On the democratic constant of Haar subsystems in $L_1[0, 1]^d$

N. V. Srapionyan

Abstract. In this paper, we estimate the democratic constant for the democratic subsystems of the *d*-dimensional Haar system in $L_1[0, 1]^{d, 1}$

Key Words: Haar Subsystem, Democratic Constant, Greedy Algorithm in $L_1[0,1]^d$

Mathematics Subject Classification 2010: 41A65, 46B20

Introduction

Let $\Psi = \{\psi_k\}_{k=1}^{+\infty}$ be a normalized basis in a Banach space X. There are many ways to approximate the elements of X by polynomials, using linear combinations of the elements from Ψ . In the late 1990's it became popular to approximate using the Thresholding Greedy Algorithm (TGA, see [1] for details). During their investigations V. Temlyakov and S. Konyagin introduced the term democratic bases (see [2]). Democratic bases have an important role in classification of greedy-type bases. Here, we give a slightly more general definition for democratic systems.

Definition 1 Let $\Psi = \{\psi_k\}_{k=1}^{+\infty}$ be a normalized system in X. Then Ψ is called democratic in X iff there exists a constant C such that for any two finite subsets A, B of positive integers with equal number of elements (|A|=|B|) the following relation holds:

$$\left|\sum_{i\in A}\psi_i\right|_X \le C \left\|\sum_{i\in B}\psi_i\right\|_X.$$
(1)

The smallest C for which this inequality holds is called the democratic constant for Ψ .

 $^{^1\}mathrm{Research}$ was supported by a grant from the Science Committee of Armenia 18T-1A081

N. V. SRAPIONYAN

Democratic subsystems of the 1-dimensional and multidimensional Haar systems in $L_1[0, 1]$ and $L_1[0, 1]^d$ are characterized respectively in [3] and [4]. There are two generalizations of the Haar system in $L_1[0, 1]^d$. In [4] the multidimensional Haar system whose all elements have cubic supports is used. Let us recall the definition of that system. The dyadic interval is the interval of type $\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right)$, with $1 \leq j \leq 2^n$, $n \geq 0$. For a dyadic interval $\mathcal{I} = \left[\frac{j-1}{2^n}, \frac{j}{2^n}\right] \subset [0, 1)$, we write:

$$r_{\mathcal{I}}^{(0)}(t) = \begin{cases} \frac{1}{|\mathcal{I}|} & : t \in \mathcal{I} \\ 0 & : t \notin \mathcal{I} \end{cases}, \qquad r_{\mathcal{I}}^{(1)}(t) = \begin{cases} \frac{1}{|\mathcal{I}|} & : t \in \left[\frac{j-1}{2^{n}}, \frac{2j-1}{2^{n+1}}\right) \\ -\frac{1}{|\mathcal{I}|} & : t \in \left[\frac{2j-1}{2^{n+1}}, \frac{j}{2^{n}}\right) \\ 0 & : t \notin \mathcal{I} \end{cases}.$$
(2)

For dyadic intervals $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_d$ of the same length, the cube

$$\mathcal{I} = \mathcal{I}_1 \times \mathcal{I}_2 \times \dots \mathcal{I}_d \tag{3}$$

is called a dyadic cube. By \mathcal{D}^d we denote the set of all dyadic cubes of dimension d. To remind the definition of the d-dimensional Haar system, we need one more notation. Denote

$$\mathbb{M} = \mathcal{D}^d \times \{1, 2, \dots, 2^d - 1\}.$$
(4)

To each element $(\mathcal{I}, j) \in \mathbb{M}$, one element of the multidimensional Haar function $h_{\tau}^{(j)}$ corresponds, in the following way:

$$h_{\mathcal{I}}^{(j)}(x) = \prod_{i=1}^{d} r_{\mathcal{I}_k}^{(\epsilon_k)}(x_k), \qquad (5)$$

where $x = (x_1, x_2, ..., x_d) \in [0, 1]^d$, and the numbers $\epsilon_k \in \{0, 1\}$ are defined by the representation $j = \sum_{k=1}^d \epsilon_k 2^{d-k}$. The set of functions $h_{\mathcal{I}}^{(j)}$ together with $h_{[0,1)^d}^{(0)} \equiv 1$ is a *d*-dimensional Haar system.

Now, for any $\mathcal{I}, \mathcal{J} \in \mathcal{D}^d$ with $\mathcal{J} \subset \mathcal{I}$, denote

$$C(\mathcal{I},\mathcal{J}) = \{ \Delta \in \mathcal{D}^d : \mathcal{J} \subseteq \Delta \subseteq \mathcal{I} \}.$$
 (6)

 $C(\mathcal{I}, \mathcal{J})$ is called a chain (see [5]). The length of the chain $C(\mathcal{I}, \mathcal{J})$ is the number of elements in the chain. Also, we will say that \mathcal{J} is a son of \mathcal{I} iff $\mathcal{J} \subset \mathcal{I}$ and $\mu(\mathcal{J}) = 2^{-d}\mu(\mathcal{I})$.

