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Classifying cubic symmetric graphs
of order 18p?
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Abstract. A s-arc in a graph is an ordered (s + 1)-tuple
(vo, 1, -+ ,vs_1,0s) of vertices such that v;_; is adjacent to v;
for 1 <i<sandwv,_q1# v forl <i<s. Agraph X is called
s-reqular if its automorphism group acts regularly on the set of
its s-arcs. In this paper, we classify all connected cubic s-regular
graphs of order 18p? for each s > 1 and each prime p.
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1 Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected,
and connected. For group theoretic concepts and notation not defined here,
we refer the reader to [I8, [30]. Given a positive integer n, we shall use the
symbol Z,, to denote the ring of residues modulo n as well as the cyclic group
of order n.

For a graph X, we use V(X), F(X), A(X), and Aut(X) to denote its
vertex set, edge set, arc set, and automorphism group, respectively. For u,
v € V(X), uv is the edge incident to v and v in X and Nx(u) is the set of
vertices adjacent to u in X. For a subgroup N of Aut(X), denote by Xy
the quotient graph of X corresponding to the orbits of IV, that is, the graph
having the orbits of NV as vertices with two orbits adjacent in Xy whenever
there is an edge between those orbits in X. B

A graph X is called a covering of a graph X with projection p : X — X if
there is a surjection p : V/(X) — V(X) such that p|n_(s) @ N5(9) = Nx(v)
is a bijection for any vertex v € V(X) and o € p~'(v). A covering X
of X with a projection p is said to be regular (or k-covering ) if there is
a semiregular subgroup K of the automorphism group Aut()? ) such that
graph X is isomorphic to the quotient graph X K, say by h, and the quotient
map X — X is the composition ph of p and h. If X is connected, K
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becomes the covering transformation group. The fibre of an edge or vertex
is its preimage under p. An automorphism of X is said to be fibre-preserving
if it maps a fibre to a fibre, while every covering transformation maps a fibre
onto itself. All fibre-preserving automorphisms from a group are called the
fibre-preserving group.

Let X be a graph and K be a finite group. We use a™! to denote the
reverse arc of an arc a. A wvoltage assignment (or, K-voltage assignment) of
X is a function ¢ : A(X) — K with the property that ¢(a~!) = ¢(a)”" for
each arc a € A(X). The values of ¢ are called voltages, and K is called
the wvoltage group. The graph X x4 K derived from a voltage assignment
¢ A(X) — K has vertex set V(X) x K and edge set F(X) x K, so that an
edge (e, g) of X x, K joins a vertex (u, g) to (v, ¢(a)g) for a = (u,v) € A(X)
and g € K, where e = uw.

Clearly, the derived graph X x, K is a covering of X with the first
coordinate projection p : X x4, K — X, which is called the natural projection.
By defining (u,g')? := (u,g'g) for any g € K and (u,g') € V(X x4 K), K
becomes a subgroup of Aut(X x,K') which acts semiregularly on V(X x 4, K).
Therefore, X x4 K can be viewed as a K-covering. Conversely, each regular
covering X of X with a covering transformation group K can be derived
from a K-voltage assignment. Given a spanning tree 71" of the graph X, a
voltage assignment ¢ is said to be T-reduced if the voltages on the tree arcs
are the identity. Gross and Tucker [I9] showed that every regular covering
X of a graph X can be derived from a T-reduced voltage assignment ¢ with
respect to an arbitrary fixed spanning tree 7" of X.

Let G be a finite group and S be a subset of G such that 1 ¢ S and
S =871 ={sYs € S}. The Cayley graph Cay(G,S) on G with respect
to S is defined to have vertex set G and edge set {gh| g,h € G,gh™! € S}.
A Cayley graph Cay(G,S) is connected if and only if S generates G. It
is well known that Aut(Cay(G, S)) contains the right reqular representation
R(G) of G, the acting group of G by right multiplication, which is regular on
vertices. A Cayley graph Cay(G, S) is said to be normal if R(G) is normal
in Aut(Cay(G,S)). A graph X is isomorphic to a Cayley graph on G if and
only if Aut(X) has a subgroup isomorphic to G, acting regularly on vertices
(see [0, Lemma 16.3]).

