A correction to the article "On an Over-Convergence Phenomenon for Fourier Series. Basic Approach"

Anry Nersessian

In the item 4.3.3 of my work [1], the last formula of Theorem $\mathbf{3}$ contains errors. Below is the main part of the item, including the revised proof of Theorem 1, which corresponds to Theorem 3 of [1]. The remaining numbering from [1] is preserved.

4.3.3 The quasi-polynomial representation

If the parameters $\left\{\lambda_{k}\right\}$ and corresponding multiplicities $\left\{n_{k}\right\}$ are known, then (according to (13)) we can use the representation

$$
\begin{equation*}
\mathfrak{t}_{r, s}=(-1)^{s-r}\left(\prod_{\substack{p \in \mathfrak{Q}_{\mathbf{n}} \\ p \neq r}} \frac{s-p}{r-p}\right) \prod_{j \in \mathfrak{D}_{\mathrm{m}}}\left(\frac{r-\lambda_{j}}{s-\lambda_{j}}\right)^{n_{j}}, s=0, \pm 1, \ldots, \tag{27}
\end{equation*}
$$

where $r \in \mathfrak{D}_{\mathfrak{n}}, \mathfrak{D}_{\mathfrak{m}} \subset \mathfrak{D}_{\mathfrak{n}},\left\{n_{q}\right\}$ are corresponding positive integers, and $\sum_{j \in \mathfrak{Q}_{m}} n_{j}=n, \lambda_{p} \neq \lambda_{q}$ if $p \neq q$.

The following generalizes Theorem 1 for the case $\left\{\lambda_{r, p}\right\}=\lambda_{p}, p \in \mathfrak{D}_{m}$.
Theorem 1 Suppose the sequence (27) is given. Then the corresponding functions $\left\{\mathfrak{T}_{r}\right\}$ are quasi-polynomials and have the following explicit form

$$
\begin{equation*}
\mathfrak{T}_{r}(x)=\sum_{j \in \mathfrak{D}_{m}} \sum_{k=1}^{n_{j}} c_{r, j, k} \Lambda_{j, k}(x), r \in \mathfrak{D}_{n}, x \in[-1,1], \tag{28}
\end{equation*}
$$

where (see (16)) the system $\left\{\Lambda_{r, k}\right\}$ consists of the following quasi-polynomials

$$
\Lambda_{j, k}(x)=\frac{-\pi}{(k-1)!} \frac{d^{k-1}}{d \lambda_{j}^{k-1}}\left(\csc \left(\pi \lambda_{j}\right) \exp \left(i \pi \lambda_{j} x\right)\right)
$$

and

$$
c_{r, j, k}=\frac{(-1)^{r} \prod_{p \in \mathfrak{D}_{m}}\left(r-\lambda_{p}\right)^{n_{p}}}{\left(n_{j}-k\right)!\prod_{\substack{p \in \mathfrak{P}_{\mathfrak{n}} \\ p \neq r}}(r-p)} \frac{d^{n_{j}-k}}{d \lambda_{j}^{n_{j}-k}}\left(\frac{\prod_{\substack{p \in \mathfrak{P}_{\mathfrak{n}} \\ p \neq r}}\left(\lambda_{j}-p\right)}{\prod_{\substack{p \in \mathfrak{P}_{\mathfrak{m}} \\ p \neq j}}\left(\lambda_{j}-\lambda_{p}\right)^{n_{p}}}\right)
$$

Proof. The function $T_{r}(s)=\mathfrak{t}_{r, s}$, considered for $s \in \mathbb{C}$, is rational with poles of order n_{j} at $s=\lambda_{j}, j \in \mathfrak{D}_{m}$.

Let $U \subset \mathbb{C}$ be a simply connected open subset containing all points $\left\{\lambda_{j}\right\}, j \in \mathfrak{D}_{m}$, with the positively oriented simple boundary curve $\gamma=\partial U$. We have $T_{r}(s)=(1 / s), s \rightarrow \infty$, therefore, according to Cauchy's residue theorem

$$
0=\frac{1}{2 \pi i} \int_{\gamma} \frac{T_{r}(t)}{t-s} d t=T_{r}(s)+\sum_{j \in \mathfrak{D}_{m}} \operatorname{Res}_{z=\lambda_{j}}\left(\frac{T_{r}(z)}{z-s}\right), s \in U \backslash\left\{\lambda_{j}\right\}
$$

Let us show how these residues can be explicitly calculated. For given $r \in \mathfrak{D}_{\mathfrak{n}}$ and $j \in \mathfrak{D}_{m}$, the problem is reduced (see (27)) to finding the residues at the point $z=\lambda_{j}$ for the function

$$
W_{1}(z)=\frac{W(z)}{\left(z-\lambda_{j}\right)^{n_{j}}}, \text { where } W(z)=\frac{\prod_{\substack{p \in \mathfrak{P}_{\mathfrak{n}} \\ p \neq r}}(z-p)}{(s-z) \prod_{\substack{p \in \mathfrak{P}_{\mathfrak{m}} \\ p \neq j}}\left(z-\lambda_{p}\right)^{n_{p}}} \text {. }
$$

From here

$$
\begin{array}{r}
\operatorname{Res}_{z=\lambda_{j}} W_{1}(z)=\frac{1}{\left(n_{j}-1\right)!} \frac{d^{n_{j}-1}}{d \lambda_{j}^{n_{j}-1}} W\left(\lambda_{j}\right)= \\
\sum_{k=1}^{n_{j}} \frac{1}{\left(n_{j}-k\right)!\left(s-\lambda_{j}\right)^{k}} \frac{d^{n_{j}-k}}{d \lambda_{j}^{n_{j}-k}}\left(\frac{\prod_{\substack{p \in \mathfrak{Q}_{\mathfrak{n}} \\
p \neq r}}\left(\lambda_{j}-p\right)}{\prod_{\substack{p \in \mathfrak{O}_{\mathfrak{m}} \\
p \neq j}}\left(\lambda_{j}-\lambda_{p}\right)^{n_{p}}}\right) .
\end{array}
$$

This implies (see (18) and (21)) the formula (28).

References

[1] Anry Nersessian, On an Over-Convergence Phenomenon for Fourier Series. Basic Approach, Armen. J. Math., V. 10, N. 9 (2018), pp. 1-22.

Anry Nersessian
Institute of mathematics, of National Academy of Sciences of Armenia Bagramian ave. 24B, 0019 Yerevan, Armenia. nerses@instmath.sci.am

Please, cite to this paper as published in Armen. J. Math., V. 11, N. 2(2019), pp. 1-2

