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Abstract. The aim of this article is to introduce the notion
of almost α-Hardy-Rogers-F -contractions in the partial metric
space and utilize it to establish the existence of a unique fixed
point. Some examples are given to demonstrate the validity of
our main result. Our results generalize classical and newer re-
sults in the literature. As an application, we solve the initial
value problem of damped harmonic oscillator and a nonlinear
fractional differential equation satisfying periodic boundary con-
ditions, which demonstrates the importance of our contraction
and provides motivation for such investigations.
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Introduction

Matthews [5] initiated the study of partial metric spaces, as a simplification
of metric spaces defined by Maurice Rèn Frèchet in 1906, which has extensive
applications in numerous branches of Mathematics in addition to the field
of the Computer science, for instance, Domain theory and denotational se-
mantics of programming languages. Partial metrics are more adaptable than
usual metrics and lead to partial orders. Further, topological characteristics
of partial metrics are more widespread than those of metrics, as the self
distance is not essentially zero in it. Diversity of nonlinear problems in real
world necessitates the exploration of newer and more superior tools for the
survival of the fixed point, consequently, it is imperative, from a reasonable
perspective, that the fixed point exists and is possibly unique. Acknowledg-
ing the works of Wardowski [9] and Samet et al. [8], the aim of this paper is
to introduce the notion of “almost α-Hardy-Rogers-F -contraction” in par-
tial metric spaces and then establish an adequate environment for the exis-
tence of a single fixed point. From this particular almost α-Hardy-Rogers-
F -contraction, we acquire several contractions of known type, for instance:
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Kannan contraction[3], Chatterjea contraction[1], Reich contraction[6], War-
dowski contraction[9], and so on. We solve the equation of damped harmonic
oscillator since in the real world frictional forces (such as air resistance) will
slow or dampen the motion of an object and damped harmonic oscillator
is a decent model for numerous physical structures (for instance, shock ab-
sorbers in automobiles, carpet pads, circuits with an inductor and capacitor).
Further, we solve nonlinear fractional differential equations since they have
applications in numerous fields of science.

1 Prelimanaries

Definition 1 [4, 5] Let X 6= φ and p̃ : X×X → [0,∞) satisfy the following
conditions:
(i) ρ = η ⇔ p̃(ρ, ρ) = p̃(η, η) = p̃(ρ, η) (0-separation),
(ii) p̃(ρ, ρ) ≤ p̃(ρ, η) (small self-distances),
(iii) p̃(ρ, η) = p̃(η, ρ) (symmetry),
(iv) p̃(ρ, η) ≤ p̃(ρ, µ) + p̃(µ, η)− p̃(µ, µ) (modified triangle inequality),
for all ρ, η, µ ∈ X. Then we say that (X, p̃) is a partial metric space.

Clearly, if p̃(ρ, η) = 0, then ρ = η, however, if ρ = η, then p̃(ρ, η) is not
essentially 0. In fact, p̃(ρ, ρ) is the size or weight of ρ, which is utilized to
portray the measure of data contained in ρ. Further, ρ is completely defined
if p̃(ρ, ρ) = 0. One may notice that the partial metric is equivalent to metric
plus size.

Moreover, the functions p̃s, p̃w : X ×X → R+ defined by

p̃s(ρ, η) = 2p̃(ρ, η)− p̃(ρ, ρ)− p̃(η, η) (1)

and

p̃w(ρ, η) = p̃(ρ, η)−min{p̃(ρ, ρ), p̃(η, η)}

are the (usual) metrics on X.

Definition 2 ([7]) The sequence {ρn} in (X, p̃)
(i) 0-converges to ρ ∈ X if limn→∞ p̃(ρn, ρ) = p̃(ρ, ρ) = limn→∞ p̃(ρn, ρn) = 0,
(ii) 0-Cauchy if limn,m→∞ p̃(ρn, ρm) = 0.

Definition 3 [7] If every 0-Cauchy sequence converges to ρ ∈ X and p̃(ρ, ρ) =
0, then (X, p̃) is 0-complete.

In a partial metric space every 0-Cauchy sequence is a Cauchy sequence,
however, the opposite is not always valid.
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Example 1 Let X = {a, b}, define

p̃(ρ, η) =

{
1, ρ = η,
3, otherwise.

The sequence {ρn = a, n ≥ 1} is not 0-Cauchy but converges to a. Hence
{ρn} is a Cauchy sequence.

Definition 4 [9] By F denote the family of functions F : (0,+∞) → R
satisfying

(F1) F is strictly increasing,

(F2) for all {an} ∈ R+, limn→∞ an = 0 iff limn→∞ F (an) = −∞,

(F3) there exists a number λ ∈ (0, 1) satisfying lima→0+ a
λF (a) = 0.

Definition 5 [8] A self mapping T on X is α-admissible if there exists a
function α : X ×X → R+ such that α(ρ, η) ≥ 1 implies α(Tρ, Tη) ≥ 1 for
all ρ, η ∈ X.

