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Abstract. The paper considers the Riemann boundary value
problem in the half-plane in the class of functions that are C(ρ)-
continuous with respect to the weight ρ(x), when the weight
function has infinite number of zeros. Necessary and sufficient
conditions for solvability of the problem are established. If the
problem is solvable, solutions are represented in an explicit form.
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1 Introduction. Formulation of the problem

Let Π± = {x + iy : y ≷ 0} be the upper and lower half-planes respectively,
and let A be the class of functions Φ analytic in Π+

⋃
Π−, satisfying the

condition
|Φ(z)| ≤ C|z|m, |Imz| ≥ y0 > 0,

where m is a natural number and C is a constant, possibly depending on y0.
Let C(−∞; +∞)be the class of functions f(x) continuous on the real

axis for which the limits f(+∞), f(−∞) exist and f(+∞) = f(−∞) 6= 0.

By C
δ
(−∞; +∞)we denote the class of functions f ∈ C(−∞; +∞)

such that for any C > 0

|f(x1)− f(x2)| ≤M

∣∣∣∣ 1

x1
− 1

x2

∣∣∣∣δ
for x1, x2 > C > 0. Further in this article we consider that δ ∈ (1

2
, 1].

Denote by C(ρ)the class of functions f continuous on the real axis such
that

f(x)ρ(x) ∈ C(−∞; +∞) and ‖f‖C(ρ) = max
x∈(−∞,∞)

|f(x)ρ(x)|,

1
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where

ρ(x) =
∞∏
k=1

∣∣∣x− xk
x+ i

∣∣∣αk

, 0 < αk < 1, (1)

xk ∈ (−∞,+∞) are real numbers and the sequences {αk}∞1 , {xk}∞1 satisfy
some conditions.

The Riemann boundary value problem

Φ+(x)− a(x)Φ−(x) = f(x),

where Φ±(z) are analytic functions in Π±, has been investigated in weighted
spaces Lp(ρ), p ∈ (1,∞), ρ(x) =

∏N
k=1 |xk−x|αk by many authors; let’s note

some of them: Khvedelidze B.V. [1]-[3], Simonenko I.B. [4], [5], Tovmasyan
N.E. [8], [9], Soldatov A.P. [10], [11], Kazarian K., Soria F., Spitkovsky I.
[12], Kazarian K.S. [13], [14]. Also see [15] - [18].

The case of the unit circle when the weight function has the form

ρ(t) =
∞∏
k=1

|tk − t|αk , 0 < αk < 1, |tk| = 1

and arg tk ↓ 0 is investigated in L1(ρ) (see [19]) for

lim
r→1−0

‖ϕ+(rt)− a(t)ϕ−(r−1t)− f(t)‖L1(ρ) = 0,

where functions ϕ±(z) are analytic in the domains D+ = {z : |z| < 1},
D− = {z : |z| > 1} such that ϕ−(∞) = 0.

In the mentioned work some conditions on the numbers tk, k = 1, 2, ...
and {αk}∞1 are set. It is established that the Riemann homogeneous prob-
lem has infinite number of linearly independent solutions in L1(ρ), and the
general solution is determined in explicit form.

In the work [20] the Riemann boundary value problem is investigated as
follows: find an analytic function Φ ∈ A such that

lim
y→+0

‖Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)‖C(ρ) = 0,

where

ρ(x) =
N∏
k=1

∣∣∣x− xk
x+ i

∣∣∣αk

,

αk are arbitrary real numbers and the sequence xk satisfies the condition
xk ∈ (−∞,+∞).

In this paper we investigate the Riemann boundary value problem for
weighted spaces when the weight function has infinite number of zeros on
the boundary, as follows:
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Problem R Let f ∈ C(ρ). Find an analytic function Φ ∈ A in Π+ ∪ Π−

such that

lim
y→+0

‖Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)‖C(ρ) = 0,

where ρ(x) is defined by (1), a(x) ∈ Cδ
(−∞; +∞), a(x) 6= 0 and

|a(x)− a(∞)| < C|x|−δ at |x| ≥ C > 0.