An s-arc in a graph X is an ordered (s + 1)-tuple (vg,v1,...,vs_1,vs) Of
vertices of X such that v;_; is adjacent to v; for 1 < i < s and v;_1 # v;; for
1 <i<s. Agraph X is said to be s-arc-transitive if Aut(X) is transitive on
the set of s-arcs in X. In particular, O-arc-transitive means vertez-transitive,
and l-arc-transitive means arc-transitive or symmetric. A symmetric graph
X is said to be s-regular if Aut(X) acts regularly on the set of s-arcs in X.
Tutte [28], 29] showed that every cubic symmetric graph is s-regular for some
1 <s<5.

Following the pionerring article of Tutte [28], cubic symmetric graphs
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have been extensively studied over decades by many authors. Most of these
works have been focused on classification results and constructions of infi-
nite families. For example, Djokovi¢ and Miller [10] constructed an infinite
family of cubic 2-regular graphs, and Conder and Preager [8] constructed
two infinite families of cubic s-regular graphs for s = 2 or 4. Marusi¢ and
Pisanski [22] classifed cubic s-regular Cayley graphs on the dihedral groups.
Feng and Kwak [15] classified cubic symmetric graphs of order a small num-
ber times a prime or a prime square. Following this, classifications of cubic
s-regular graphs of orders 4p’, 6p°, 8p’, 10p*, 16p*, 12p, 22p*, 36p® for i = 1,2
and prime integer p were presented in [12] 16} B, 25] [T 27, 4]. Furthermore,
cubic s-regular graphs of orders 2p3, 14p, 6p?, 28p, and 4m where m is an
odd integer were classified in [I7, 24] 2 20} [7]. In this paper, we obtain a
classification of cubic symmetric graphs of order 18p?.

2 Preliminaries

Let G be a group. The center Z(G) is the set of elements which commute
with every element of G, and it is a normal subgroup of G. If a,b € G, the
commutator of a and b, denoted by [a,b], is [a,b] = aba=*b~'. The derived
subgroup of G, denoted by G', is the subgroup of G generated by all the
commutators.

The following proposition is a straightforward consequence of Theorems
10.1.5 and 10.1.6 of [26].

Proposition 1 Let GG be a finite group and p be a prime. If G has an abelian
Sylow p-subgroup, then p does not divide |G' N Z(G)].

By [21, Theorem 9], we have the following proposition.

Proposition 2 Let X be a connected symmetric graph of prime valency and
G be an s-arc-transitive subgroup of Aut(X) for some s > 1. If a normal
subgroup N of G has more than two orbits, then it is semireqular, and G /N
is an s-arc-transitive subgroup of Aut(Xy). Furthermore, X is a regular
covering of Xy with the covering transformation group N.

Let X = Cay(G, S) be a Cayley graph on a group G with respect to a
subset S of G. Set A =Aut(X) and Aut(G, S)= {a € Aut(G)|5* = S}.

Proposition 3 [31, Proposition 1.5] The Cayley graph X is normal if and
only if Ay =Aut(G,S) where Ay is the stabilizer of the vertezr 1 € V(X) =G
in A.

The Pappus graph Fig is illustrated in Figure [I} It is known that Fig is
the unique connected cubic symmetric graph of order 18 (see [6]). Let T" be
a spanning tree of Fig, as shown by dart lines in Figure [T}
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Figure 1: The Pappus graph

Let p > 7 be a prime and EFg, = X ><¢Z12, where the voltage assignment
¢ AX) — Zg is defined by ¢ = 0 on T and ¢ = (1,0), (0,1), (0,—1), (0, 1),
(0,-1),(1,1),(0,0),(1,0),(0,0), and (1,0) on the cotree arcs (1,2), (2,3),
(3,4), (4,5), (5,6), (1,7), (7,14), (13,8), (14,9), and (11, 18), respectively.
By [23, Theorem 3.1], we have the following lemma.

Lemma 1 Let p > 7 be a prime and let X be a connected Zﬁ-covering
of the graph Fig whose fibre-preserving group is arc-transitive. Then X is
isomorphic to the 2-reqular graph EFigy.