Example 2 [8] Let X = [0,∞). Define T : X → X as

Tρ =

{
ln|ρ|, ρ 6= 0,
3, otherwise,

and α : X ×X → [0,∞) as

α(ρ, η) =

{
3, ρ ≥ η,
0, otherwise.

Then T is α-admissible.

2 Main Results

Now we introduce the notion of “almost α-Hardy-Rogers-F -contraction“ in
partial metric spaces, and prove the existence and uniqueness of the fixed
point of this mapping. For the sake of convenience, we assume that an
expression −∞ · 0 has the value −∞.

Definition 6 A self mapping T on (X, p̃) is called an almost α-Hardy-
Rogers-F -contraction if there exist τ > 0, F ∈ F , and α : X × X →
{−∞} ∪ (0,+∞) such that p̃(Tρ, Tη) > 0 implies

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (m(ρ, η)) + Lp̃w(η, Tρ)

for all ρ, η ∈ X, where

m(ρ, η) = Ap̃(ρ, η) +Bp̃(ρ, Tρ) + Cp̃(η, Tη) +Dp̃(ρ, Tη) + Ep̃(η, Tρ),

A+B + C +D + E = 1, C 6= 1, E ≥ 0, and L ≥ 0.
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For A = D = E = 0, B + C = 1, C 6= 1 in Definition 6 we get

Definition 7 A self mapping T on (X, p̃) is called an almost α-Kannan-F -
contraction if there exist τ > 0, F ∈ F , and α : X ×X → {−∞}∪ (0,+∞)
such that p̃(Tρ, Tη) > 0 implies

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (m(ρ, η)) + Lp̃w(η, Tρ),

for all ρ, η ∈ X, where m(ρ, η) = Bp̃(ρ, Tρ) +Cp̃(η, Tη), B+C = 1, C 6= 1,
and L ≥ 0.

For A = B = C = 0, D + E = 1, E > 0 in Definition 6 we get

Definition 8 A self mapping T on (X, p̃) is called an almost α-Chatterjee-
F -contraction if there exist τ > 0, F ∈ F , and α : X×X → {−∞}∪(0,+∞)
such that p̃(Tρ, Tη) > 0 implies

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (m(ρ, η)) + Lp̃w(η, Tρ),

for all ρ, η ∈ X, where m(ρ, η) = Dp̃(ρ, Tη) +Ep̃(η, Tρ), D +E = 1, E > 0
and L ≥ 0.

For A+B + C = 1, C 6= 1, D = E = 0 in Definition 6 we get

Definition 9 A self mapping T on (X, p̃) is called an almost α-Chatterjee-
F -contraction if there exist τ > 0, F ∈ F , and α : X×X → {−∞}∪(0,+∞)
such that p̃(Tρ, Tη) > 0 implies

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (m(ρ, η)) + Lp̃w(η, Tρ),

for all ρ, η ∈ X, where m(ρ, η) = Ap̃(ρ, η) +Bp̃(ρ, Tρ) +Cp̃(η, Tη), A+B+
C = 1, C 6= 1 and L ≥ 0.

For B = C = D = E = 0 and A = 1 in Definition 6 we get

Definition 10 A self mapping T on (X, p̃) is called an almost α-Wardowski-
F -contraction if there exist τ > 0, F ∈ F , and α : X×X → {−∞}∪(0,+∞)
such that p̃(Tρ, Tη) > 0 implies

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (m(ρ, η)) + Lp̃w(η, Tρ)

for all ρ, η ∈ X, where m(ρ, η) = p̃(ρ, η) and L ≥ 0.

Theorem 1 Let an almost α-Hardy-Rogers-F -contraction T on a 0-complete
partial metric space (X, p̃) satisfy the following conditions

(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,
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(ii) T is α-admissible,

(iii) T is continuous.

Then T has a unique fixed point ρ∗ ∈ X such that for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. Let ρ0 ∈ X be such that α(ρ0, Tρ0) ≥ 1. Let a sequence {ρn}n∈N ∈
X be defined as ρn+1 = Tρn for all n ∈ N. If there exists n0 ∈ N such that
ρn0+1 = ρn0 , i.e., Tρn0 = ρn0 , then the conclusion follows. Hence, assume
that ρn+1 6= ρn for all n ∈ N. Therefore, from condition (i), we get

α(ρ0, ρ1) = α(ρ0, Tρ0) ≥ 1.

Using condition (ii), we get

α(ρ1, ρ2) = α(Tρ0, Tρ1) ≥ 1.