It is proved that the homogeneous problem has one linearly independent
solution when the index of the coefficient a(x) greater than −1, otherwise it
does not have solution. We determine certain conditions that guarantee the
inhomogeneous problem R to have solutions.

2 Some auxiliary results

Let κ = inda(t), t ∈ (−∞,+∞),

S+(z) = exp
{ 1

2πi

∫ +∞

−∞

ln a1(t)dt

t− z

}
, z ∈ Π+,

S−(z) =
(z + i

z − i

)κ
exp
{ 1

2πi

∫ +∞

−∞

ln a1(t)dt

t− z

}
, z ∈ Π−,

(2)

where

a1(t) =
( t+ i

t− i

)κ
a(t), inda1(t) = 0.

Here we will consider two cases:
1. We assume that the sequence {xk}∞1 has a finite limit x0 and

∞∑
k=1

αk <∞.

Lemma 1 Let the sequence {xk}∞1 satisfy the following conditions:

∞∑
k=1

αk ln |x0 − xk| > −∞, (3)

|xk − xj| > c|xk − x0|, j 6= k (4)

for some fixed c > 0. Then

inf ρm = ρ0 > 0, m = 1, 2, ...,

where

ρm =
∞∏
k 6=m

∣∣∣xm − xk
xm + i

∣∣∣αk

.
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Proof. From condition (4) we have∣∣∣xj − xk
xj + i

∣∣∣αk

> cαk

∣∣∣x0 − xk
xj + i

∣∣∣αk

and
∞∏
k 6=j

∣∣∣xj − xk
xj + i

∣∣∣αk

>
∞∏
k=1

cαk

∞∏
k 6=j

∣∣∣x0 − xk
xj + i

∣∣∣αk

.

According to the condition (3), there exists δ > 0 such that inf ρm = δ > 0,
m = 1, 2, .... �

2. We assume that the limit of {xk}∞1 is infinite and

∞∑
k=1

αk ln |xk| <∞.

Lemma 2 Let the sequence {xk}∞1 satisfy the following condition:

|xk − xj| > c|xj|, j 6= k (5)

for some fixed c > 0. Then inf ρm = ρ0 > 0, m = 1, 2, ...

Proof. Taking into account that |xk − xj| > c|xk|, j 6= k, where c > 0 does
not depend on k and j, we get

∞∏
k 6=j

∣∣∣xj − xk
xj + i

∣∣∣αk

>
∞∏
k=1

cαk

∞∏
k 6=j

∣∣∣ xj
xj + i

∣∣∣αk

> C > 0.

Hence, inf ρm = ρ0 > 0, m = 1, 2, ... �

Let us denote

δk(x) =
∞∏
j 6=k

∣∣∣x− xj
x+ i

∣∣∣αj

and
δ(x) = δk+1(x)− δk(x), x ∈ [xk, xk+1).

Lemma 3 There exist x′k ∈ [xk, xk+1), k = 1, 2, ... such that δ(x′k) = 0.

Proof. Consider

δk+1(x)− δk(x) =
∞∏

j 6=k+1

∣∣∣xj − x
x+ i

∣∣∣αj

−
∞∏
j 6=k

∣∣∣xj − x
x+ i

∣∣∣αj

=

=
∞∏

j 6=k,k+1

∣∣∣xj − x
x+ i

∣∣∣αj

·
∣∣∣∣∣∣xk − x
x+ i

∣∣∣αk

−
∣∣∣xk+1 − x
x+ i

∣∣∣αk+1
∣∣∣.
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We can choose c1, c2 > 0 such that

δ(xk+1 − c1) = | − c1|αk+1 − |xk+1 − xk − c1|αk < 0

and
δ(xk + c2) = |xk − xk+1 + c2|αk+1 − |c2|αk > 0.

