On the distribution of primitive roots that are (k, r)-integers

T. Srichan and P. Tangsupphathawat

Abstract

Let k and r be fixed integers with $1<r<k$. A positive integer is called r-free if it is not divisible by the $r^{t h}$ power of any prime. A positive integer n is called a (k, r)-integer if n is written in the form $a^{k} b$ where b is an r-free integer. Let p be an odd prime and let $x>1$ be a real number. In this paper an asymptotic formula for the number of (k, r)-integers which are primitive roots modulo p and do not exceed x is obtained.

Key Words: (k, r)-integer, primitive root
Mathematics Subject Classification 2010: 11B50, 11N25, 11L40

1 Introduction and result

The problem of counting primitive roots in a given set is a topic in analytic number theory. Let $\operatorname{prim}(x)$ be the number of positive primitive roots modulo a fixed prime p that are $\leq x$. In [8] Shapiro showed that

$$
\operatorname{prim}(x)=\frac{\phi(p-1)}{p-1}\left(x+O\left(p^{1 / 2}(\log p)^{1 / 2} 2^{\omega(p-1)}\right)\right),
$$

where the O is uniform in x and $p, \phi(n)$ is Euler's function, and $\omega(n)$ denotes the number of distinct prime divisors of n. Moreover, Shapiro proved that

$$
\operatorname{prim}(x, k, l)=\frac{\phi(p-1)}{p-1}\left(\frac{x}{k}+O\left(p^{1 / 2}(\log p)^{1 / 2} 2^{\omega(p-1)}\right)\right),
$$

where $\operatorname{prim}(x, k, l)$ is the number of positive primitive roots modulo a fixed prime p, that are $\leq x$ and $\equiv l(\bmod k)$. Shapiro showed that the number of positive square-free primitive roots modulo a fixed prime p that are $\leq x$ equals

$$
\begin{equation*}
\frac{\phi(p-1)}{p-1}\left(\prod_{p}\left(1-\frac{1}{p^{2}}\right) x+O\left(x^{1 / 2} p^{1 / 4}(\log p)^{1 / 2} 2^{\omega(p-1)}\right)\right) \tag{1}
\end{equation*}
$$

and the number of positive square-full primitive roots modulo a fixed prime p that are $\leq x$ is

$$
\begin{equation*}
\frac{\phi(p-1)}{p-1}\left(c x^{1 / 2}+O\left(x^{1 / 3} p^{1 / 6}(\log p)^{1 / 3} 2^{\omega(p-1)}\right)\right) \tag{2}
\end{equation*}
$$

where

$$
c=2\left(1-\frac{1}{p}\right) \sum_{(q \mid p)=-1} \frac{\mu^{2}(q)}{q^{3 / 2}},
$$

$(q \mid p)$ being Legendre's symbol. Later, Liu and Zhang [3] improved (1) and showed that the number of positive square-free primitive roots modulo a fixed prime p that are $\leq x$ equals

$$
\begin{equation*}
\frac{p \phi(p-1)}{\left(p^{2}-1\right) \zeta(2)} x+O\left(x^{1 / 2+\epsilon} p^{9 / 44+\epsilon}\right) \tag{3}
\end{equation*}
$$

Since the Euler product of $\zeta(2)=\prod_{p}\left(1-p^{-2}\right)^{-1}$, the main term of (1) and (3) are identical. Recently, Munsch and Trudgian (5) improved (2) and showed that the number of positive square-full primitive roots modulo a fixed prime p that are $\leq x$ equals

$$
\begin{equation*}
\frac{\phi(p-1)}{p-1}\left(\left(\frac{p^{2}}{p^{2}+p+1}\right) \frac{C_{p} x^{1 / 2}}{\zeta(3)}+O\left(x^{1 / 3}(\log x) p^{1 / 9}(\log p)^{1 / 6} 2^{\omega(p-1)}\right)\right) \tag{4}
\end{equation*}
$$

where $C_{p} \gg p^{-\frac{1}{8 \sqrt{e}}}$. Very recently, the first author used the same method as in this paper to improve (4) and proved in [11] that for a given odd prime $p \leq x^{1 / 5}$ the number of positive square-full primitive roots modulo p that are $\leq x$ equals

$$
\begin{aligned}
& \frac{\phi(p-1)}{p}\left\{\left(\frac{L\left(3 / 2, \chi_{0}\right)-L\left(3 / 2, \chi_{1}\right)}{L\left(3, \chi_{0}\right)}\right) x^{1 / 2}+\right. \\
& \left.+\left(\frac{L\left(2 / 3, \chi_{0}\right)-L\left(2 / 3, \chi_{2}^{2}\right)}{L\left(2, \chi_{0}\right)}\right) x^{1 / 3}\right\}+O\left(\phi(p-1) 3^{\omega_{1,3}(p-1)} p^{1 / 2+\epsilon} x^{1 / 6}\right)
\end{aligned}
$$