By the term *complete chain* $C^{d}(\mathcal{I}, \mathcal{J})$ we mean the following set:

$$C^{d}(\mathcal{I},\mathcal{J}) = \{ (\Delta,k) \in \mathbb{M} : \mathcal{J} \subseteq \Delta \subseteq \mathcal{I}, \ 1 \le k \le 2^{d} - 1 \}.$$
(7)

By the length of chain $C^d(\mathcal{I}, \mathcal{J})$ we mean the length of the chain $C(\mathcal{I}, \mathcal{J})$. Also, for $\mathcal{S} \subset \mathbb{M}$ denote by $D(\mathcal{S})$ the democratic constant for the system $\{h_{\mathcal{I}}^{(j)}\}_{(\mathcal{I},j)\in\mathcal{S}}$ in $L_1[0,1]^d$. **Theorem A** [6] Let $S \subset \mathbb{M}$ be given and let H be the length of longest complete chain in S (we assume it is equal to $+\infty$ if there are arbitrarilylong complete chains). Then $\{h_{\mathcal{I}}^{(j)}\}_{(\mathcal{I},j)\in\mathbb{M}}$ is democratic in $L_1[0,1]^d$ if and only if $H < +\infty$.

From the proof of the theorem, one may conclude that democratic constant satisfies to the condition $D(S) \leq 2^{Hd}$. In this paper, we improve this result by proving the following theorem.

Theorem 1 Let $S \subset M$ and let S contain complete chains having maximal length H. Then $D(S) < 2^d(2^d - 1)(H + 1)$.

1 Proof of the result

For $f \in L_1[0,1]^d$ and $\Delta \in \mathcal{D}^d$, we denote

$$||f||_{\Delta} = \int_{\Delta} |f|,$$

and for $\mathcal{I} \in \mathcal{D}^d$, we denote

$$P_{\mathcal{I}}(f) = f - \sum_{\mathcal{J} \in \mathcal{D}^d, \mathcal{J} \subseteq \mathcal{I}} \sum_{j=1}^{2^d - 1} c_{\mathcal{J}}^{(j)}(f) h_{\mathcal{J}}^{(j)},$$

where $c_{\mathcal{J}}^{(j)}(f), \mathcal{J} \in \mathcal{D}^d, j = 1, \dots 2^d - 1$, are the expansion coefficients of f with respect to the *d*-dimensional Haar system. Below, we recall several lemmas which will be used to prove our main result.

Lemma 1 ([6], Lemma 1) Let $f \in L_1[0,1]^d$ and $\mathcal{I}, \mathcal{J} \in \mathcal{D}^d$ be such that $\mathcal{J} \subseteq \mathcal{I}$. Then

$$||f||_{\mathcal{I}} \ge |c_{\mathcal{J}}^{(i)}(f) \qquad for \ all \ 1 \le i \le 2^d - 1.$$
 (8)

Lemma 2 ([6], Lemma 2) Let $f \in L_1[0,1]^d$ and $\mathcal{I}, \mathcal{J} \in \mathcal{D}^d$ be such that:

- 1) $|c_{\mathcal{I}}^{(i)}(f)| \leq 1$ for any $(\mathcal{I}, i) \in \mathbb{M}$,
- 2) \mathcal{I} is a son of \mathcal{J} ,
- 3) $c_{\mathcal{J}}^{(i_0)}(f) = 0$ for some $1 \le i_0 \le 2^d 1$.

Then

$$||P_{\mathcal{I}}(f)||_{\mathcal{I}} \le 1 - 2^{-d}.$$
 (9)

Now, we are ready to present the main lemma of this paper.

Lemma 3 Let $\Lambda \subset \mathbb{M}$ and let H be the length of the longest complete chain in Λ . Then

$$\|\sum_{(\mathcal{I},i)\in\Lambda} h_{\mathcal{I}}^{(i)}\| \ge \frac{|\Lambda|}{2^d(2^d-1)(H+1)}.$$
(10)

Proof. Let

$$\{\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_k\} = \{\mathcal{I} : \exists 1 \le i \le 2^d - 1, \ (\mathcal{I}, i) \in \Lambda\}.$$

According to the definition, we have $k \geq \frac{|\Lambda|}{2^d-1}$. Without loss of generality we may assume that

if for $1 \leq i < j \leq k$ one has $\mathcal{I}_j \cap \mathcal{I}_i \neq \emptyset$, then $\mathcal{I}_j \subset \mathcal{I}_i$ and for all i < s < j one has $\mathcal{I}_s \subset \mathcal{I}_i$.