Let p be a prime. It is easy to check that the equation
?+r+1=0 (1)

has no solution in the ring Zs,» for p = 3. The following result determines
the solutions of equation [I| in Zj,2 when p # 3.

Lemma 2 Let p # 3 be a prime. Then there exists an element k € Zgye
solving equatz’on if and only iof k is an element of order 3 in Lo

Proof. Suppose first that k € Zs,2 such that k* + k+1 = 0. Then k # 1,
and since k% — 1 = (k — 1)(k* + k + 1) = 0, it follows that k is an element
of order 3 in Z;pQ.

Conversely, suppose that k is an element of order 3 in Lo Then k # 1
and k* = 1. It follows that (k—1)(k*+k+1) = 0. If £ —1 is divisible by 3,
then k%4 k -+ 1 is also divisible by 3. Thus, in order to prove k? +k+1 = 0,
it suffices to show (k—1, p) = 1. Assume that k— 1 is divisible by p, that is,
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k = 1(mod p). Then k* + k + 1 = 3 (mod p), and since p # 3, we conclude
that k2 + k + 1 is coprime with p, which implies that k = 1 (mod p?). Let
k =tp*+ 1. Then k% = t3p° + 1, and since k% = 1, we have ¢t = 0(mod 3).
Hence k = 1, a contradiction. This completes the proof of lemma. []

Let p be a prime such that p =1 (mod 3). Since Ly = Loy X Lp(p-1), by

Lemma , there are exactly two elements of order 3, say & and k? in Lo,

solving equation . Set V(K33) = {a,b,c,x,y,z} to be the vertex set of
the complete bipartite graph K33 with partite sets {a, b,c} and {x,y,z}.
The graphs C'Fig2 and C'Fgp are defined to have the same vertex set
V(CFigpe) = V(CFig2) = V(K33) X Zs,e and edge sets
E<CF18P2) :{{(a7 i), (Xv Z)}, {<a7 i)? (Y7 Z)}, {<a7 i)? (Z7 Z)}7

{(b,i), (x,i+k+1)},{(b,i), (v, 1)}, {(b,i), (z,i + 1)},

{<C>i)’ (X7i - 1)}’ {(C> i)’ (Y?i — k- 1)}7 {(C>i)v (Z>Z)}’2 S Z3p2}’

E(CFig2) ={{(a,1), (x,0)}, {(a,9), (v, 9)}, {(a,9), (z,9)},

{(b i), (x,i+ &+ 1)}, {(b.9), (y. )}, {(b,9), (z,i + 1)},

{(C,i), (X’i - 1)}7 {(C,i), (Yai - kQ - 1)}7 {(Cv i)? (Z’ Z)}}Z S Z3p2}7
respectively. The graph ﬁlgzﬁ is obtained by replacing k& with k2 in each

edge of CFygpe. It is easy to see that C'Figpe and ngpz are cubic and
bipartite.

Lemma 3 The graphs CFigy and ngpz are isomorphic.
Proof. Let p be a prime such that p = umod 3). To show CFigpe =
CF1gp2, we define a map a from CFigpe to C'Fygye by
(a,i) — (a, ki), (b,i) — (c, ki), (c,i) —> (b, ki),
(x,1) — (x, ki), (y,i) —> (z,ki), (z,1) —> (y, ki),
where ¢ € Zg2. Clearly,
NCFlspz ((b7 Z)) = {(Y7 Z‘)v (X7i +k+ 1)7 (Z7i + 1)}’
N, o (b)) = Negs_, (e, ki)
= {<X7 ki — 1)7 (Y7 ki—k* — 1)7 (Zv kﬂ')}
By Lemma [2| % +k +1 = 0. Using this property, one can easily show that
[Ner,,. (b, i))]* = Neg,_, ((b,4)%).
Similarly,
[Ner,,. ((0,0))]* = Neg

18p2

18p2

((u,8)%),

for u = a, c. It follows that a is an isomorphism from CFigpe to ngpz,
because the graphs are bipartite. [

18p2
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In view of [I3, Theorem 1.1] and Lemmas [2| and 3| we have the following
lemma.

