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Classifying cubic symmetric graphs

of order 18p2

M. Alaeiyan∗, M. K. Hosseinipoor, and M. Akbarizadeh

Abstract. A s-arc in a graph is an ordered (s + 1)-tuple
(v0, v1, · · · , vs−1, vs) of vertices such that vi−1 is adjacent to vi
for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i < s. A graph X is called
s-regular if its automorphism group acts regularly on the set of
its s-arcs. In this paper, we classify all connected cubic s-regular
graphs of order 18p2 for each s ≥ 1 and each prime p.
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1 Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected,
and connected. For group theoretic concepts and notation not defined here,
we refer the reader to [18, 30]. Given a positive integer n, we shall use the
symbol Zn to denote the ring of residues modulo n as well as the cyclic group
of order n.

For a graph X, we use V (X), E(X), A(X), and Aut(X) to denote its
vertex set, edge set, arc set, and automorphism group, respectively. For u,
v ∈ V (X), uv is the edge incident to u and v in X and NX(u) is the set of
vertices adjacent to u in X. For a subgroup N of Aut(X), denote by XN

the quotient graph of X corresponding to the orbits of N , that is, the graph
having the orbits of N as vertices with two orbits adjacent in XN whenever
there is an edge between those orbits in X.

A graph X̃ is called a covering of a graph X with projection ρ : X̃ → X if
there is a surjection ρ : V (X̃) → V (X) such that ρ|N

X̃
(ṽ) : NX̃(ṽ) → NX(v)

is a bijection for any vertex v ∈ V (X) and ṽ ∈ ρ−1(v). A covering X̃
of X with a projection ρ is said to be regular (or k-covering ) if there is

a semiregular subgroup K of the automorphism group Aut(X̃) such that

graph X is isomorphic to the quotient graph X̃K , say by h, and the quotient
map X̃ → X̃K is the composition ρh of ρ and h. If X̃ is connected, K
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becomes the covering transformation group. The fibre of an edge or vertex
is its preimage under ρ. An automorphism of X̃ is said to be fibre-preserving
if it maps a fibre to a fibre, while every covering transformation maps a fibre
onto itself. All fibre-preserving automorphisms from a group are called the
fibre-preserving group.

Let X be a graph and K be a finite group. We use a−1 to denote the
reverse arc of an arc a. A voltage assignment (or, K-voltage assignment) of
X is a function φ : A(X) → K with the property that φ(a−1) = φ(a)−1 for
each arc a ∈ A(X). The values of φ are called voltages, and K is called
the voltage group. The graph X ×φ K derived from a voltage assignment
φ : A(X)→ K has vertex set V (X)×K and edge set E(X)×K, so that an
edge (e, g) of X×φK joins a vertex (u, g) to (v, φ(a)g) for a = (u, v) ∈ A(X)
and g ∈ K, where e = uv.

Clearly, the derived graph X ×φ K is a covering of X with the first
coordinate projection ρ : X×φK → X, which is called the natural projection.
By defining (u, g

′
)g := (u, g

′
g) for any g ∈ K and (u, g

′
) ∈ V (X ×φ K), K

becomes a subgroup of Aut(X×φK) which acts semiregularly on V (X×φK).
Therefore, X ×φK can be viewed as a K-covering. Conversely, each regular

covering X̃ of X with a covering transformation group K can be derived
from a K-voltage assignment. Given a spanning tree T of the graph X, a
voltage assignment φ is said to be T-reduced if the voltages on the tree arcs
are the identity. Gross and Tucker [19] showed that every regular covering

X̃ of a graph X can be derived from a T -reduced voltage assignment φ with
respect to an arbitrary fixed spanning tree T of X.

Let G be a finite group and S be a subset of G such that 1 /∈ S and
S = S−1 = {s−1|s ∈ S}. The Cayley graph Cay(G,S) on G with respect
to S is defined to have vertex set G and edge set {gh| g, h ∈ G, gh−1 ∈ S}.
A Cayley graph Cay(G,S) is connected if and only if S generates G. It
is well known that Aut(Cay(G,S)) contains the right regular representation
R(G) of G, the acting group of G by right multiplication, which is regular on
vertices. A Cayley graph Cay(G,S) is said to be normal if R(G) is normal
in Aut(Cay(G,S)). A graph X is isomorphic to a Cayley graph on G if and
only if Aut(X) has a subgroup isomorphic to G, acting regularly on vertices
(see [5, Lemma 16.3]).