here $\chi_{0}, \chi_{1} \neq \chi_{0}$, and $\chi_{2} \neq \chi_{0}$ denote, respectively, the principal, quadratic and cubic characters modulo p. The terms with the cubic characters $\chi_{2} \neq \chi_{0}$ occur if $3 \mid p-1$. The symbol $\omega_{1,3}(n)$ denotes the number of distinct primes $q \equiv 1(\bmod 3)$ which are divisors of n. For a complex number $s=\sigma+i t$, let $L(s, \chi)$ denote the Dirichlet L-function defined by $L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s}$, $\sigma>1$.

It is natural to ask for generalized r-free primitive roots. (A positive integer n is called r-full if for all primes $p \mid n$, we have $\left.p^{r} \mid n\right)$. In this paper we study the distribution of the number of positive primitive roots modulo
a fixed odd prime p that are (k, r)-integers. Subbarao and Suryanarayana remarked in [9] that in the case k tends to ∞ an (∞, r)-integer is the same as an r-free integer. One might consider the (k, r)-integers as generalized r-free integers. This is a motivation of this paper.

A positive integer n is called semi r-free if in the canonical factorization of n no exponent is equal to r. The (k, r)-integers also include the semi r-free integers when $k=r+1$. Thus, our paper also includes those semi r-free integers that are primitive roots. The method used here is the same as in the proof of Theorem 2.1 in [10].

Let $\operatorname{prim}_{(k, r)}(x)$ be the number of positive primitive roots modulo a fixed odd prime p that are (k, r)-integer and do not exceed x. Our main result is

Theorem 1 For a given odd prime p and real $x \geq p^{k+1}$, we have

$$
\begin{aligned}
& \operatorname{prim}_{(k, r)}(x)=\frac{\phi(p-1)}{p} \frac{L\left(k, \chi_{0}\right)}{L\left(r, \chi_{0}\right)} x+ \\
& \quad+O\left(x^{1 / r} \phi(p-1) 2^{\omega(p-1)} p^{1 / 2+\epsilon} \times \exp \left(-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right)\right)
\end{aligned}
$$

where B is a positive constant depending on r and k.
Theorem 1 contains the results for square-free integers (1) and (3) as an $(\infty, 2)$-integer. This follows from the fact that $L\left(k, \chi_{0}\right)$ tends to 1 as k tends to ∞ and the identity $L\left(2, \chi_{0}\right)=\zeta(2)\left(1-p^{-2}\right)$.

Throughout this paper ϵ denotes a fixed positive constant, not necessarily the same in all occurrences. As usual, let $\mu(n), \phi(n)$, and $\omega(n)$ denote the Möbius function, the Euler-phi function, and the number of prime factors of n, respectively. Let $\psi(x)=x-\lfloor x\rfloor-1 / 2$. For $r=1,2, \ldots$ the exponent pair is

$$
\left(k_{r}, l_{r}\right)=\left(\frac{1}{2}-\frac{r+1}{2(2 \Lambda-1)}, \frac{1}{2}+\frac{1}{2(2 \Lambda-1)}\right), \quad \Lambda=2^{r}
$$

2 Prerequisites

In this section we state and prove lemmas which are needed in our proof.
Lemma 1 [See Lemma 8.5.1 in [8]] For a given odd prime p, the characteristic function of the primitive root modulo p is

$$
\frac{\phi(p-1)}{p-1} \sum_{d \mid p-1} \frac{\mu(d)}{\phi(d)} \sum_{\chi \in G_{d}} \chi(n)=\left\{\begin{array}{lc}
1, & \text { if } n \text { is a primitive root } \bmod p \\
0, & \text { otherwise }
\end{array}\right.
$$

where G_{d} denotes the set of characters of the character group modulo p that are of order d.