Taking into account that δ(x) is continuous, we see that the equation δ(x) =
0 has a solution. By pointing out those points with x′k, we obtain the proof
of the lemma. �

Let X1 = (−∞, x′1) and Xk = [x′k−1, x
′
k), k = 2, 3, ... It is clear that

Xk ∩Xk+1 = ∅, k = 1, 2, 3, ...

Lemma 4 Let the sequence of points {xk}∞1 satisfy either condition (3), (4)
or (5). Then there exists δ > 0 such that for any k = 1, 2, ... :

inf
x∈Xk

δk(x) > δ > 0.

Proof. Let x ∈ (x′k−1, xk), then |xj − x| ≥ |xj − xk| at j ≥ k + 1. If j < k,
then we have |xj − x| > |xj − xk−1|. Using Lemmas 1 and 2, we get∏

j≥k+1

∣∣∣xj − x
x+ i

∣∣∣αj

>
∏
j≥k+1

∣∣∣xj − xk
xk + i

∣∣∣αj

> δ > 0

and ∏
j<k

∣∣∣xj − x
x+ i

∣∣∣αj

>
∏
j<k

∣∣∣xj − xk−1
xk + i

∣∣∣αj

> δ.

Hence, δk(x) ≥ δ2, x ∈ (x′k−1, xk).
Let now x ∈ (xk, x

′
k), then at j < k we have |xj − x| > |xj − xk| and

k−1∏
j=1

∣∣∣xj − x
x+ i

∣∣∣αj

≥
k−1∏
j=1

∣∣∣ xj − xk
xk+1 + i

∣∣∣αj

> δ.

At j ≥ k + 1 we have |xj − x| > |xj − xk+1|. We get∏
j>k

∣∣∣xj − x
x+ i

∣∣∣αj

>
∏
j>k

∣∣∣xj − xk+1

xk+1 + i

∣∣∣αj

> δ.

Hence, δk > δ2. �

Denote
δ̃(x) = {δk(x), x ∈ Xk}, k = 1, 2, ...

From Lemmas 3 and 4 it follows that the function δ̃(x) is continuous, and

inf δ̃(x) > 0, x ∈ (−∞,∞).
We define the function Φ(z) as follows:

Φ(z) =
(z + i)S(z)

2πi

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− z
, z ∈ Π±.
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Lemma 5 The estimate

‖Φ+(x+ iy)− a(x)Φ−(x− iy)‖C(ρ) ≤ C‖f‖C(ρ),

where the constant C is independent of y, is true. The limit relation

lim
y→+0

‖Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)‖C(ρ) = 0

also holds.

Proof. We have

Φ+(x+ iy)− a(x)Φ−(x− iy) =

=
(x+ iy + i)S(x+ iy)

2πi

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− x− iy
−

−a(x)(x− iy + i)S(x− iy)

2πi

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− x+ iy
=

= I1(f, x, y) + I2(f, x, y),

where

I1(f, x, y) =
S(x+ iy)(x+ iy + i)

π

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

ydt

(t− x)2 + y2
,

I2(f, x, y) =
1

2πi

(
S(x+ iy)(x+ iy + i)− a(x)S(x− iy)(x− iy + i)

)
·

·
∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− x+ iy
.

Further,

I1(f, x, y)ρ(x) =
S(x+ iy)ρ(x)

π

∫ +∞

−∞

f(t)(x+ iy + i)

(t+ i)S+(t)δ̃(t)

ydt

(t− x)2 + y2
.

As S+(z) is bounded and δ̃(x) > δ > 0 (see Lemma 4), we get

|I1(f, x, y)ρ(x)| ≤ c̃1ρ(x)

∫ +∞

−∞

∣∣∣ f(t)ydt

(t− x)2 + y2

∣∣∣+
+c̃1ρ(x)

∫ +∞

−∞

∣∣∣f(t)
(
(x+ iy + i)− (t+ i)

)
t+ i

ydt

(t− x)2 + y2

∣∣∣ =

= I
(1)
1 (f, x, y) + I

(2)
1 (f, x, y).
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Thus,

I
(1)
1 (f, x, y) ≤ c̃1ρ(x) max

x∈(−∞;+∞)
|f(x)| ·

∫ +∞

−∞

y|dt|
(t− x)2 + y2

≤ c1‖f‖C(ρ).

