On the democratic constant of Haar subsystems in $L_{1}[0,1]^{d}$

N. V. Srapionyan

Abstract

In this paper, we estimate the democratic constant for the democratic subsystems of the d-dimensional Haar system in $L_{1}[0,1]^{d} \cdot{ }^{1}$

Key Words: Haar Subsystem, Democratic Constant, Greedy Algorithm in $L_{1}[0,1]^{d}$
Mathematics Subject Classification 2010: 41A65, 46B20

Introduction

Let $\Psi=\left\{\psi_{k}\right\}_{k=1}^{+\infty}$ be a normalized basis in a Banach space X. There are many ways to approximate the elements of X by polynomials, using linear combinations of the elements from Ψ. In the late 1990's it became popular to approximate using the Thresholding Greedy Algorithm (TGA, see [1] for details). During their investigations V. Temlyakov and S. Konyagin introduced the term democratic bases (see [2]). Democratic bases have an important role in classification of greedy-type bases. Here, we give a slightly more general definition for democratic systems.

Definition 1 Let $\Psi=\left\{\psi_{k}\right\}_{k=1}^{+\infty}$ be a normalized system in X. Then Ψ is called democratic in X iff there exists a constant C such that for any two finite subsets A, B of positive integers with equal number of elements ($A|=|B|$) the following relation holds:

$$
\begin{equation*}
\left\|\sum_{i \in A} \psi_{i}\right\|_{X} \leq C\left\|\sum_{i \in B} \psi_{i}\right\|_{X} . \tag{1}
\end{equation*}
$$

The smallest C for which this inequality holds is called the democratic constant for Ψ.

[^0]Democratic subsystems of the 1-dimensional and multidimensional Haar systems in $L_{1}[0,1]$ and $L_{1}[0,1]^{d}$ are characterized respectively in [3] and [4]. There are two generalizations of the Haar system in $L_{1}[0,1]^{d}$. In [4] the multidimensional Haar system whose all elements have cubic supports is used. Let us recall the definition of that system. The dyadic interval is the interval of type $\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right)$, with $1 \leq j \leq 2^{n}, n \geq 0$. For a dyadic interval $\mathcal{I}=\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right) \subset[0,1)$, we write:

$$
r_{\mathcal{I}}^{(0)}(t)=\left\{\begin{array}{ll}
\frac{1}{|\mathcal{I}|} & : t \in \mathcal{I} \tag{2}\\
0 & : t \notin \mathcal{I}
\end{array}, \quad r_{\mathcal{I}}^{(1)}(t)= \begin{cases}\frac{1}{|\mathcal{I}|} & : t \in\left[\frac{j-1}{2^{n}}, \frac{2 j-1}{2^{n+1}}\right) \\
-\frac{1}{|\mathcal{T}|} & : t \in\left[\frac{2 j-1}{2^{n+1}}, \frac{j}{2^{n}}\right) \\
0 & : t \notin \mathcal{I}\end{cases}\right.
$$

For dyadic intervals $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{d}$ of the same length, the cube

$$
\begin{equation*}
\mathcal{I}=\mathcal{I}_{1} \times \mathcal{I}_{2} \times \ldots \mathcal{I}_{d} \tag{3}
\end{equation*}
$$

is called a dyadic cube. By \mathcal{D}^{d} we denote the set of all dyadic cubes of dimension d. To remind the definition of the d-dimensional Haar system, we need one more notation. Denote

$$
\begin{equation*}
\mathbb{M}=\mathcal{D}^{d} \times\left\{1,2, \ldots, 2^{d}-1\right\} \tag{4}
\end{equation*}
$$

To each element $(\mathcal{I}, j) \in \mathbb{M}$, one element of the multidimensional Haar function $h_{\mathcal{I}}^{(j)}$ corresponds, in the following way:

$$
\begin{equation*}
h_{\mathcal{I}}^{(j)}(x)=\prod_{i=1}^{d} r_{\mathcal{I}_{k}}^{\left(\epsilon_{k}\right)}\left(x_{k}\right), \tag{5}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in[0,1]^{d}$, and the numbers $\epsilon_{k} \in\{0,1\}$ are defined by the representation $j=\sum_{k=1}^{d} \epsilon_{k} 2^{d-k}$. The set of functions $h_{\mathcal{I}}^{(j)}$ together with $h_{[0,1)^{d}}^{(0)} \equiv 1$ is a d-dimensional Haar system.