Again, using condition (ii), we get

α(ρ2, ρ3) = α(Tρ1, Tρ2) ≥ 1

and so on. Thus, by mathematical induction we get

α(ρn, ρn+1) ≥ 1, for all n ∈ N. (2)

Since T is an almost α-Hardy-Rogers-F -contraction, it holds

F (p̃(ρn, ρn+1)) = F (p̃(Tρn−1, Tρn)) ≤ α(ρn−1, ρn)F (p̃(Tρn−1, Tρn)),

and hence

τ + F (p̃(ρn, ρn+1)) ≤ τ + α(ρn−1, ρn)F (p̃(Tρn−1, Tρn))

≤ F

(
Ap̃(ρn−1, ρn) +Bp̃(ρn−1, Tρn−1) + Cp̃(ρn, Tρn) +Dp̃(ρn−1, Tρn)

+Ep̃(ρn, Tρn−1)

)
+ Lp̃w(ρn, Tρn−1)

≤ F

(
(A+B)p̃(ρn−1, ρn) + Cp̃(ρn, ρn+1) +Dp̃(ρn−1, ρn+1) + Ep̃(ρn, ρn)

)

+Lp̃w(ρn, ρn).
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By using the modified triangular inequality, we get

p̃(ρn−1, ρn+1) ≤ p̃(ρn−1, ρn) + p̃(ρn, ρn+1)− p̃(ρn, ρn).

Also p̃w is a metric on X, therefore

p̃w(ρn, ρn) = p̃(ρn, ρn)−min

{
p̃(ρn, ρn), p̃(ρn, ρn)

}
= 0.

Hence,

τ + F (p̃(ρn, ρn+1) ≤ F

(
(A+B)p̃(ρn−1, ρn) + Cp̃(ρn, ρn+1)

+D

(
p̃(ρn−1, ρn) + p̃(ρn, ρn+1)− p̃(ρn, ρn)

)
+ Ep̃(ρn, ρn)

)
= F

(
(A+B +D)p̃(ρn−1, ρn) + (C +D)p̃(ρn, ρn+1) + (E −D)p̃(ρn, ρn)

)
.

Since in a partial metric p̃(ρn, ρn) ≤ p̃(ρn, ρn+1), we have

F (p̃(ρn, ρn+1) ≤ F

(
(A+B +D)p̃(ρn−1, ρn) + (C + E)p̃(ρn, ρn+1)

)
− τ

< F

(
(A+B +D)p̃(ρn−1, ρn) + (C + E)p̃(ρn, ρn+1)

)
.

Note that F is strictly increasing, and hence

p̃(ρn, ρn+1) < (A+B +D)p̃(ρn−1, ρn) + (C + E)p̃(ρn, ρn+1).

Since A+B + C +D + E = 1 and C 6= 1, we have 1− C − E > 0 and

p̃(ρn, ρn+1) <
(A+B +D)

(1− C − E)
p̃(ρn, ρn−1) = p̃(ρn, ρn−1),

for all n ∈ N. Consequently,

F (p̃(ρn, ρn+1)) ≤ F (p̃(ρn−1, ρn))− τ for each n ∈ N.

Hence,

F (p̃(ρn, ρn+1)) ≤ F (p̃(ρn−2, ρn−1))− 2τ.

By generalizing, we get

F (p̃(ρn, ρn+1)) ≤ F (p̃(ρ0, ρ1))− nτ for all n ∈ N. (3)
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Taking the limit as n→∞ and using (F2), we get

lim
n→∞

p̃(ρn, ρn+1) = 0. (4)

Using (F3), we prove that there exists λ ∈ (0, 1) such that

lim
n→∞

(p̃(ρn, ρn+1))
λF (p̃(ρn, ρn+1)) = 0. (5)

Therefore, from inequality (3) it follows that

(p̃(ρn, ρn+1))
λ

(
F (p̃(ρn, ρn+1))− F (p̃(ρ0, ρ1))

)
≤ −(p̃(ρn, ρn+1))

λnτ ≤ 0. (6)

Using equations (4) and (5), we obtain

lim
n→∞

(n(p̃(ρn, ρn+1))
λ) = 0.

Hence, there exists n1 ∈ N such that n(p̃(ρn, ρn+1))
λ ≤ 1, i.e.,

p̃(ρn, ρn+1) ≤ n−
1
λ

for each n ≥ n1. Therefore, for all m > n > n1, we have

p̃(ρn, ρm) ≤
m−1∑
i=n

p̃(ρi, ρi+1)−
m−2∑
i=n

p̃(ρi+1, ρi+1)

=
m−1∑
i=n

p̃(ρi, ρi+1) <
∞∑
i=n

p̃(ρi, ρi+1) ≤
∞∑
i=1

i−
1
λ .

By the p-series test,
∑∞

i=1 i
− 1
λ is convergent for λ ∈ (0, 1), i.e., 1/λ > 1.