Lemma 4 Let p be a prime and let X be a connected Zsy2-covering of the
complete bipartite graph Ks3 whose fibre-preserving group is arc-transitive.
Thenp=1 (mod 3), and X is isomorphic to the 1-regular graph CFigy.

3 Main result

In this section, we shall determine all connected cubic symmetric graphs of
order 18p? for each prime p. We start with the following useful lemma.

Lemma 5 Let p > 7 be a prime and let X be a connected cubic symmetric
graph of order 18p?. Then Aut(X ) has a normal Sylow p-subgroup.

Proof. Let X be a cubic graph satisfying the assumptions and let A =
Aut(X). Since X is symmetric, by Tutte [28], X is s-regular for some
1 < s <5. Thus, |[A| =2%-3%.p?. Let N be a minimal normal subgroup
of A.

Suppose that N is unsolvable. Then N = T'xT x ... x T = T* where T is
a non-abelian simple group. Since p > 7 and A is a {2, 3, p}-group, by [18,
pp. 12-14] and [9], T is one of the following groups: PSL(2,7), PSL(2,8),
PSL(2,17), and PSL(3,3) with orders 2% -3 .7, 2%.32.7, 2%.3%.17, and
24 .33 .13, respectively. Since 2° does not divide |A|, one has k = 1, and
hence p? 1 |N|. Tt follows that N has more than two orbits on V(X). By
Proposition , N is semiregular on V(X), which implies that |V |‘18p2, a
contradiction. Thus, N is solvable.

For any prime divisor ¢ of |A|, let O,(A) be the maximal normal ¢-
subgroup of A. By Proposition [ O4(A) is semiregular on V(X), and the
quotient graph Xo,_(4) is a cubic symmetric graph with A/O,(A) as an arc-
transitive subgroup of Aut(Xo,(4)). The semiregularity of O,(A) implies
that |Og(A)|[18p%. If O5(A) # 1, then Oa(A) = Z,, and hence Xo,(4) has
odd order and valency 3, a contradiction. Thus, Os(A) = 1, and by the
solvability of N, either O3(A) # 1 or O,(A) # 1. Let O3(A) # 1. Then
|05(A)| =3 or 9, and so Xo,(a) is a cubic symmetric graph of order 6p* or
2p?. Let M/O3(A) be a minimal normal subgroup of A/O3(A). Then, by the
same argument as above, one may show that M /O3(A) is solvable and hence
elementary abelian. Since O3(A/O3(A)) =1, M/O3(A) is a 2- or p-group.
For the former by Proposition [2| the quotient graph X, would have be a
cubic graph of odd order, a contradiction. Thus, M/O3(A) is a p-group.
Since p > 7, by Sylow Theorem, M has a normal Sylow p-subgroup which
is characteristic in M and hence normal in A because M <1 A. Therefore,

Op(4) # L.
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Q O,(A). To prove the lemma, we only need to show that
|Q\ = p* Suppose to the contrary that |Q] = p. Let C = Ca(Q).
Then Q < Z(C). By Proposition [I] p { |C"()Z(C)|, which implies that
C'NQ = 1. This forces p* 1 |C’], and hence C” has more than two orbits
on V(X). Note that C” is characteristic in C, and C' < A. Then C' < A.
By Proposition , (" is semiregular on V(X), and the quotient graph Xe
is a cubic symmetric graph. Therefore, we can conclude that |C’ |‘9p. Let
P be a Sylow p-subgroups of A. As P is abelian, P < C, and so PC"/C’
is a sylow p-subgroup of C'/C’. Note that C'/C" is abelian. Then PC’/C’
is characteristic in C'/C’, and since C/C" Q9 A/C", we have PC'/C" < A/C".
Hence PC’" <1 A. Clearly, |PC’| = tp* where t | 9. Since p > 7, P is normal
in PC’. This implies that P is characteristic in PC’. Thus, P <1 A, which is
contrary to |Q| = p. O

We are now ready to prove the main result of this paper.