Now, for any $\mathcal{I}, \mathcal{J} \in \mathcal{D}^{d}$ with $\mathcal{J} \subset \mathcal{I}$, denote

$$
\begin{equation*}
C(\mathcal{I}, \mathcal{J})=\left\{\Delta \in \mathcal{D}^{d}: \mathcal{J} \subseteq \Delta \subseteq \mathcal{I}\right\} . \tag{6}
\end{equation*}
$$

$C(\mathcal{I}, \mathcal{J})$ is called a chain (see [5]). The length of the chain $C(\mathcal{I}, \mathcal{J})$ is the number of elements in the chain. Also, we will say that \mathcal{J} is a son of \mathcal{I} iff $\mathcal{J} \subset \mathcal{I}$ and $\mu(\mathcal{J})=2^{-d} \mu(\mathcal{I})$.

By the term complete chain $C^{d}(\mathcal{I}, \mathcal{J})$ we mean the following set:

$$
\begin{equation*}
C^{d}(\mathcal{I}, \mathcal{J})=\left\{(\Delta, k) \in \mathbb{M}: \mathcal{J} \subseteq \Delta \subseteq \mathcal{I}, 1 \leq k \leq 2^{d}-1\right\} \tag{7}
\end{equation*}
$$

By the length of chain $C^{d}(\mathcal{I}, \mathcal{J})$ we mean the length of the chain $C(\mathcal{I}, \mathcal{J})$. Also, for $\mathcal{S} \subset \mathbb{M}$ denote by $D(\mathcal{S})$ the democratic constant for the system $\left\{h_{\mathcal{I}}^{(j)}\right\}_{(\mathcal{I}, j) \in \mathcal{S}}$ in $L_{1}[0,1]^{d}$.

Theorem \mathbf{A} [6] Let $\mathcal{S} \subset \mathbb{M}$ be given and let H be the length of longest complete chain in \mathcal{S} (we assume it is equal to $+\infty$ if there are arbitrarilylong complete chains). Then $\left\{h_{\mathcal{I}}^{(j)}\right\}_{(\mathcal{I}, j) \in \mathbb{M}}$ is democratic in $L_{1}[0,1]^{d}$ if and only if $H<+\infty$.

From the proof of the theorem, one may conclude that democratic constant satisfies to the condition $D(\mathcal{S}) \leq 2^{H d}$. In this paper, we improve this result by proving the following theorem.

Theorem 1 Let $\mathcal{S} \subset \mathbb{M}$ and let \mathcal{S} contain complete chains having maximal length H. Then $D(\mathcal{S})<2^{d}\left(2^{d}-1\right)(H+1)$.

1 Proof of the result

For $f \in L_{1}[0,1]^{d}$ and $\Delta \in \mathcal{D}^{d}$, we denote

$$
\|f\|_{\Delta}=\int_{\Delta}|f|,
$$

and for $\mathcal{I} \in \mathcal{D}^{d}$, we denote

$$
P_{\mathcal{I}}(f)=f-\sum_{\mathcal{J} \in \mathcal{D}^{d}, \mathcal{J} \subseteq \mathcal{I}} \sum_{j=1}^{2^{d}-1} c_{\mathcal{J}}^{(j)}(f) h_{\mathcal{J}}^{(j)},
$$

where $c_{\mathcal{J}}^{(j)}(f), \mathcal{J} \in \mathcal{D}^{d}, j=1, \ldots 2^{d}-1$, are the expansion coefficients of f with respect to the d-dimensional Haar system. Below, we recall several lemmas which will be used to prove our main result.