Lemma 2 [See Lemma 2.6 in [9]] If $q_{k, r}$ denotes the characteristic function of the set of (k, r)-integers, then

$$
q_{k, r}(n)=\sum_{a^{k} b^{r} c=n} \mu(b) .
$$

Lemma 3 [See Lemma 2 in [6]] Let ω und κ be two real numbers satisfying $\omega>0$ snd $0<\kappa \neq 1$. Then

$$
\sum_{n \leq \omega} n^{-\kappa}=\zeta(\kappa)-\frac{1}{\kappa-1} \omega^{1-\kappa}-\psi(\omega) \omega^{-\kappa}+O\left(\omega^{-\kappa-1}\right)
$$

Lemma 4 [See Lemma 8 in [6]] Let α, β, γ be three positive real numbers, and let (k, l) be an exponent pair with $k>0$. Then for $x \geq 2$

$$
\sum_{n \leq x^{\alpha}} \psi\left(\frac{x^{\beta}}{n^{\gamma}}\right)=O\left(x^{\alpha-\frac{1}{2}(\beta-\alpha \gamma)}\right)+ \begin{cases}O\left(x^{\left.\frac{\alpha l+(\beta-\alpha \gamma) k}{k+1}\right)}\right. & \text { for } l>\gamma k \\ O\left(x^{\left.\frac{\beta k}{k+1} \log x\right)}\right. & \text { for } l=\gamma k \\ O\left(x^{\left.\frac{\beta+(1+\gamma) k-l}{1+(}\right)}\right. & \text { for } l<\gamma k\end{cases}
$$

Lemma 5 [See Lemma 13 in [7]] If $f(n)$ is an arithmetic function, then

$$
\sum_{n \leq \omega,(n, q)=1} f(n)=\sum_{d \mid q} \mu(d) \sum_{m \leq \frac{\omega}{d}} f(m d)
$$

Lemma 6 [See Lemma 14 in [7]] For $\alpha>0, \alpha \neq 1$, and $0<\beta \leq 1$, we have
$\sum_{\substack{n \leq X \\ n \equiv l \\(\bmod q)}} n^{-\alpha}=q^{-\alpha} \zeta\left(\alpha, \frac{l}{q}\right)+\frac{1}{1-\alpha} \cdot \frac{X^{1-\alpha}}{q}-\psi\left(\frac{X-l}{q}\right) X^{-\alpha}+O\left(q X^{-\alpha-1}\right)$, where

$$
\zeta(\alpha, \beta)=\sum_{n=0}^{\infty}(n+\beta)^{-\alpha}
$$

Lemma 7 [See Lemma 17 in 77] Let x, η, α, ω be real numbers, let j and q be positive numbers, where $x \geq 1, \alpha>0, \eta \geq 1,1 \leq j \leq q$, let (k, l) be an exponent pair with $k>0$, and let

$$
R(x, \eta, \alpha ; q, j ; \omega)=\sum_{\substack{n \leq \eta: \\ n \equiv j}} \psi\left(\frac{x}{n^{\alpha}}+\omega\right),
$$

if ω is independent of n. Then

$$
\begin{aligned}
& R(x, \eta, \alpha ; q, j ; \omega)= \\
& \quad=O(1)+O\left(x^{-1 / 2} \eta^{1+\frac{\alpha}{2}} q^{-1}\right)+ \begin{cases}O\left(x^{\frac{k}{k+1}} \eta^{\frac{l-\alpha k}{k+1}} q^{\frac{-l}{k+1}}\right) & \text { for } l>\alpha k \\
O\left(x^{\frac{k}{k+1}} \log \eta q^{\frac{k k}{k+1}}\right) & \text { for } l=\alpha k, \\
O\left(\left(x q^{-\alpha}\right)^{\frac{k}{1+(1+\alpha) k-l}}\right) & \text { for } l<\alpha k,\end{cases}
\end{aligned}
$$

where the O-constants depend on α only.

Throughout this paper we apply Lemmas 4 and 7 with the exponent pair (2/7, 4/7).

Lemma 8 Let χ be a Dirichlet character modulo p, let χ_{0} denote the principal character, let $L(s, \chi)$ be the associated Dirichlet L-function, let ϵ be a fixed positive number, and let Γ_{k} be the set of all non principal characters modulo p order d where $d \mid k$. Then for $p \leq x^{1 /(k+1)}$ we have

$$
\begin{aligned}
& \frac{p}{p-1} \sum_{\substack{m \leq x \\
m \text { is }(k, r) \text {-integer }}} \chi_{0}(m)=\frac{L\left(k, \chi_{0}\right)}{L\left(r, \chi_{0}\right)} x+ \\
&
\end{aligned}
$$

if there exist characters $\chi_{1} \in \Gamma_{k}$, then

$$
\begin{aligned}
& \frac{p}{p-1} \sum_{\substack{m \leq x \\
m \text { is }(k, r) \text {-integer }}} \chi_{1}(m)= \\
& =O\left(x^{1 / r} p^{3 / 2+\epsilon} \exp \left(-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right)\right) ;
\end{aligned}
$$

if there exist characters $\chi_{2} \neq \chi_{0}$ and $\chi_{2} \notin \Gamma_{k}$, then

$$
\frac{p}{p-1} \sum_{\substack{m \leq x \\ m \text { is }(k, r) \text {-integer }}} \chi_{2}(m)=O\left(x^{1 / r} p^{3 / 2} \exp \left(-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right)\right),
$$

where B is a positive constant depending on r and k.
Proof. Let χ be any Dirichlet character modulo p. For $x \geq p^{k+1}$, let

$$
T_{\chi}(x ; k, r):=\sum_{\substack{n \leq x \\ n \text { is }(k, r) \text {-integer }}} \chi(n) .
$$

