt{2})^{-1}$, from (12) we obtain

$$
|\log | B(u+i v)\left|\left\lvert\, \leq \pi \arctan \frac{|v|}{u}+\frac{1}{\sqrt{2}} \int_{1}^{+\infty} \frac{\log t}{t^{2}-\frac{1}{2}} d t \leq \frac{\pi^{2}}{2}+\frac{1}{\sqrt{2}} \int_{1}^{+\infty} \frac{\log t}{t^{2}-\frac{1}{2}} d t\right.\right.
$$

Hence

$$
\begin{equation*}
\int_{0}^{\frac{1}{4}}|\log | B(u+i v)| |^{s} d u \leq \frac{1}{4}\left(\frac{\pi^{2}}{2}+\frac{1}{\sqrt{2}} \int_{1}^{+\infty} \frac{\log t}{t^{2}-\frac{1}{2}} d t\right)^{s} \tag{13}
\end{equation*}
$$

From (13) and (11) the proof of case 3 is complete.

References

[1] G. R. Maclane and L. A. Rubel, On the growth of Blaschke product, Canadian J. of. Math., 21(1969), no. 3, pp. 595-601.
[2] V. V. Eiko and A. A. Kondratyuk, Integral logarithmic means of Blaschke products, Mat. Zametki, 64(1998), no. 2, pp. 199-206.
[3] L. R. Sons, Zeros of functions with slow growth in the unit disc, Math. Japonica, 24(1979), no. 3, pp. 271-282.
[4] G. V. Mikayelyan, Study of the growth of Blaschke-Nevanlinna type products by method of Fourier transforms method, Izv. AN Arm SSR, Ser. Matem., 18(1983), no. 3, pp. 216-229.
[5] A. M. Djrbashyan, Functions of Blaschke type for a half-plane, DAN SSSR, 246(1979), no. 6, pp. 1295-1298.
[6] G. V. Mikayelyan and F. V. Hayrapetyan, On integral logaritmic means of Blaschke products for a half-plane, Proceedings of the Yerevan state university, 52(2018), no. 3, pp. 166-171.
[7] M. O. Ghirnyk and A. A. Kondratyuk, Blaschke products of given quantity index, Math. Stud., 2(1993), pp. 49-52.
[8] R. S. Galoyan, On the asymptotic properties of a function $\pi_{p}\left(z, z_{k}\right)$, DAN Arm SSR, 9(1974), no. 2, p. 65-71.
[9] A. M. Djrbashyan and G. V. Mikayelyan, Asymptotic behavior of Blaschke like products for the half-plane, Izv. AN Arm SSR, Ser. Matem., 21(1986), no. 2, pp. 142-162.
[10] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Elementary functions, M. Nauka, 1981.

Gagik Mikayelyan
Yerevan State University
1 Alex Manoogian St, 0025 Yerevan, Armenia.
gagik.mikaelyan@ysu.am
Feliks Hayrapetyan
Yerevan State University
1 Alex Manoogian St, 0025 Yerevan, Armenia.
feliks.hayrapetyan1995@gmail.com
Please, cite to this paper as published in Armen. J. Math., V. 12, N. 2(2020), pp. $1-8$