Lemma 1 ([6], Lemma 1) Let $f \in L_{1}[0,1]^{d}$ and $\mathcal{I}, \mathcal{J} \in \mathcal{D}^{d}$ be such that $\mathcal{J} \subseteq \mathcal{I}$. Then

$$
\begin{equation*}
\|f\|_{\mathcal{I}} \geq \mid c_{\mathcal{J}}^{(i)}(f) \quad \text { for all } 1 \leq i \leq 2^{d}-1 \tag{8}
\end{equation*}
$$

Lemma 2 ([6], Lemma 2) Let $f \in L_{1}[0,1]^{d}$ and $\mathcal{I}, \mathcal{J} \in \mathcal{D}^{d}$ be such that:

1) $\left|c_{\mathcal{I}}^{(i)}(f)\right| \leq 1$ for any $(\mathcal{I}, i) \in \mathbb{M}$,
2) \mathcal{I} is a son of \mathcal{J},
3) $c_{\mathcal{J}}^{\left(i_{0}\right)}(f)=0$ for some $1 \leq i_{0} \leq 2^{d}-1$.

Then

$$
\begin{equation*}
\left\|P_{\mathcal{I}}(f)\right\|_{\mathcal{I}} \leq 1-2^{-d} \tag{9}
\end{equation*}
$$

Now, we are ready to present the main lemma of this paper.

Lemma 3 Let $\Lambda \subset \mathbb{M}$ and let H be the length of the longest complete chain in Λ. Then

$$
\begin{equation*}
\left\|\sum_{(\mathcal{I}, i) \in \Lambda} h_{\mathcal{I}}^{(i)}\right\| \geq \frac{|\Lambda|}{2^{d}\left(2^{d}-1\right)(H+1)} \tag{10}
\end{equation*}
$$

Proof. Let

$$
\left\{\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{k}\right\}=\left\{\mathcal{I}: \exists 1 \leq i \leq 2^{d}-1, \quad(\mathcal{I}, i) \in \Lambda\right\}
$$

According to the definition, we have $k \geq \frac{|\Lambda|}{2^{d}-1}$. Without loss of generality we may assume that
if for $1 \leq i<j \leq k$ one has $\mathcal{I}_{j} \cap \mathcal{I}_{i} \neq \emptyset$, then $\mathcal{I}_{j} \subset \mathcal{I}_{i}$ and for all $i<s<j$ one has $\mathcal{I}_{s} \subset \mathcal{I}_{i}$.

Put $f_{0}=0$ and for $1 \leq s \leq k$ denote

$$
f_{s}=\sum_{i \leq s, j,\left(\mathcal{I}_{i}, j\right) \in \Lambda} h_{\mathcal{I}_{i}}^{(j)} .
$$

Again, without loss of generality, we may assume that if \mathcal{I}_{i} and \mathcal{I}_{j} are sons of \mathcal{I}_{t} with respect to $\left\{\mathcal{I}_{i}\right\}$ (with $i<j$) then

$$
\left\|f_{t}\right\|_{\mathcal{I}_{i}} \geq\left\|f_{t}\right\|_{\mathcal{I}_{j}}
$$

Note, that

$$
\left\|\sum_{(\mathcal{I}, i) \in \Lambda} h_{\mathcal{I}}^{(i)}\right\|=\left\|f_{k}\right\|=\sum_{i=1}^{k}\left(\left\|f_{i}\right\|-\left\|f_{i-1}\right\|\right) .
$$

From the monotonicity of the Haar system and definitions of f_{i}, it follows that all terms in the brackets are non-negative. To complete the proof of the Lemma it remains to show, that at least $\frac{1}{H+1}$ of them have value at least 2^{-d}. Indeed, consider an arbitrary sequence $\mathcal{I}_{i}, \mathcal{I}_{i+1}, \ldots, \mathcal{I}_{i+H}$. By taking into account the definition of H, we can state that they do not form a complete chain in Λ. It follows from the construction that for at least one $j, i<j \leq i+H$ we have one of the following cases:
i) $\mathcal{I}_{j} \subset \mathcal{I}_{j-1}$ and \mathcal{I}_{j} is not a son of \mathcal{I}_{j-1}. Consider a dyadic cube \mathcal{J} whose son is \mathcal{I}_{j}. According to Lemma 1, we have