In view of Lemma 2, we have

$$
T_{\chi}(x ; k, r):=\sum_{a^{k} b^{r} c \leq x} \mu(b) \chi\left(a^{k} b^{r} c\right) .
$$

Let $z=x^{1 / r}$ and $0<\rho(x)<1$ (we will choose $\rho(x)$ later). We write

$$
\begin{aligned}
& T_{\chi}(x ; k, r)= \\
& \quad=\sum_{\substack{a^{k} b^{r} c \leq x \\
b \leq \rho \neq z}} \mu(b) \chi\left(a^{k} b^{r} c\right)+\sum_{\substack{a^{k} b^{r} r \leq x \\
a^{k} \leq \leq 1 / \rho^{r}}} \mu(b) \chi\left(a^{k} b^{r} c\right)-\sum_{\substack{b \leq \rho z \\
a^{k} c \leq 1 / \rho^{r}}} \mu(b) \chi\left(a^{k} b^{r} c\right) .
\end{aligned}
$$

We bound the second and the last terms as

$$
\begin{aligned}
\sum_{\substack{k b^{r} r \leq x \\
a^{k} b^{k} \leq 1 / \rho^{r}}} \mu(b) \chi\left(a^{k} b^{r} c\right)= & \sum_{a^{k} c \leq 1 / \rho^{r}} \chi\left(a^{k} c\right) \sum_{b \leq \sqrt[r]{\left(x / a^{k} c\right)}} \mu(b) \chi\left(b^{r}\right) \ll \\
& \ll \sum_{a^{k} c \leq 1 / \rho^{r}} \mid \sum_{b \leq r}^{\left(x / a^{k} c\right)} \\
& \mu(b) \chi\left(b^{r}\right) \mid \ll \zeta(k) \rho^{1-r} x^{1 / r}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\substack{b \leq \rho z \\
a^{k} c \leq 1 / \rho^{r}}} \mu(b) \chi\left(a^{k} b^{r} c\right)=\sum_{a^{k} c \leq 1 / \rho^{r}} \chi\left(a^{k} c\right) \sum_{b \leq \rho z} \mu(b) & \chi\left(b^{r}\right) \ll \\
& \ll \rho z \rho^{-r} \zeta(k) \ll \zeta(k) \rho^{1-r} z .
\end{aligned}
$$

Thus,

$$
T_{\chi}(x ; k, r)=\sum_{\substack{a^{k} b^{r} r^{c} \leq x \\ b \leq \rho z}} \mu(b) \chi\left(a^{k} b^{r} c\right)+O\left(\zeta(k) \rho^{1-r} x^{1 / r}\right) .
$$

We reduce the first term to the form

$$
\sum_{\substack{a^{k} b^{r} c \leq x \\ b \leq \rho z}} \mu(b) \chi\left(a^{k} b^{r} c\right)=\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) \sum_{a^{k} c \leq \frac{x}{b^{r}}} \chi\left(a^{k} c\right) .
$$

Denote by

$$
S_{\chi}(y ; k)=\sum_{a^{k} c \leq y} \chi\left(a^{k} c\right) .
$$

Then

$$
\sum_{\substack{a^{k} b^{r} c \leq x \\ b \leq \rho z}} \mu(b) \chi\left(a^{k} b^{r} c\right)=\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) S_{\chi}\left(\frac{x}{b^{r}} ; k\right) .
$$

We first investigate $S_{\chi}(y ; k)$. Write

$$
\begin{aligned}
S_{\chi}(y ; k) & =\sum_{a \leq y^{1 /(k+1)}} \chi^{k}(a) \sum_{c \leq y / a^{k}} \chi(c)+\sum_{c \leq y^{1 /(k+1)}} \chi(c) \sum_{a \leq(y / c)^{1 / k}} \chi(a)- \\
& -\sum_{c \leq y^{1 /(k+1)}} \chi(c) \sum_{a \leq y^{1 /(k+1)}} \chi^{k}(a) .
\end{aligned}
$$