Hence, limn,m→∞ p̃(ρn, ρm) = 0, and {ρn} is a 0-Cauchy sequence. From 0-
completeness, it follows that there exists ρ∗ ∈ X such that limn→∞ ρn = ρ∗.
But T is a continuous function, therefore

p̃(ρ∗, Tρ∗) = lim
n→+∞

p̃(ρn, Tρn) = lim
n→+∞

p̃(ρn, ρn+1) = 0,

i.e., ρ∗ is a fixed point.
Let ρ∗ and v be fixed points of T , but yet ρ∗ 6= v. Using almost α-Hardy-

Rogers-F -contraction for ρ = ρ∗ and η = v, we obtain that p̃(Tρ∗, T v) > 0
implies

τ + α(ρ∗, v)F (p̃(Tρ∗, T v)) ≤ F (Ap̃(ρ∗, v) +Bp̃(ρ∗, Tρ∗) + Cp̃(v, Tv)

+Dp̃(ρ∗, T v) + Ep̃(v, Tρ∗)) + Lp̃w(v, Tρ∗),
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τ + α(ρ∗, v)F (p̃(ρ∗, v)) ≤ F (Ap̃(ρ∗, v) +Bp̃(ρ∗, ρ∗) + Cp̃(v, v) +Dp̃(ρ∗, v)

+ Ep̃(v, ρ∗)) + L

(
p̃(v, ρ∗)−min{p̃(v, v), p̃(ρ∗, ρ∗)}

)
,

τ+α(ρ∗, v)F (p̃(ρ∗, v)) ≤ F ((A+B+C+D+E)p̃(ρ∗, v))+L(p̃(v, ρ∗)−p̃(ρ∗, ρ∗)),
and

F (p̃(ρ∗, v)) ≤ F (p̃(ρ∗, v)),

since A + B + C + D + E = 1. Taking into account that F is strictly
increasing, we get

p̃(ρ∗, v) ≤ p̃(ρ∗, v),

which is possible iff p̃(ρ∗, v) = 0, i.e., ρ∗ = v. Thus, the fixed point of T is
unique. Further,

lim
n→∞

T nρ0 = lim
n→∞

T n−1ρ1 = ... = lim
n→∞

ρn = ρ∗.

�

Now, we display an example to provide motivation for investigating
non-linear almost α-Hardy-Rogers-F -contractions. It is interesting to note
that the exhibited example does not have any significant bearing to the
F -contraction.

Example 3 Let X = [0, 4] and

p̃(ρ, η) =

{
max{ρ, η}, ρ 6= η,
0, ρ = η.

The mapping T : X → X defined by Tρ = (ρ + 1)/2 for each ρ ∈ X is
continuous. Let us define the function α by

α(ρ, η) =

{
1, ρ ≥ η,
0, otherwise.

When 0 < η < ρ < 4, we have

p̃(Tρ, Tη) = max

{
ρ+ 1

2
,
η + 1

2

}
=
ρ+ 1

2
.

Clearly, T is almost α-Hardy-Rogers-F -contraction mapping with A =
0.1, B = 0.3, C = D = E = 0.2, τ = 0.01, L = 1, and F (α) = −1/α for all
ρ, η ∈ X. Also, for ρ0 = 1 we have

α(1, T1) = α(1, 1) = 1.
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Further, 1, 2 ∈ X, and α(2, 1) = 1 implies α(T2, T1) = α(1.5, 1) = 1, i.e.,
T is α-admissible.

Now a sequence {ρn} =

{
1

3n

}
n∈N

is 0-Cauchy as

lim
n→∞

p̃

(
1

3n
, 0

)
= p̃(0, 0) = lim

n,m→∞
p̃

(
1

3n
,

1

3m

)
.

Since 0 ∈ X, X is 0-complete. Therefore, all the hypotheses of Theorem 1
are verified, and ρ = 1 is the unique fixed point of T . Again, for all ρ0 ∈ X,
there exists a sequence {ρn} =

{
1 +

ρ0
n

}
n∈N

such that {T nρ0}n∈N converges

to 1.

If α(ρ, η) = 1 for all ρ, η ∈ X, and L = 0, then Theorem 1 is an improve-
ment of the result by Cosentino and Vetro [2].

Theorem 2 Let an almost α-Kannan-F -contraction T on a 0-complete par-
tial metric space (X, p̃) satisfy the following conditions

(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,

(ii) T is α-admissible,

(iii) T is continuous.

Then T has a unique fixed point ρ∗ ∈ X such that for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. The proof follows immediately by taking A = D = L = 0 and
B = C ∈ [0, 0.5] in Theorem 1.�

Theorem 3 Let an almost α-Chatterjee-F -contraction T on a 0-complete
partial metric space (X, p̃) satisfy the following conditions

(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,

(ii) T is α-admissible,

(iii) T is continuous.

Then T has a unique fixed point ρ∗ ∈ X such that for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. The proof follows immediately by taking A = B = C = 0, D+E =
1, and E ≥ 0 in Theorem 1.�

Theorem 4 Let an almost α-Reich-F -contraction T on a 0-complete partial
metric space (X, p̃) satisfy the following conditions
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(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,

(ii) T is α-admissible,

(iii) T is continuous.