Theorem 1 Let X be a connected cubic symmetric graph of order 18p?
where p is a prime. Then X s 1-, 2-, or 3-reqular. Furthermore,

(i) X is 1-regular if and only if X is isomorphic to one of the graphs Figap
and CFig,> where p =1 (mod 3);

(1) X is 2-reqular if and only if X is isomorphic to one of the graphs
F74, F162A; F450, cmd EF18p2 where y% Z 7,‘

(iii) X is 3-regular if and only if X is isomorphic to the graph Figc.

Proof. Let X be a connected cubic symmetric graph of order 18p? and
let A =Aut(X). Then |A] = 2°- 3% p? for some integer 1 < s < 5. For
p = 2 or 5, by [0], there is only one connected cubic symmetric graph of
order 18p?, which is the 2-regular graph Fig,2, and for p = 3, there are three
connected cubic symmetric graphs of order 18 x 32, which are the 1-regular
graph Figop, the 2-regular graph Figo4, and the 3-regular graph Figac. Thus,
we may assume that p > 7. Let P be a Sylow p-subgroup of A. Then by
Lemma , P is normal in A. Since |P| = p*, we have P = Z2 or Z,»

Suppose first that P = ZZQ,. Then by Proposition , X isa Zi—covering
of the Pappus graph, and since P <1 A, the symmetry of X means that the
fibre-preserving group is arc-transitive. By Lemma , X = EFigy because
p=T.

Now Suppose that p = Z,.. Then by Proposition , the quotient graph
Xp is a cubic symmetric graph, and A/P is an arc-transitive subgroup of
Aut(Xp). Let C = Cy(P). Clearly, P < C. Suppose that P = C. Then by
[26, Theorem 1.6.13], A/P is isomorphic to a subgroup of Aut(P) = Z,,_1),
which implies that A/P is abelian. Since A/P is transitive on V(Xp), it
follows by [30, Proposition 4.4] that A/P is regular on V' (Xp). Consequently,
|A| = 18p?, which is impossible. Thus, P < C. Let M/P be a minimal
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normal subgroup of A/P contained in C'/P. Since |A/P| = 2% - 33, by [26,
Theorem 8.5.3], M/ P is solvable and hence elementary abelian 2- or 3-group.
If M/P is a 2-group, then by Proposition , Xy is a cubic symmetric graph
of odd order, a contradiction. Thus, M/P is a 3-group. Let @ be a Sylow
3-subgroup of M. Then M = PQ, implying M = P x () because Q < C.
Hence, @) is characteristic in M, and since M <1 A, we have ) < A. Again,
by Proposition , @ is semiregular on V(X). Note that @ is isomorphic to
M/P, and M/P is elementary abelian. Then by the semiregularity of @), we
have Q = Zsz or Z3.

Let Q = Z3. Then, as above, the quotient graph X is a cubic symmetric
graph order 2p?, and A/Q is an arc-transitive subgroup of Aut(Xgp). Note
that |[A/Q| = 2°-3-p?. Then the Sylow p-subgroup PQ/Q of A/Q is also a
Sylow p-subgroup of Aut(X¢), implying the Sylow p-subgroups of Aut(Xg)
are cyclic. Since p > 7, by [1I, Lemma 3.4] and [14, Theorem 3.5], X
is a normal cubic 1-regular Cayley graph on dihedral group Dy,. Thus,
A/Q =Aut(Xg), and A has a normal subgroup G, such that G/Q acts
regularly on V(Xg). Consequently, G is regular on V(X), and hence X is a
normal cubic 1-regular Cayley graph on G. Let X = Cay(G, S). Since X has
valency 3, S contains at least one involution. By Proposition 3| Aut(G, S) is
transitive on .S, which implies that S consists of three involutions, and by the
connectivity of X, G can be generated by three involutions. Clearly, M < G.
Since G/Q = Dy,2, we conclude that G = Z3 X Dyy2 or Zz x Dg2, which is
impossible because in each case G can not be generated by involutions.

Thus @ = Z3, and so M = Zs,2. By Proposition , X is a Zgy2-covering
of the bipartite graph K33, and the normality of M implies that the fibre-
preserving group is the automorphism group A of X, so it is arc-transitive.
By Lemma {4} X is isomorphic to C'Fig,2 where p =1 (mod 3). O
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