If $\chi=\chi_{0}$, we have

$$
S_{\chi 0}(y ; k)=\sum_{\substack{a \leq y^{1 /(k+1)} \\
(c, p)=1}} \sum_{\substack{c \leq y / a^{k} \\
(c, p)=1}} 1+\sum_{\substack{c \leq y^{1 /(k+1)}\left(\underset{\begin{subarray}{c}{c \leq(y / c)^{1 / k} \\
(c, p)=1} }}{ }\right.}\end{subarray}} 1-\sum_{\substack{c, p)=1}} 1 \sum_{\substack{c \leq y^{1 /(k+1)}(c, p)=1}} 1 .
$$

In view of Lemma 5, we have

$$
\begin{aligned}
S_{\chi_{0}}(y ; k) & =\sum_{\substack{a \leq y^{1 /(k+1)} \\
(a, p)=1}} \sum_{d \mid p} \mu(d)\left\lfloor\frac{y}{d a^{k}}\right\rfloor+\sum_{\substack{c \leq y^{1 /(k+1)} \\
(c, p)=1}} \sum_{d \mid p} \mu(d)\left\lfloor\frac{y^{1 / k}}{d c^{1 / k}}\right\rfloor- \\
& -\left(\sum_{d \mid p} \mu(d)\left\lfloor\frac{y^{1 /(k+1)}}{d}\right\rfloor\right)^{2} .
\end{aligned}
$$

From Lemma 3 it follows

$$
\begin{aligned}
& S_{\chi_{0}}(y ; k)=\frac{\phi(p)}{p} L\left(k, \chi_{0}\right) x+\frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi_{0}\right) x^{1 / k}- \\
& \quad-\sum_{d \mid p} \mu(d) \sum_{t \mid p} \mu(t) \sum_{a \leq \frac{y^{1 /(k+1)}}{t}}\left(\psi\left(\frac{y}{d t^{k} a^{k}}\right)+\psi\left(\frac{y^{1 / k}}{d t^{1 / k} a^{1 / k}}\right)\right)+O\left(p^{1+\epsilon}\right) .
\end{aligned}
$$

In view of Lemma 4

$$
\begin{aligned}
\sum_{d \mid p} \mu(d) & \sum_{t \mid p} \mu(t) \sum_{\substack{y^{1 /(k+1)} \\
t}} \psi\left(\frac{y}{d t^{k} a^{k}}\right) \ll \\
& \ll \sum_{d \mid p} \sum_{t \mid p}\left(1+y^{1 /(2(k+1))} d^{1 / 2} t^{-1}+\frac{y^{2 /(5+2 k)}}{d^{2 /(5+2 k)} t^{2 k /(5+2 k)}}\right)= \\
& =O\left(p^{\epsilon}+y^{1 /(2(k+1))} p^{1 / 2+\epsilon}+y^{2 /(5+2 k)} p^{\epsilon}\right)=O\left(y^{2 /(5+2 k)} p^{1 / 2+\epsilon}\right) .
\end{aligned}
$$

Similarly,

$$
\sum_{d \mid p} \mu(d) \sum_{t \mid p} \mu(t) \sum_{\substack{y^{1 /(k+1)} \\ t}} \psi\left(\frac{y^{1 / k}}{d t^{1 / k} a^{1 / k}}\right)=O\left(y^{2 /(5+2 k)} p^{1 / 2+\epsilon}\right)
$$

Thus,

$$
S_{\chi_{0}}(y ; k)=\frac{\phi(p)}{p} L\left(k, \chi_{0}\right) y+\frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi_{0}\right) y^{1 / k}+O\left(y^{2 /(5+2 k)} p^{1 / 2+\epsilon}+p^{1+\epsilon}\right) .
$$

If $\chi \in \Gamma_{k}$, we have

$$
\begin{aligned}
& S_{\chi}(y ; k)= \\
& =\sum_{\substack{\left.a \leq 1^{1 /(k+1)} \\
a, p\right)=1}} \sum_{c \leq y / a^{k}} \chi(c)+\sum_{\substack{c \leq y^{1 /(k+1)}}} \chi(c) \sum_{\substack{\left.a \leq(y / c)^{1 / k} \\
a, p\right)=1}} 1-\sum_{c \leq y^{1 /(k+1)}} \chi(c) \sum_{\substack{a \leq y^{1 /(k+1)} \\
(a, p)=1}} 1 .
\end{aligned}
$$