Then T has a unique fixed point ρ∗ ∈ X such that for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. The proof follows immediately by taking D = E = 0, A+B+C = 1,
and C 6= 1 in Theorem 1.�

Theorem 5 Let an almost α-Wardowski-F -contraction T on a 0-complete
partial metric space (X, p̃) satisfy the following conditions

(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,

(ii) T is α-admissible,

(iii) T is continuous.

Then T has a unique fixed point ρ∗ ∈ X such that for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. The proof follows immediately by taking B = C = D = E = 0 and
A = 1 in Theorem 1.�

Example 4 Let X = [0, 4] and

p̃(ρ, η) =

{
max{ρ, η}, ρ 6= η,
0, ρ = η.

The mapping T : X → X defined by Tρ = (ρ + 1)/2 for all ρ ∈ X is
continuous. Let us define the function α by

α(ρ, η) =

{
1, ρ ≥ η,
0, otherwise.

When 0 < η < ρ < 4,

p̃(Tρ, Tη) = max

{
ρ+ 1

2
,
η + 1

2

}
= p̃(ρ, η).

Clearly, T is almost α-Wardowski-F -contraction mapping with τ = 0.01,
L = 1, and F (α) = −1/α for all ρ, η ∈ X. Also, for ρ0 = 1, we have

α(1, T1) = α(1, 1) = 1.
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Further, 1, 2 ∈ X, and α(2, 1) = 1 implies α(T2, T1) = α(1.5, 1) = 1, i.e.,
T is α-admissible.

Now a sequence {ρn} = {1/(n+ 1)}n∈N is 0-Cauchy as

lim
n→∞

p̃

(
1

n+ 1
, 0

)
= p̃(0, 0) = lim

n,m→∞
p̃

(
1

n+ 1
,

1

m+ 1

)
.

Since 0 ∈ X, X is 0-complete. Hence, all the hypotheses of Theorem 5 are
verified, and ρ = 1 is the unique fixed point of T . Again, for all ρ0 ∈ X, the

sequence {ρn} =
{

1 +
ρ0
n

}
n∈N

converges to 1.

Different biological, industrial and economic phenomena involving thresh-
old operations are discontinuous. In particular, neurons in a neural net either
fires (function value equals to 1) or does not fire (function value equals to
0) conditional to the fact that whether the input crosses a certain threshold
or not. Numerous industrial censors, bandpasses filters and the diode also
work in this manner. As a result, discontinuous mappings are of strong in-
terest for the scientists working in the fields of Natural sciences, Engineering,
Economics, Neural networking, etc.

We establish our next result for discontinuous mappings satisfying almost
α-Hardy- Rogers-F -contractions.

Theorem 6 Let an almost α-Hardy-Rogers-F -contraction T on a 0-complete
partial metric space (X, p̃) satisfy the following conditions

(i) there exists ρ0 ∈ X such that α(ρ0, Tρ0) ≥ 1,

(ii) T is α-admissible,

(iii) if {ρn} is a sequence in X satisfying α(ρn, ρn+1) ≥ 1 and ρn → ρ as
n→ +∞, then α(ρn, ρ) ≥ 1, for all n ∈ N.

Then T has a unique fixed point ρ∗ ∈ X, and for all ρ0 ∈ X the sequence
{T nρ0}n∈N is convergent to ρ∗.

Proof. Let ρ0 ∈ X be such that α(ρ0, Tρ0) ≥ 1, and let ρn+1 = Tρn for
each n ∈ N. Following the same pattern as in Theorem (1), {ρn} is a 0-
Cauchy sequence in (X, p̃). Hence, there exists ρ∗ ∈ X such that ρn → ρ∗

as n→ +∞. From the hypothesis (iii), we get

α(ρn, ρ
∗) ≥ 1 for all n ∈ N.

Case I: Let there exist in ∈ N such that ρin+1 = Tρ∗ and in > in−1 for each
n ∈ N. Then

ρ∗ = lim
n→∞

ρin+1 = lim
n→∞

Tρ∗ = Tρ∗,



12 A. TOMAR AND R. SHARMA

and hence ρ∗ is a fixed point of T .
Case II: Let ρn+1 6= Tρ∗, i.e., p̃(Tρn, Tρ

∗) > 0 for each n ≥ n0. As T is an
almost α-Hardy-Rogers-F -contraction on X, using (F1) we obtain that

τ + F (p̃(ρn+1, Tρ
∗)) = τ + F (p̃(Tρn, Tρ

∗)) ≤ τ + α(ρn, ρ
∗)F (p̃(Tρn, Tρ

∗))

≤ F

(
Ap̃(ρn, ρ

∗) +Bp̃(ρn, Tρn) + Cp̃(ρ∗, Tρ∗) +Dp̃(ρn, Tρ
∗)

+Ep̃(ρ∗, Tρn)

)
+ Lp̃w(ρ∗, Tρn)

≤ F

(
Ap̃(ρn, ρ

∗) +Bp̃(ρn, ρn+1) + Cp̃(ρ∗, Tρ∗) +Dp̃(ρn, Tρ
∗)

+Ep̃(ρ∗, ρn+1)

)
+ Lp̃w(ρ∗, ρn+1).