$$
\left\|f_{j}\right\|_{\mathcal{I}_{j}} \geq 1
$$

and according to Lemma 2 , we have $($ since $(\mathcal{J}, 1) \notin \Lambda)$

$$
\left\|f_{j-1}\right\|_{\mathcal{I}_{j}} \leq 1-2^{-d}
$$

Since f_{j-1} and f_{j} coincide outside \mathcal{I}_{j}, we conclude

$$
\left\|f_{j}\right\|-\left\|f_{j-1}\right\| \geq 2^{-d}
$$

ii) \mathcal{I}_{j} is a son of \mathcal{I}_{j-1} and for some $t, 1 \leq t \leq 2^{d}-1$ we have $\left(\mathcal{I}_{j-1}, t\right) \notin \Lambda$. This case is similar to the previous one. According to Lemma 1, we have

$$
\left\|f_{j}\right\|_{\mathcal{I}_{j}} \geq 1
$$

and according to Lemma 2, we have

$$
\left\|f_{j-1}\right\|_{\mathcal{I}_{j}} \leq 1-2^{-d}
$$

Since f_{j-1} and f_{j} coincide outside \mathcal{I}_{j}, we conclude

$$
\left\|f_{j}\right\|-\left\|f_{j-1}\right\| \geq 2^{-d}
$$

iii) $\mathcal{I}_{j} \cap \mathcal{I}_{j-1}=\emptyset$. In this case we have

$$
\left\|f_{j-1}\right\|_{\mathcal{I}_{j}} \leq \frac{1}{2}
$$

therefore,

$$
\left\|f_{j}\right\|_{\mathcal{I}_{j}}-\left\|f_{j-1}\right\|_{\mathcal{I}_{j}} \geq \frac{1}{2}
$$

Lemma is proved.

The proof of the Theorem then easly follows from the lemma.
Proof. Let $A \subset \mathcal{S}$ and $|A|=n$. Note that it is enough to estimate the norm $\left\|\sum_{\left(\mathcal{I}_{i}, j_{i}\right) \in A} h_{\mathcal{I}_{i}}^{\left(j_{i}\right)}\right\|$.

We have, by Lemma 3, that

$$
\begin{equation*}
\left\|\sum_{\left(\mathcal{I}_{i}, j_{i}\right) \in A} h_{\mathcal{I}_{i}}^{\left(j_{i}\right)}\right\| \geq \frac{n}{2^{d}\left(2^{d}-1\right)(H+1)} . \tag{11}
\end{equation*}
$$

Also, by the triangle inequality, we get

$$
\begin{equation*}
\left\|\sum_{\left(\mathcal{I}_{i}, j_{i}\right) \in A} h_{\mathcal{I}_{i}}^{\left(j_{i}\right)}\right\| \leq n \tag{12}
\end{equation*}
$$

Finally, by (11) and (12), we have that

$$
\begin{equation*}
D(S)<2^{d}\left(2^{d}-1\right)(H+1) \tag{13}
\end{equation*}
$$

and this concludes the proof.

References

[1] V. N. Temlyakov, Greedy approximation, Acta Numerica, 17(2008), 235-409.
[2] S. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5(1999), 365-379.
[3] S. Gogyan, Greedy algorithm with regard to Haar subsystems, East Journal on Approximations, 11(2005), N2, 221-236.
[4] S. Gogyan, On democratic systems in $L_{1}(0,1)^{d}$, Dokl. Nats. Akad. Nauk Armen., 115(2015), N2, 98-101.
[5] S. Gogyan, On convergence of weak thresholding greedy algorithm in $L^{1}(0,1)$, Journal Approximation Theory, 161(2009), N1, 49-64.
[6] S. Gogyan, Democratic subsystems of the multivariate Haar systems, Dokl. Nats. Akad. Nauk Armen., 50(2015), N6, 26-32.
[7] Gogyan, S. and Dilworth, S. and Kutzarova, D., On the convergence of a weak greedy algorithm for the multivariate Haar basis, Constr. Approx., 39(2014), N2, 343-366.

Nerses Srapionyan
Yerevan State Univesity,
Alek Manukyan st. 1, Yerevan, 0025, Armenia.
nerses.srapionyan@gmail.com
Please, cite to this paper as published in
Armen. J. Math., V. 11, N. 8(2019), pp. 1.6

[^0]: ${ }^{1}$ Research was supported by a grant from the Science Committee of Armenia 18T1A081