In view of

$$
\sum_{m \leq z} \chi(m)=\sum_{h \leq p} \chi(h)\left\lfloor\frac{z}{p}-\frac{h}{p}+1\right\rfloor, \quad \text { for } \chi \neq \chi_{0}
$$

and Lemma 5, we obtain

$$
\begin{aligned}
S_{\chi}(y ; k) & =\sum_{h \leq p} \chi(h) \sum_{\substack{a \leq y^{1 /(k+1)}(a, p)=1}}\left\lfloor\frac{y}{a^{k} p}-\frac{h}{p}+1\right\rfloor+ \\
& +\sum_{h \leq p} \chi(h) \sum_{\substack{ \\
d \mid p}} \mu(d) \sum_{\substack{a \leq y^{1 /(k+1)} \\
a \equiv h(\bmod p)}}\left\lfloor\frac{y^{1 / k}}{a^{1 / k} d}\right\rfloor- \\
& -\sum_{h \leq p} \chi(h)\left\lfloor\frac{y^{1 /(k+1)}}{p}-\frac{h}{p}+1\right\rfloor \sum_{d \mid p} \mu(d)\left\lfloor\frac{y^{1 / k}}{d}\right\rfloor .
\end{aligned}
$$

By Lemma 6, further we can write

$$
\begin{aligned}
S_{\chi}(y ; k) & =\frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi\right) x^{1 / k}-\sum_{h \leq p} \chi(h) \sum_{d \mid p} \mu(d) \sum_{\substack{a \leq \frac{y^{1 /(k+1)}}{d}}} \psi\left(\frac{y}{p t^{k} a^{k}}-\frac{h}{p}\right)- \\
& -\sum_{h \leq p} \chi(h) \sum_{d \mid p} \mu(d) \sum_{\substack{a \leq y^{1 /(k+1)} \\
a \equiv h(\bmod p)}} \psi\left(\frac{y^{1 / k}}{d a^{1 / k}}\right)+O\left(p^{2}\right) .
\end{aligned}
$$

In view of Lemma 7, we have

$$
\begin{aligned}
& \sum_{h \leq p} \chi(h) \sum_{d \mid p} \mu(d) \sum_{a \leq \frac{y^{1 /(k+1)}}{d}} \psi\left(\frac{y}{p t^{k} a^{k}}-\frac{h}{p}\right) \ll \\
\ll & O(1) \sum_{h \leq p} \sum_{d \mid p}\left(1+y^{1 /(2(k+1))} p^{1 / 2} d^{-1}+y^{2 /(5+2 k)} p^{-2 /(5+2 k)} d^{-2 k /(5+2 k)}\right)= \\
= & O\left(p^{1+\epsilon}+y^{1 /(2(k+1))} p^{3 / 2+\epsilon}+y^{2 /(5+2 k)} p^{(3+2 k) /(5+2 k)+\epsilon}\right)= \\
= & O\left(y^{2 /(5+2 k)} p^{3 / 2+\epsilon}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{h \leq p} \chi(h) \sum_{d \mid p} \mu(d) \sum_{\substack{a \leq y^{1 /(k+1)}(\bmod p) \\
a \equiv}} \psi\left(\frac{y^{1 / k}}{d a^{1 / k}}\right) \\
\ll & O(1) \sum_{h \leq p} \sum_{d \mid p}\left(1+y^{1 /(2(k+1))} d^{1 / 2} p^{-1}+y^{2 /(5+2 k)} d^{-2 /(5+2 k)} p^{-2 k /(5+2 k)}\right) \\
= & O\left(p^{1+\epsilon}+y^{1 /(2(k+1))} p^{1 / 2+\epsilon}+y^{2 /(5+2 k)} p^{5 /(5+2 k)+\epsilon}\right)=O\left(y^{2 /(5+2 k)} p^{1 / 2+\epsilon}\right) .
\end{aligned}
$$

Thus, for any $\chi \in \Gamma_{k}$,

$$
S_{1, \chi}(y ; k)=\frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi\right) y^{1 / k}+O\left(y^{2 /(5+2 k)} p^{3 / 2+\epsilon}\right)+O\left(p^{2}\right) .
$$