Now,
p̃(ρn, Tρ

∗) ≤ p̃(ρn, ρ
∗) + p̃(ρ∗, Tρ∗)− p̃(ρ∗, ρ∗),

and therefore

τ + F (p̃(ρn+1, Tρ
∗)) ≤ F

(
Ap̃(ρn, ρ

∗) +Bp̃(ρn, ρn+1) + Cp̃(ρ∗, Tρ∗)

+D

{
p̃(ρn, ρ∗) + p̃(ρ∗, Tρ∗)− p̃(ρ∗, ρ∗)

}
+ Ep̃(ρ∗, ρn+1)

)

+L

{
p̃(ρ∗, ρn+1)−min{p̃(ρ∗, ρ∗), p̃(ρn+1, ρn+1)}

}
.

If p̃(ρ∗, Tρ∗) > 0 then

lim
n→∞

p̃(ρn, ρ
∗) = lim

n→∞
p̃(ρn+1, ρ

∗) = p̃(ρ∗, ρ∗).

Taking the limit as n→∞ in the inequality above, we obtain

τ + F (p̃(ρ∗, Tρ∗)) ≤ F

(
(C +D)p̃(ρ∗, Tρ∗)

)
.

Since A+B + C +D + E = 1 and C 6= 1, we have C +D < 1, and hence

τ + F (p̃(ρ∗, Tρ∗)) ≤ F (p̃(ρ∗, Tρ∗)),

which contradicts τ > 0. Therefore, our assumption is wrong, and hence
p̃(ρ, Tρ∗) = 0, i.e., ρ∗ is a fixed point of T.
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Uniqueness of the fixed point follows easily, utilising an almost α-Hardy-
Rogers-F -contraction. Further,

lim
n→∞

T nρ0 = lim
n→∞

T n−1ρ1 = ... = lim
n→∞

ρn = ρ∗.

�

Example 5 Let X = [0,∞) and

p̃(ρ, η) =

{
max{ρ, η}, ρ 6= η,
0, ρ = η.

The mapping T : X → X defined as

T (ρ) =


ρ+ 2

3
, 1 ≤ ρ ≤ 4,

ρ

3
, ρ > 4,

for all ρ ∈ X is discontinuous. Let us define the function α by

α(ρ, η) =

{
1, ρ, η ∈ [1, 4],
0, otherwise.

When 0 < η < ρ < 4,

p̃(Tρ, Tη) = max

{
ρ+ 2

3
,
η + 2

3

}
=
ρ+ 2

3
.

Clearly, T is an almost α-Hardy-Rogers-F -contraction mapping with A =
0.1, B = 0.3, C = D = E = 0.2, τ = 0.01, L = 1, and F (α) = −1/α for all
ρ, η ∈ X. Also, for ρ0 = 1 we have

α(1, T1) = α(1, 1) = 1.

Further, 1, 2 ∈ X, and α(2, 1) = 1 implies that α(T2, T1) = α
(
4
3
, 4
3

)
= 1,

i.e., T is α-admissible.
Now, a sequence {ρn} = {1/3n}n∈N is 0-Cauchy as

lim
n→∞

p̃

(
1

3n
, 0

)
= p̃(0, 0) = lim

n,m→∞
p̃

(
1

3n
,

1

3m

)
.

Also, 0 ∈ X, and hence X is 0-complete.
Thus, all hypotheses of Theorem (6) are verified, and ρ = 1 is unique fixed

point. Again, for all ρ0 ∈ X there exists a sequence {ρn} =
{

1 +
ρ0
n

}
n∈N

such that {T nρ0}n∈N converges to 1.

Remark 3.1 Following the same pattern, we may establish the existence
of a fixed point for almost α-Kannan-F -contraction, almost α-Chatterjee-
F -contraction, almost α-Reich-F -contraction, and almost α-Wardowski-F -
contraction in a 0-complete partial metric space for a discontinuous mapping.
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3 Application to Damped Harmonic Oscilla-

tors

Most of the structures in the real world follow Hooke’s law when perturbed
near an equilibrium point, besides losing energy as they decay back to equi-
librium. The equation of damped harmonic oscillator can model entities os-
cillating whilst immersed in a fluid, as well as they can model more abstract
structures where quantities oscillate while losing energy. In real oscillators,
friction decelerates the motion of the system, consequently, the decrease in
velocity is proportional to the acting frictional force. Hence, the balance of
forces for damped harmonic oscillators is:

F = Fext − kρ− c
dρ

dt
= m

d2ρ

dt2
.

When there is no external force (i.e., Fext = 0),

d2ρ

dt2
+ 2ζω

dρ

dt
+ ω2ρ = 0, (7)

where ω =
√
k/m is the undamped angular frequency of the oscillator and

ζ =
c

2
√
mk

is the damping ratio. A damped harmonic oscillator is critically

damped for ζ = 1, i.e., the system comes back to the steady state as quickly
as time permits without oscillation (however, overshoot can happen as in
the case of doors).