An s-arc in a graph X is an ordered (s+ 1)-tuple (v0, v1, . . . , vs−1, vs) of
vertices of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for
1 ≤ i < s. A graph X is said to be s-arc-transitive if Aut(X) is transitive on
the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive,
and 1-arc-transitive means arc-transitive or symmetric. A symmetric graph
X is said to be s-regular if Aut(X) acts regularly on the set of s-arcs in X.
Tutte [28, 29] showed that every cubic symmetric graph is s-regular for some
1 ≤ s ≤ 5.

Following the pionerring article of Tutte [28], cubic symmetric graphs
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have been extensively studied over decades by many authors. Most of these
works have been focused on classification results and constructions of infi-
nite families. For example, Djoković and Miller [10] constructed an infinite
family of cubic 2-regular graphs, and Conder and Preager [8] constructed
two infinite families of cubic s-regular graphs for s = 2 or 4. Marušič and
Pisanski [22] classifed cubic s-regular Cayley graphs on the dihedral groups.
Feng and Kwak [15] classified cubic symmetric graphs of order a small num-
ber times a prime or a prime square. Following this, classifications of cubic
s-regular graphs of orders 4pi, 6pi, 8pi, 10pi, 16pi, 12pi, 22pi, 36pi for i = 1, 2
and prime integer p were presented in [12, 16, 3, 25, 1, 27, 4]. Furthermore,
cubic s-regular graphs of orders 2p3, 14p, 6p3, 28p, and 4m where m is an
odd integer were classified in [17, 24, 2, 20, 7]. In this paper, we obtain a
classification of cubic symmetric graphs of order 18p2.

2 Preliminaries

Let G be a group. The center Z(G) is the set of elements which commute
with every element of G, and it is a normal subgroup of G. If a, b ∈ G, the
commutator of a and b, denoted by [a, b], is [a, b] = aba−1b−1. The derived
subgroup of G, denoted by G

′
, is the subgroup of G generated by all the

commutators.
The following proposition is a straightforward consequence of Theorems

10.1.5 and 10.1.6 of [26].

Proposition 1 Let G be a finite group and p be a prime. If G has an abelian
Sylow p-subgroup, then p does not divide |G′ ∩ Z(G)|.

By [21, Theorem 9], we have the following proposition.

Proposition 2 Let X be a connected symmetric graph of prime valency and
G be an s-arc-transitive subgroup of Aut(X) for some s ≥ 1. If a normal
subgroup N of G has more than two orbits, then it is semiregular, and G/N
is an s-arc-transitive subgroup of Aut(XN). Furthermore, X is a regular
covering of XN with the covering transformation group N .

Let X = Cay(G,S) be a Cayley graph on a group G with respect to a
subset S of G. Set A =Aut(X) and Aut(G,S)= {α ∈ Aut(G)|Sα = S}.

Proposition 3 [31, Proposition 1.5] The Cayley graph X is normal if and
only if A1 =Aut(G,S) where A1 is the stabilizer of the vertex 1 ∈ V (X) = G
in A.

The Pappus graph F18 is illustrated in Figure 1. It is known that F18 is
the unique connected cubic symmetric graph of order 18 (see [6]). Let T be
a spanning tree of F18, as shown by dart lines in Figure 1.
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Figure 1: The Pappus graph

Let p ≥ 7 be a prime and EF18p2 = X×φZ2
p where the voltage assignment

φ : A(X)→ Z2
p is defined by φ = 0 on T and φ = (1, 0), (0, 1), (0,−1), (0, 1),

(0,−1), (1, 1), (0, 0), (1, 0), (0, 0), and (1, 0) on the cotree arcs (1, 2), (2, 3),
(3, 4), (4, 5), (5, 6), (1, 7), (7, 14), (13, 8), (14, 9), and (11, 18), respectively.
By [23, Theorem 3.1], we have the following lemma.

Lemma 1 Let p ≥ 7 be a prime and let X be a connected Z2
p-covering

of the graph F18 whose fibre-preserving group is arc-transitive. Then X is
isomorphic to the 2-regular graph EF18p2.

Let p be a prime. It is easy to check that the equation

x2 + x+ 1 = 0 (1)

has no solution in the ring Z3p2 for p = 3. The following result determines
the solutions of equation 1 in Z3p2 when p 6= 3.