As |(x+ iy + i)− (t+ i)| = |t− x− iy|, we get

I
(2)
1 (f, x, y) ≤ c̃2ρ(x) maxx∈(−∞;+∞) |f(x)| ·

∫ +∞

−∞

y|dt|
|t+ i||t− x+ iy|

≤

≤ c̃2‖f‖C(ρ) ·
{∫ +∞

−∞

y|dt|
|t+ i|2

+

∫ +∞

−∞

y|dt|
|t− x+ iy|2

}
≤ c2‖f‖C(ρ).

It may be noted that the constants c1, c2 do not depend on y. Therefore,

‖I1(f, x, y)‖C(ρ) ≤M1‖f‖C(ρ),

where M1 is a constant independent of y.
Further we have

I2(f, x, y)ρ(x) =
ρ(x)

2πi

(
S(x+ iy)(x+ iy + i)− a(x)S(x− iy)(x− iy + i)

)
·

·
∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− x+ iy
.

As
S+(x+ iy)(x+ iy + i)− a(x)S−(x− iy)(x− iy + i) =

= (x+ i)
(
S+(x+ iy)− a(x)S−(x− iy)

)
+

+iy
(
S+(x+ iy) + a(x)S−(x− iy)

)
,

and S+, S− are bounded, then using the fact (Lemma 1 in [21]) that for
y > 0 we have

|S+(x+ iy)− a(x)S−(x− iy)| < A
yδ

|x+ i|2δ
, (6)

where A > 0 is a constant, we get

I2(f, x, y) ≤ M̃2ρ(x) max
x∈(−∞;+∞)

|f(x)| ·
∫ +∞

−∞

|dt|
|t+ i||t− x+ iy|

≤M2‖f‖C(ρ),

where M2 is a constant independent of y.
Therefore,

‖Φ+(x+ iy)− a(x)Φ−(x− iy)‖C(ρ) ≤M‖f‖C(ρ),
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where M = max{M1,M2}.
Now let us verify the second part of the lemma. Let fn(x) ∈ Cδ

(ρ) be a
sequence of finite functions such that

lim
n→∞

‖fn(x)− f(x)‖C(ρ) = 0.

For an arbitrary n denote

Φn(z) =
(z + i)S(z)

2πi

∫ +∞

−∞

fn(t)

S+(t)(t+ i)δ̃(t)

dt

t− z
, z ∈ Π±.

We will prove that

lim
y→+0

‖Φ+
n (x+ iy)− a(x)Φ−n (x− iy)− fn(x)‖C(ρ) = 0. (7)

From the Sokhotski-Plemelj formula we have

Φ+
n (x+ iy)− a(x)Φ−n (x− iy) = fn(x), x ∈ (−A,A). (8)

If |x| > A, using the representation

Φ+
n (x+ iy)− a(x)Φ−n (x− iy) = J1(x, y) + J2(x, y),

where

J1(x, y) =
S+(x+ iy)(x+ iy + i)

2πi

∫ +∞

−∞

fn(t)

S+(t)(t+ i)δ̃(t)

ydt

(t− x)2 + y2
,

J2(x, y) =
1

2πi

(
S(x+ iy)(x+ iy + i)− a(x)S(x− iy)(x− iy + i)

)
·

·
∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

ydt

t− x+ iy
,

we get

max|z|>A ρ(x)|Φ+
n (x+ iy)− a(x)Φ−n (x− iy)− fn(x)| ≤

≤ max|z|>A ρ(x)|J1(x, y)|+ max|z|>A ρ(x)|J2(x, y)|.