Green’s function associated to equation (7) in case of critically damped
motion under conditions ρ(0) = 0, ρ′(0) = a is given by

G(t, v) =


−veτ(v−t), 0 ≤ v ≤ t ≤ 1,

−teτ(v−t), 0 ≤ t ≤ v ≤ 1,
(8)

where τ > 0 is a constant, calculated in terms of ζ and ω. Let X =
C([0, 1],R+). For an arbitrary u ∈ X, we define

‖u‖τ = sup
u∈[0,1]

{|ρ(u)|e−2τu}. (9)

Further, define p̃ : X ×X → R+ by

p̃(ρ, η) = ‖ρ− η‖τ = sup
u∈[0,1]

{|ρ(u)− η(u)|e−2τu}. (10)

In the next theorem, we consider the equation of critically damped har-
monic oscillators in which the damping of an oscillator causes it to return as
quickly as possible to its equilibrium position without oscillating back and
forth about this position:
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Theorem 7 Let T : X → X be a self mapping on 0-complete partial metric
space (X, p̃) such that

1. α(ρ0(u), Tρ0(u)) ≥ 1 and

Tρ(u) =

u∫
0

G(t, v)k(v, ρ(v))dv for ρ0 ∈ X,

where k : [0, 1]× R→ R is an increasing function which satisfies

|k(v, ρ(v))− k(v, η(v))| ≤ τ 2e−τ p̃(ρ, η)

for F ∈ F , τ ∈ R+, v ∈ [0, 1], and ρ, η ∈ R+,

2. α(ρ(u), η(u)) ≥ 1 implies α(Tρ(u), T η(u)) ≥ 1 for ρ, η ∈ X,

3. if {ρn} is a sequence in X such that ρn → ρ ∈ X and α(ρn(u), ρn+1(u)) ≥
1, then α(ρn(u), ρ(u)) ≥ 1 for all n ∈ N.

Then equation (7) has a solution.

Proof. Finding solution of equation (7) is equivalent to solving the integral
equation

ρ(u) =

u∫
0

G(t, v)k(v, ρ(v))dv.

Hence, ρ∗ is a solution of equation (7) iff ρ∗ is a fixed point of T . Using
condition (1), for all ρ, η ∈ X we have

|Tρ(u)− Tη(u)| ≤
u∫
0

G(t, v)|k(v, ρ(v))− k(v, η(v))|dv

≤
u∫
0

G(t, v)τ 2e−τ p̃(ρ, η)dv =
u∫
0

τ 2e−τe2τve−2τvp̃(ρ, η)G(t, v)dv

≤ τ 2e−τ‖p̃(ρ, η)‖τ ×
u∫
0

e2τsG(t, v)dv

= τ 2e−τ‖p̃(ρ, η)‖τ × [− e2τt

τ2
(2τt− τte−τt + e−τt − 1)],

i.e.,

|Tρ(u)− Tη(u)|e−2τu ≤ e−τ‖p̃(ρ, η)‖τ × (1− 2τt+ τte−τt − e−τt).

Since (1− 2τt+ τte−τt − e−τt) ≤ 1,

‖Tρ(u)− Tη(u)‖τ ≤ e−τ‖p̃(ρ, η)‖τ .
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Hence,
p̃(Tρ, Tη) ≤ e−τ‖p̃(ρ, η)‖τ .

Taking the logarithm, we obtain

τ + ln(p̃(Tρ, Tη)) ≤ ln‖p̃(ρ, η)‖τ .

Note that if F (ρ) = ln(ρ) then F ∈ F . Further, let α : X × X →
{−∞} ∪ (0,∞) be defined as

α(ρ, η) =


1, if α(ρ(u), η(u)) > 0, u ∈ [0, 1],

−∞, otherwise.

Then
τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (p̃(ρ, η)) + Lp̃w(η, Tρ)

for each ρ, η ∈ X, p̃(Tρ, Tη) ≥ 1, and L ≥ 0. Hence, T is an almost α-
Wardowski-F -contraction. According to condition (1), there exists ρ ∈ X
such that α(ρ, Tρ) ≥ 1. Further, using condition (2), we obtain

α(Tρ(u), T η(u)) ≥ 1

for each ρ, η ∈ X and u ∈ [0, 1].
Thus, T is α-admissible, and using condition (3), we see that all the

hypotheses of Theorem 6 (taking B = C = D = E = 0, A = 1) are verified,
and ρ∗ = Tρ∗. Hence, ρ∗ is a solution of the problem (7) in case of critically
damped harmonic oscillator. �

4 Application to fractional calculus

Fractional differential equations occur in numerous scientific problems, since
the mathematical modeling of systems and processes involves derivatives of
fractional order. However, for these nonlinear fractional differential equa-
tions, it is difficult to get exact solutions. An efficient technique for solving
such equations is required.