Lemma 2 Let p 6= 3 be a prime. Then there exists an element k ∈ Z3p2

solving equation 1 if and only if k is an element of order 3 in Z∗3p2.

Proof. Suppose first that k ∈ Z3p2 such that k2 + k + 1 = 0. Then k 6= 1,
and since k3 − 1 = (k − 1)(k2 + k + 1) = 0, it follows that k is an element
of order 3 in Z∗3p2 .

Conversely, suppose that k is an element of order 3 in Z∗3p2 . Then k 6= 1

and k3 = 1. It follows that (k− 1)(k2 + k+ 1) = 0. If k− 1 is divisible by 3,
then k2 + k+ 1 is also divisible by 3. Thus, in order to prove k2 + k+ 1 = 0,
it suffices to show (k−1, p) = 1. Assume that k−1 is divisible by p, that is,
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k ≡ 1(mod p). Then k2 + k + 1 ≡ 3 (mod p), and since p 6= 3, we conclude
that k2 + k + 1 is coprime with p, which implies that k ≡ 1 (mod p2). Let
k = tp2 + 1. Then k3 = t3p6 + 1, and since k3 = 1, we have t ≡ 0(mod 3).
Hence k = 1, a contradiction. This completes the proof of lemma. �

Let p be a prime such that p ≡ 1 (mod 3). Since Z∗3p2 ∼= Z2×Zp(p−1), by

Lemma 2, there are exactly two elements of order 3, say k and k2 in Z∗3p2 ,
solving equation 1. Set V (K3,3) = {a,b, c,x,y, z} to be the vertex set of
the complete bipartite graph K3,3 with partite sets {a,b, c} and {x,y, z}.
The graphs CF18p2 and CF 18p2 are defined to have the same vertex set
V (CF18p2) = V (CF 18p2) = V (K3,3)× Z3p2 and edge sets

E(CF18p2) ={{(a, i), (x, i)}, {(a, i), (y, i)}, {(a, i), (z, i)},
{(b, i), (x, i+ k + 1)}, {(b, i), (y, i)}, {(b, i), (z, i+ 1)},
{(c, i), (x, i− 1)}, {(c, i), (y, i− k − 1)}, {(c, i), (z, i)}

∣∣i ∈ Z3p2},

E(CF 18p2) ={{(a, i), (x, i)}, {(a, i), (y, i)}, {(a, i), (z, i)},
{(b, i), (x, i+ k2 + 1)}, {(b, i), (y, i)}, {(b, i), (z, i+ 1)},
{(c, i), (x, i− 1)}, {(c, i), (y, i− k2 − 1)}, {(c, i), (z, i)}

∣∣i ∈ Z3p2},

respectively. The graph CF 18p2 is obtained by replacing k with k2 in each
edge of CF18p2 . It is easy to see that CF18p2 and CF 18p2 are cubic and
bipartite.

Lemma 3 The graphs CF18p2 and CF 18p2 are isomorphic.

Proof. Let p be a prime such that p ≡ 1 (mod 3). To show CF18p2
∼=

CF 18p2 , we define a map α from CF18p2 to CF 18p2 by

(a, i) 7−→ (a, ki), (b, i) 7−→ (c, ki), (c, i) 7−→ (b, ki),
(x, i) 7−→ (x, ki), (y, i) 7−→ (z, ki), (z, i) 7−→ (y, ki),

where i ∈ Z3p2 . Clearly,

NCF18p2
((b, i)) = {(y, i), (x, i+ k + 1), (z, i+ 1)},

NCF 18p2
((b, i)α) = NCF 18p2

((c, ki))

= {(x, ki− 1), (y, ki− k2 − 1), (z, ki)}.
By Lemma 2, k2 + k + 1 = 0. Using this property, one can easily show that

[NCF18p2
((b, i))]α = NCF 18p2

((b, i)α).

Similarly,

[NCF18p2
((u, i))]α = NCF 18p2

((u, i)α),

for u = a, c. It follows that α is an isomorphism from CF18p2 to CF 18p2 ,
because the graphs are bipartite. �
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In view of [13, Theorem 1.1] and Lemmas 2 and 3, we have the following
lemma.