Put $f_0 = 0$ and for $1 \le s \le k$ denote

$$f_s = \sum_{i \le s, j, \ (\mathcal{I}_i, j) \in \Lambda} h_{\mathcal{I}_i}^{(j)}.$$

Again, without loss of generality, we may assume that if \mathcal{I}_i and \mathcal{I}_j are sons of \mathcal{I}_t with respect to $\{\mathcal{I}_i\}$ (with i < j) then

$$\|f_t\|_{\mathcal{I}_i} \ge \|f_t\|_{\mathcal{I}_j}$$

Note, that

$$\|\sum_{(\mathcal{I},i)\in\Lambda} h_{\mathcal{I}}^{(i)}\| = \|f_k\| = \sum_{i=1}^k \Big(\|f_i\| - \|f_{i-1}\|\Big).$$

From the monotonicity of the Haar system and definitions of f_i , it follows that all terms in the brackets are non-negative. To complete the proof of the Lemma it remains to show, that at least $\frac{1}{H+1}$ of them have value at least 2^{-d} . Indeed, consider an arbitrary sequence $\mathcal{I}_i, \mathcal{I}_{i+1}, \ldots, \mathcal{I}_{i+H}$. By taking into account the definition of H, we can state that they do not form a complete chain in Λ . It follows from the construction that for at least one $j, i < j \leq i + H$ we have one of the following cases:

i) $\mathcal{I}_j \subset \mathcal{I}_{j-1}$ and \mathcal{I}_j is not a son of \mathcal{I}_{j-1} . Consider a dyadic cube \mathcal{J} whose son is \mathcal{I}_j . According to Lemma 1, we have

$$\|f_j\|_{\mathcal{I}_j} \ge 1$$

and according to Lemma 2, we have (since $(\mathcal{J}, 1) \notin \Lambda$)

$$\|f_{j-1}\|_{\mathcal{I}_j} \le 1 - 2^{-d}.$$

Since f_{j-1} and f_j coincide outside \mathcal{I}_j , we conclude

$$||f_j|| - ||f_{j-1}|| \ge 2^{-d}$$

ii) \mathcal{I}_j is a son of \mathcal{I}_{j-1} and for some $t, 1 \leq t \leq 2^d - 1$ we have $(\mathcal{I}_{j-1}, t) \notin \Lambda$. This case is similar to the previous one. According to Lemma 1, we have

$$\|f_j\|_{\mathcal{I}_j} \ge 1$$

and according to Lemma 2, we have

$$||f_{j-1}||_{\mathcal{I}_j} \le 1 - 2^{-d}.$$

Since f_{j-1} and f_j coincide outside \mathcal{I}_j , we conclude

$$||f_j|| - ||f_{j-1}|| \ge 2^{-d}.$$

iii) $\mathcal{I}_j \cap \mathcal{I}_{j-1} = \emptyset$. In this case we have

$$||f_{j-1}||_{\mathcal{I}_j} \le \frac{1}{2},$$

therefore,

$$||f_j||_{\mathcal{I}_j} - ||f_{j-1}||_{\mathcal{I}_j} \ge \frac{1}{2}$$

Lemma is proved. \Box

The proof of the Theorem then easly follows from the lemma.

Proof. Let $A \subset S$ and |A| = n. Note that it is enough to estimate the norm $\|\sum_{(\mathcal{I}_i, j_i) \in A} h_{\mathcal{I}_i}^{(j_i)}\|.$ We have, by Lemma 3, that

$$\|\sum_{(\mathcal{I}_i, j_i) \in A} h_{\mathcal{I}_i}^{(j_i)}\| \ge \frac{n}{2^d (2^d - 1)(H + 1)}.$$
(11)

Also, by the triangle inequality, we get

$$\|\sum_{(\mathcal{I}_i, j_i) \in A} h_{\mathcal{I}_i}^{(j_i)}\| \le n.$$

$$(12)$$

Finally, by (11) and (12), we have that

$$D(S) < 2^d (2^d - 1)(H + 1), \tag{13}$$

and this concludes the proof. \Box

References

- V. N. Temlyakov, Greedy approximation, Acta Numerica, 17(2008), 235-409.
- [2] S. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5(1999), 365-379.
- [3] S. Gogyan, Greedy algorithm with regard to Haar subsystems, East Journal on Approximations, 11(2005), N2, 221-236.
- [4] S. Gogyan, On democratic systems in $L_1(0,1)^d$, Dokl. Nats. Akad. Nauk Armen., **115**(2015), N2, 98-101.
- [5] S. Gogyan, On convergence of weak thresholding greedy algorithm in $L^1(0, 1)$, Journal Approximation Theory, **161**(2009), N1, 49-64.
- [6] S. Gogyan, Democratic subsystems of the multivariate Haar systems, Dokl. Nats. Akad. Nauk Armen., 50(2015), N6, 26-32.
- [7] Gogyan, S. and Dilworth, S. and Kutzarova, D., On the convergence of a weak greedy algorithm for the multivariate Haar basis, Constr. Approx., 39(2014), N2, 343-366.

Nerses Srapionyan Yerevan State University, Alek Manukyan st. 1, Yerevan, 0025, Armenia. nerses.srapionyan@gmail.com

Please, cite to this paper as published in Armen. J. Math., V. 11, N. 8(2019), pp. 1–6