Taking into account that fn(x) = 0, |x| > A, for J1(x, y) we get the estimate

ρ(x)|J1(x, y)| ≤

≤ C max|z|>A

{
ρ(x)y|x+ iy + i|

∫ +∞

−∞

∣∣∣ fn(t)

S+(t)(t+ i)

∣∣∣ ydt

(t− x)2 + y2

}
≤

≤ C‖fn‖C max|z|>A

{
y|x+ iy + i|

∫ 2A

−2A

dt

(t− x)2

}
=

= C1‖fn‖C max|z|>A

{
y|x+ iy + i|
|x2 − 4A2|

}
,
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where C = const. Hence, J1(x, y) tends to zero if y → +0.

Using the scheme of the proof of the first part of this lemma, we get that
ρ(x)|J2(x, y)| also tends to zero for y → +0. Therefore, taking into account
equality (8), we get (7).

Using the first estimate of this lemma and (7), we get

‖Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)‖C(ρ) ≤

≤ ‖Φ+
n (x+ iy)− a(x)Φ−n (x− iy)− fn(x)‖C(ρ) + ‖fn(x)− f(x)‖C(ρ)+

+‖[Φ+
n (x+ iy)− Φ+(x+ iy)]− a(x)[Φ−n (x− iy)− Φ−(x− iy)]‖C(ρ) ≤

≤ ‖Φ+
n (x+ iy)− a(x)Φ−n (x− iy)− fn(x)‖C(ρ) + 2‖fn(x)− f(x)‖C(ρ).

Hence, we get

lim
y→+0

‖Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)‖C(ρ) = 0.

�

3 Main theorems

Theorem 1 Consider the problem

lim
y→+0

‖Φ+(x+ iy)− a(x)Φ−(x− iy)‖C(ρ) = 0. (9)

a) In the case κ ≥ 0, the general solution of the problem is (Az + B)S(z),
where A,B are constants and S(z) is defined by (2).

b) When κ = −1, the general solution of the problem is A(z + i)S(z).

c) Otherwise, the homogeneous problem (9) does not have solution.

Proof. Note, that the solutions of the problem (9) could be either

P (z)S(z),
S(z)

xk − z
, k = 1, 2, ... or

S(z)

x0 − z
, (10)

where x0 is an accumulation point of the points {xk}∞1 and P (z) is a poly-
nomial of degree m.
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From (6) we have

|S+(x+ iy)(x+ iy)k − a(x)S−(x− iy)(x− iy)k| ≤

≤ |(x+ iy)k||S+(x+ iy)− a(x)S−(x− iy)|+

+|(x+ iy)k||a(x)S−(x− iy)| ·

∣∣∣∣∣1−
(
x− iy
x+ iy

)k∣∣∣∣∣ ≤
≤ |(x+ iy)k| ·

(
|S+(x+ iy)− a(x)S−(x− iy)|+ A1y

|x|

)
≤

≤ y(A|x|k−1 + yδ|x|k−2δ).

Therefore, if κ ≥ 0

|P (x+ iy)S+(x+ iy)− a(x)P (x− iy)S−(x− iy)| ≤ y(A|x|m−1 + yδ|x|m−2δ).

Hence, m must be 0 or 1 in order for P (z)S(z) to be a solution of the problem
(9). So the solution is represented in the form (Az +B)S(z).

If κ = −1, then S−(z) has pole of order 1 at the point of z = −i.
Therefore, P (z) is represented in the form A(z + i)S(z).

In the case κ < −1, S−(z) has pole of order |κ| at the point of z = −i.
Since m ≤ 1, we get that P (z)S(z) is not a solution of the problem (9).

Let us show that the last two of (10) do not satisfy the condition of the
problem (9). Indeed, consider

Φ1(z) =
S(z)

xk − z
.