Lemma 4 Let p be a prime and let X be a connected Z3p2-covering of the
complete bipartite graph K3,3 whose fibre-preserving group is arc-transitive.
Then p ≡ 1 (mod 3), and X is isomorphic to the 1-regular graph CF18p2.

3 Main result

In this section, we shall determine all connected cubic symmetric graphs of
order 18p2 for each prime p. We start with the following useful lemma.

Lemma 5 Let p ≥ 7 be a prime and let X be a connected cubic symmetric
graph of order 18p2. Then Aut(X) has a normal Sylow p-subgroup.

Proof. Let X be a cubic graph satisfying the assumptions and let A =
Aut(X). Since X is symmetric, by Tutte [28], X is s-regular for some
1 ≤ s ≤ 5. Thus, |A| = 2s · 33 · p2. Let N be a minimal normal subgroup
of A.

Suppose that N is unsolvable. Then N = T ×T × ...×T = T k where T is
a non-abelian simple group. Since p ≥ 7 and A is a {2, 3, p}-group, by [18,
pp. 12-14] and [9], T is one of the following groups: PSL(2, 7), PSL(2, 8),
PSL(2, 17), and PSL(3, 3) with orders 23 · 3 · 7, 23 · 32 · 7, 24 · 32 · 17, and
24 · 33 · 13, respectively. Since 26 does not divide |A|, one has k = 1, and
hence p2 - |N |. It follows that N has more than two orbits on V (X). By
Proposition 2, N is semiregular on V (X), which implies that |N |

∣∣18p2, a
contradiction. Thus, N is solvable.

For any prime divisor q of |A|, let Oq(A) be the maximal normal q-
subgroup of A. By Proposition 2, Oq(A) is semiregular on V (X), and the
quotient graph XOq(A) is a cubic symmetric graph with A/Oq(A) as an arc-
transitive subgroup of Aut(XOq(A)). The semiregularity of Oq(A) implies
that |Oq(A)|

∣∣18p2. If O2(A) 6= 1, then O2(A) ∼= Z2, and hence XO2(A) has
odd order and valency 3, a contradiction. Thus, O2(A) = 1, and by the
solvability of N , either O3(A) 6= 1 or Op(A) 6= 1. Let O3(A) 6= 1. Then
|O3(A)| = 3 or 9, and so XO3(A) is a cubic symmetric graph of order 6p2 or
2p2. Let M/O3(A) be a minimal normal subgroup of A/O3(A). Then, by the
same argument as above, one may show that M/O3(A) is solvable and hence
elementary abelian. Since O3(A/O3(A)) = 1, M/O3(A) is a 2- or p-group.
For the former by Proposition 2, the quotient graph XM would have be a
cubic graph of odd order, a contradiction. Thus, M/O3(A) is a p-group.
Since p ≥ 7, by Sylow Theorem, M has a normal Sylow p-subgroup which
is characteristic in M and hence normal in A because M C A. Therefore,
Op(A) 6= 1.
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Let Q := Op(A). To prove the lemma, we only need to show that
|Q| = p2. Suppose to the contrary that |Q| = p. Let C = CA(Q).
Then Q ≤ Z(C). By Proposition 1, p - |C ′

⋂
Z(C)|, which implies that

C ′
⋂
Q = 1. This forces p2 - |C ′|, and hence C ′ has more than two orbits

on V (X). Note that C ′ is characteristic in C, and C E A. Then C ′ C A.
By Proposition 2, C ′ is semiregular on V (X), and the quotient graph XC′

is a cubic symmetric graph. Therefore, we can conclude that |C ′|
∣∣9p. Let

P be a Sylow p-subgroups of A. As P is abelian, P < C, and so PC ′/C ′

is a sylow p-subgroup of C/C ′. Note that C/C ′ is abelian. Then PC ′/C ′

is characteristic in C/C ′, and since C/C ′ EA/C ′, we have PC ′/C ′ EA/C ′.
Hence PC ′ C A. Clearly, |PC ′| = tp2 where t | 9. Since p ≥ 7, P is normal
in PC ′. This implies that P is characteristic in PC ′. Thus, P CA, which is
contrary to |Q| = p. �

We are now ready to prove the main result of this paper.