If $\chi \neq \chi_{0}$ and $\chi \notin \Gamma_{k}$, we have

$$
\begin{aligned}
S_{1, \chi}(y ; k) & =\sum_{h \leq p} \chi(h) \sum_{a \leq y^{1 /(k+1)}} \chi^{k}(a)\left\lfloor\frac{y}{a^{k} p}-\frac{h}{p}+1\right\rfloor+ \\
& +\sum_{h \leq p} \chi^{k}(h) \sum_{a \leq y^{1 /(k+1)}} \chi(a)\left\lfloor\frac{y^{1 / k}}{a^{1 / k} p}-\frac{h}{p}+1\right\rfloor- \\
& \left.\left.-\sum_{h \leq p} \chi(h) \sum_{j \leq p} \chi^{k}(j)\left\lfloor\frac{y^{1 /(k+1)}}{p}-\frac{j}{p}+1\right\rfloor \right\rvert\, \frac{y^{1 /(k+1)}}{p}-\frac{h}{p}+1\right\rfloor= \\
& =-\sum_{h \leq p} \chi(h) \sum_{j \leq p} \chi^{k}(j) \sum_{\substack{a \leq y^{1 /(k+1)} \\
a \equiv j(\bmod p)}} \psi\left(\frac{y}{p a^{k}}-\frac{h}{p}\right)- \\
& -\sum_{h \leq p} \chi^{k}(h) \sum_{j \leq p} \chi(j) \sum_{\substack{a \leq y^{1 /(k+1)} \\
a=j(\bmod p)}} \psi\left(\frac{y^{1 / k}}{p a^{1 / k}}-\frac{h}{p}\right)+O\left(p^{2}\right) .
\end{aligned}
$$

It follows from Lemma 7 , similarly to the proof on the previous case, that

$$
\begin{aligned}
& \sum_{h \leq p} \chi(h) \sum_{j \leq p} \chi^{k}(j) \sum_{\substack{\left.a \leq y^{1 /(k+1)} \\
a \equiv j^{1(m o d} p\right)}} \psi\left(\frac{y}{p a^{k}}-\frac{h}{p}\right) \ll \\
& \quad \ll \sum_{h \leq p} \sum_{j \leq p}\left(1+y^{1 /(2(k+1))} p^{-1 / 2}+y^{2 /(5+2 k)} p^{-2(k+1) /(5+2 k)}\right)= \\
& =O\left(p^{2}+y^{1 /(2(k+1))} p^{3 / 2}+y^{2 /(5+2 k)} p^{(8+2 k) /(5+2 k)+\epsilon}\right)=O\left(y^{2 /(5+2 k)} p^{3 / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{h \leq p} \chi^{k}(h) \sum_{j \leq p} \chi(j) \sum_{\substack{a \leq y^{1 /(k+1)} \\
a \equiv j \\
(\bmod p)}} \psi\left(\frac{y^{1 / k}}{p a^{1 / k}}-\frac{h}{p}\right) \ll \\
\ll & \sum_{h \leq p} \sum_{j \leq p}\left(1+y^{1 /(2(k+1))} p^{-1 / 2}+y^{2 /(5+2 k)} p^{-2(k+1) /(5+2 k)}\right)=O\left(y^{2 /(5+2 k)} p^{3 / 2}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{b \leq \rho z} \mu(b) \chi_{0}^{r}(b) S_{\chi_{0}}\left(\frac{x}{b^{r}} ; k\right)= \\
= & \sum_{b \leq \rho z} \mu(b) \chi_{0}^{r}(b)\left(\frac{\phi(p)}{p} L\left(k, \chi_{0}\right) \frac{x}{b^{r}}+\frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi_{0}\right)\left(\frac{x}{b^{r}}\right)^{1 / k}\right)+ \\
+ & \sum_{b \leq \rho z} \mu(b) \chi_{0}^{r}(b)\left(O\left(\left(\frac{x}{b^{r}}\right)^{2 /(5+2 k)} p^{1 / 2+\epsilon}\right)\right)= \\
= & \frac{\phi(p)}{p} \cdot \frac{L\left(k, \chi_{0}\right)}{L\left(r, \chi_{0}\right)} x+O\left(\rho^{1-r} x^{1 / r}+\rho^{1-r / k} x^{1 / r}+\rho^{1-2 r /(5+2 k)} x^{1 / r} p^{1 / 2+\epsilon}\right)= \\
= & \frac{\phi(p)}{p} \cdot \frac{L\left(k, \chi_{0}\right)}{L\left(r, \chi_{0}\right)} x+O\left(\rho^{1-2 r /(5+2 k)} x^{1 / r} p^{1 / 2+\epsilon}\right) ;
\end{aligned}
$$

for $\chi \in \Gamma_{k}$,

$$
\begin{aligned}
\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) S_{\chi}\left(\frac{x}{b^{r}} ; k\right) & =\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) \frac{\phi(p)}{p} L\left(\frac{1}{k}, \chi\right)\left(\frac{x}{b^{r}}\right)^{1 / k}+ \\
& +\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) O\left(\left(\frac{x}{b^{r}}\right)^{2 /(5+2 k)} p^{3 / 2+\epsilon}\right)= \\
& =O\left(\rho^{1-2 r /(5+2 k)} x^{1 / r} p^{3 / 2+\epsilon}\right) ;
\end{aligned}
$$

for $\chi \neq \chi_{0}$ and $\chi \notin \Gamma_{k}$,

$$
\begin{aligned}
\sum_{b \leq \rho z} \mu(b) \chi^{r}(b) S_{\chi}\left(\frac{x}{b^{r}} ; k\right) & \ll \sum_{b \leq \rho z}\left(\left(\frac{x}{b^{r}}\right)^{2 /(5+2 k)} p^{3 / 2}\right) \ll \\
& =O\left(\rho^{1-2 r /(5+2 k)} x^{1 / r} p^{3 / 2}\right)
\end{aligned}
$$