Now, we apply Theorem 5 to solve the following nonlinear fractional
differential problem

cDβ(ρ(u)) + f(u, ρ(u)) = 0, (11)

where ρ(0) = 0 = ρ(1), (0 ≤ u ≤ 1, β < 1), and f : [0, 1] × R → R is a
continuous function. The Caputo derivative is defined by

cDβ(g(u)) =
1

Γ(n− β)

u∫
0

(u− v)n−β−1gn(v)dv,(n = [β] + 1), n ∈ N,
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where Γ is the gamma function and β is the fractional order of the Caputo
derivative. It is worth mentioning here that the fractional order derivatives
depend not only on local conditions of the evaluated time, but also on all
the history of the function. Further, the Caputo derivative of a constant is
equal to zero, as in the integer-order case. The associated Green’s function
is

G(u, v) =


(u(1− v))ρ−1 − (u− v)ρ−1, 0 ≤ v ≤ u ≤ 1,

(u(1− v))ρ−1

Γρ
, 0 ≤ u ≤ v ≤ 1.

Let X = C([0, 1],R) be the set of all continuous real functions on [0, 1]. We
define ‖ρ‖∞ = supu∈[0,1] |ρ(u)| for all ρ ∈ X and define p̃ : X ×X → R+ by
p̃(ρ, η) = ‖ρ− η‖∞.

Theorem 8 Let α : R × R → R and T : X → X be a self mapping of a
0-complete partial metric space (X, p̃). Suppose that for all u ∈ [0, 1]

1. α(ρ0(u), Tρ0(u)) ≥ 1 and

Tρ(u) =

1∫
0

G(u, v)f(v, ρ(v))dv, ρ0 ∈ X,

where |f(v, ρ)− f(v, η)| ≤ e−τ |ρ− η|, ρ, η ∈ X,

2. α(ρ(u), η(u)) ≥ 1 implies α(Tρ(u), T η(u)) ≥ 1, for ρ, η ∈ X,

3. if {ρn} is a sequence in X such that ρn → ρ in X and α(ρn(u), ρn+1(u)) ≥
1, then α(ρn(u), ρ(u)) ≥ 1 for all n ∈ N.

Then equation (11) has a solution.

Proof. Clearly, finding a solution of equation (11) is equivalent to finding
ρ∗ ∈ X, i.e., a fixed point of T .

We have

|Tρ(u)− Tη(u)| = |
1∫
0

G(u, v)[f(v, ρ(v))− f(v, η(v))]dv|

≤
1∫
0

G(u, v)e−τ |ρ(v)− η(v)|dv

≤ e−τ‖ρ− η‖∞ supu∈I
1∫
0

G(u, v)dv ≤ e−τ‖ρ− η‖∞

Consequently,
‖Tρ(u)− Tη(u)‖∞ ≤ e−τ‖ρ− η‖∞
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or

p̃(Tρ, Tη) ≤ e−τ p̃(ρ, η).

Taking the logarithm, we get

τ + log(p̃(Tρ, Tη)) ≤ log(p̃(ρ, η)).

Note that F (ρ) = ln(ρ) is such that F ∈ F . Let α : X ×X → {−∞} ∪
(0,∞) be defined as

α(ρ, η) =


1, if α(ρ(u), η(u)) > 0, u ∈ [0, 1],

−∞, otherwise.

Then

τ + α(ρ, η)F (p̃(Tρ, Tη)) ≤ F (p̃(ρ, η)) + Lp̃w(η, Tρ)

for each ρ, η ∈ X with p̃(Tρ, Tη) ≥ 1 and L ≥ 0. Hence, T is an almost α-
Wardowski-F -contraction. According to condition (1), there exists ρ0 ∈ X
such that α(ρ0, Tρ0) ≥ 1. Further, by condition (2), for all ρ, η ∈ X and
any u ∈ [0, 1] we have α(Tρ(u), T η(u)) ≥ 1. Hence, T is α-admissible, and
tacking into account condition (3), we see that all the hypotheses of Theorem
(6) (with B = C = D = E = 0, A = 1) are verified, and ρ∗ = Tρ∗. Hence,
ρ∗ is a solution of the problem (11). �

It is worth mentioning here that similar applications can be given for
other known results as well.

Conclusion. In this article, we introduced the notion of almost α-Hardy-
Rogers-F -contraction, independent of the existing definitions of contrac-
tions, and established novel results for continuous as well as discontinuous
mappings in nonlinear analysis. From these results we deduced results for al-
most α-Kannan-F -contractions, almost α-Chatterjee-F -contractions, almost
α-Reich-F -contractions, and almost α-Wardowski-F -contractions. These
novel ideas prompt further examinations and applications. Our study is
encouraged by possible applications to partial metric spaces, diversity of
nonlinear problems in the real world, e.g. for real oscillators (like the case
of the door), and numerous engineering and scientific disciplines.
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