Theorem 1 Let X be a connected cubic symmetric graph of order 18p2

where p is a prime. Then X is 1-, 2-, or 3-regular. Furthermore,

(i) X is 1-regular if and only if X is isomorphic to one of the graphs F162B

and CF18p2 where p ≡ 1 (mod 3);

(ii) X is 2-regular if and only if X is isomorphic to one of the graphs
F74, F162A, F450, and EF18p2 where p ≥ 7;

(iii) X is 3-regular if and only if X is isomorphic to the graph F162C.

Proof. Let X be a connected cubic symmetric graph of order 18p2 and
let A =Aut(X). Then |A| = 2s · 33 · p2 for some integer 1 ≤ s ≤ 5. For
p = 2 or 5, by [6], there is only one connected cubic symmetric graph of
order 18p2, which is the 2-regular graph F18p2 , and for p = 3, there are three
connected cubic symmetric graphs of order 18× 32, which are the 1-regular
graph F162B, the 2-regular graph F162A, and the 3-regular graph F162C . Thus,
we may assume that p ≥ 7. Let P be a Sylow p-subgroup of A. Then by
Lemma 5, P is normal in A. Since |P | = p2, we have P ∼= Z2

p or Zp2 .
Suppose first that P ∼= Z2

p. Then by Proposition 2, X is a Z2
p-covering

of the Pappus graph, and since P C A, the symmetry of X means that the
fibre-preserving group is arc-transitive. By Lemma 3, X ∼= EF18p2 because
p ≥ 7.

Now Suppose that p ∼= Zp2 . Then by Proposition 2, the quotient graph
XP is a cubic symmetric graph, and A/P is an arc-transitive subgroup of
Aut(XP ). Let C = CA(P ). Clearly, P ≤ C. Suppose that P = C. Then by
[26, Theorem 1.6.13], A/P is isomorphic to a subgroup of Aut(P ) ∼= Zp(p−1),
which implies that A/P is abelian. Since A/P is transitive on V (XP ), it
follows by [30, Proposition 4.4] that A/P is regular on V (XP ). Consequently,
|A| = 18p2, which is impossible. Thus, P < C. Let M/P be a minimal
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normal subgroup of A/P contained in C/P . Since |A/P | = 2s · 33, by [26,
Theorem 8.5.3], M/P is solvable and hence elementary abelian 2- or 3-group.
If M/P is a 2-group, then by Proposition 2, XM is a cubic symmetric graph
of odd order, a contradiction. Thus, M/P is a 3-group. Let Q be a Sylow
3-subgroup of M . Then M = PQ, implying M = P × Q because Q < C.
Hence, Q is characteristic in M , and since M C A, we have Q C A. Again,
by Proposition 2, Q is semiregular on V (X). Note that Q is isomorphic to
M/P , and M/P is elementary abelian. Then by the semiregularity of Q, we
have Q ∼= Z3 or Z2

3.
Let Q ∼= Z2

3. Then, as above, the quotient graph XQ is a cubic symmetric
graph order 2p2, and A/Q is an arc-transitive subgroup of Aut(XQ). Note
that |A/Q| = 2s · 3 · p2. Then the Sylow p-subgroup PQ/Q of A/Q is also a
Sylow p-subgroup of Aut(XQ), implying the Sylow p-subgroups of Aut(XQ)
are cyclic. Since p ≥ 7, by [11, Lemma 3.4] and [14, Theorem 3.5], XQ

is a normal cubic 1-regular Cayley graph on dihedral group D2p2 . Thus,
A/Q =Aut(XQ), and A has a normal subgroup G, such that G/Q acts
regularly on V (XQ). Consequently, G is regular on V (X), and hence X is a
normal cubic 1-regular Cayley graph on G. Let X = Cay(G,S). Since X has
valency 3, S contains at least one involution. By Proposition 3, Aut(G,S) is
transitive on S, which implies that S consists of three involutions, and by the
connectivity of X, G can be generated by three involutions. Clearly, M < G.
Since G/Q ∼= D2p2 , we conclude that G ∼= Z2

3 ×D2p2 or Z3 ×D6p2 , which is
impossible because in each case G can not be generated by involutions.

Thus Q ∼= Z3, and so M ∼= Z3p2 . By Proposition 2, X is a Z3p2-covering
of the bipartite graph K3,3, and the normality of M implies that the fibre-
preserving group is the automorphism group A of X, so it is arc-transitive.
By Lemma 4, X is isomorphic to CF18p2 where p ≡ 1 (mod 3). �
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