Observe that

Φ+
1 (x+ iy)− a(x)Φ−1 (x− iy) =

S(x+ iy)

xk − x− iy
− a(x)

S(x− iy)

xk − x+ iy
=

= I1(x, y) + I2(x, y),

where

I1(x, y) =
2iyS(x+ iy)

(xk − x)2 + y2
, I2(x, y) =

S(x+ iy)− a(x)S(x− iy)

xk − x+ iy
.

In the case x = xk, we get

|I1(x, y) · ρ(x)| = C
ρ(x)

y
.
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Hence,
lim
y→+0

‖I1(x, y)‖C(ρ) =∞.

Now using the inequality (6), we get

|I2(x, y) · ρ(x)| ≤ c̃2
yδ

|x+ i|2δ
|x− xk|αk

|xk − x+ iy|
≤

≤ c2
yδ

|x+ i|2δ
|x− xk|αk

|xk − x|
1
2y

1
2

= c2
yδ−

1
2

|x− xk|
1
2
−αk
−→ 0 as y → +0.

Hence,
lim
y→+0

‖I2(x, y)‖C(ρ) = 0.

Therefore, Φ1(z) is not a solution of the problem (9).
Further, considering

Φ0(z) =
S(z)

x0 − z
,

we get
Φ+

0 (x+ iy)− a(x)Φ−0 (x− iy) = J1(x, y) + J2(x, y),

where

J1(x, y) =
2iyS(x+ iy)

(x0 − x)2 + y2
, J2(x, y) =

S(x+ iy)− a(x)S(x− iy)

x0 − x+ iy
.

Taking into account that xk → x0 as k →∞, similarly we have

lim
y→+0

‖J1(x, y)‖C(ρ) =∞, lim
y→+0

‖J2(x, y)‖C(ρ) = 0.

Therefore, Φ0(z) is also not a solution of the homogeneous problem (9). �

Theorem 2 Let f ∈ C(ρ), and the sequence of points {xk}∞1 satisfy either
condition (3), (4) or (5). Then the following assertions hold:
a) If κ ≥ 0, then the general solution of the inhomogeneous Problem R may
be represented as

Φ(z) =
(z + i)S(z)

2πi

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− z
+ (Az +B)S(z), (11)

z ∈ Π±, where A and B are constants.
b) If κ = −1, then the general solution of the inhomogeneous Problem R
may be represented as

Φ(z) =
(z + i)S(z)

2πi

∫ +∞

−∞

f(t)

(t+ i)S+(t)δ̃(t)

dt

t− z
+A(z + i)S(z), z ∈ Π±.
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c) If κ < −1, then the inhomogeneous Problem R is solvable if and only if
the function f satisfies the conditions∫ +∞

−∞

f(t)

δ̃(t)S+(t)

dt

(t+ i)j
= 0, j = 1, 2, ...,−κ− 1.

In this case, the general solution can be represented by (11), where A = B = 0.

Proof. The proofs of the points a) and b) follow from Lemma 4 and The-
orem 1.

c) Let κ < −1 and denote

Φ+(x+ iy)− a(x)Φ−(x− iy) = fy(x). (12)

Multiplying (12) by (x + i)−1 and taking into account that a(x) =
S+(x)

S−(x)
,

we get
Φ+(x+ iy)

S+(x)(x+ i)
− Φ−(x− iy)

S−(x)(x+ i)
=

fy(x)

S+(x)(x+ i)
.

Denoting

Φ+
y (z) =

Φ+(z + iy)

S+(z)(z + i)
, z ∈ Π+, Φ−y (z) =

Φ−(z − iy)

S−(z)(z + i)
, z ∈ Π−,

we get

Φ+
y (x)− Φ−y (x) =

fy(x)

S+(x)(x+ i)
.

In the case κ < −1, the function Φ−y (z) has zero of order |κ− 1| at the point
of z = −i. Consequently, f(x) satisfies the conditions∫ +∞

−∞

f(t)

δ̃(t)S+(t)

dt

(t+ i)j
= 0, j = 1, 2, ...,−κ− 1.

�
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