As in [9, we choose $\rho=\exp \left(\frac{-A}{r} \log ^{3 / 5}\left(x^{1 / 2 r}\right)\left(\log \log \left(x^{1 / 2 r}\right)\right)^{-1 / 5}\right)$. This is based on the Vinogradov-Korobov zero-free region for the Riemann zetafunction. Thus, we have $B=\frac{r^{-8 / 5}(5+2 k-2 r)}{5+2 k} A$, and the proof of Lemma is complete.

3 Proof of Theorem 1

In view of Lemma 1, for a given odd prime p, we have

$$
\begin{aligned}
& \operatorname{prim}_{k, r}(x)= \\
& =\frac{\phi(p-1)}{p-1}\left\{\sum_{\substack{m \leq x \\
m \text { is }(k, r) \text { integer }}} \chi_{0}(m)+\sum_{\substack{d \mid p-1 \\
d>1}} \frac{\mu(d)}{\phi(d)} \sum_{\chi \in G_{d}} \sum_{\substack{m \leq x \\
m \text { is }(k, r) \text { integer }}} \chi(m)\right\} .
\end{aligned}
$$

We bound the last sum by using the last two cases in Lemma 8. Thus,

$$
\begin{aligned}
& \left|\sum_{\substack{d \mid p-1 \\
d>1}} \frac{\mu(d)}{\phi(d)} \sum_{\chi \in G_{d}} \sum_{\substack{m \leq x \\
m \text { is }(k, r) \text { integer }}} \chi(m)\right| \ll \\
&
\end{aligned} \ll 2^{\omega(p-1)} p^{3 / 2+\epsilon} x^{1 / r} \exp \left(-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right) . .
$$

We use the first case in Lemma 8 to obtain the main term as

$$
\frac{p-1}{p} \cdot \frac{L\left(k, \chi_{0}\right)}{L\left(r, \chi_{0}\right)} x
$$

and the error term of the first case is dominated by

$$
2^{\omega(p-1)} p^{3 / 2+\epsilon} x^{1 / r} \exp \left(-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right)
$$

which establishes the formula.

Acknowledgement

The authors are very grateful to the anonymous referee for her or his valuable remarks.

References

[1] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc., 12 (1962), no. 3, pp. 179-192.
[2] S. D. Cohen, and T. Trudgian, On the least square-free primitive root modulo p, J. Number Theory, 170 (2017), pp. 10-16.
[3] H. Liu, and W. Zhang, On the squarefree and squarefull numbers, J. Math. Kyoto Univ, 45 (2005), no. 2, pp. 247-255.
[4] M. Munsch, Character sums over squarefree and squarefull numbers, Arch. Math, 102 (2014), no. 6, pp. 555-563.
[5] M. Munsch and T. Trudgian, Square-full primitive roots, Intern. J. Number Theory, 14 (2018), no. 4, pp. 1013-1021.
[6] H. E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung. I, Math. Z, 56 (1952), no. 1, pp. 21-32.
[7] H. E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung. II, Math. Z, 58 (1953), no. 1, pp. 71-84.
[8] H. N. Shapiro, Introduction to the Theory of Numbers, Wiley, New York, (1983).
[9] M. V. Subbarao and D. Suryanarayana, On the order of the error function of the (k, r)-integers, J. Number Theory, 6.2 (1974), pp. 112-123.
[10] T. Srichan, Square-full and cube-full numbers in arithmetic progressions, Siauliai Math. Semin, 8 (2013), no. 16, pp. 223-248.
[11] T. Srichan, On the distribution of square-full and cube-full primitive roots, Period. Math. Hungar (to appear).

Teerapat Srichan
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
fscitrp@ku.ac.th
Pinthira Tangsupphathawat
Department of Mathematics, Faculty of Science and Technology, Phranakorn Rajabhat University, Bangkok, Thailand.
t.pinthira@hotmail.com

Please, cite to this paper as published in
Armen. J. Math., V. 11, N. 12(2019), pp. 112

