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On Biorthogonalization of a Dirichlet System

Over a Finite Interval

M. S. Martirosyan and D. M. Martirosyan

Abstract. Ultimately aiming to estimate Dirichlet polynomi-
als, a representation problem for special biorthogonal systems of
exponentials is explored in L2(0, a). If a = +∞, a method of
construction of such systems through suitable Blaschke products
is known, but the method ceases to operate when a is finite.

It turns out that the Blaschke product cannot be even ad-
justed to maintain the old method for the new situation. The
biorthogonal system is then represented by a single determinant
of a modified Gram matrix of the original system. Bernstein-
type inequalities for Dirichlet polynomials and their higher or-
der derivatives are established. The best constants and extremal
polynomials are obtained in terms of the Gram matrix.
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Introduction

Let H be a Hilbert space equipped with an inner product 〈· , ·〉. The systems
{ek}nk=1 ⊂ H and {ϕk}nk=1 ⊂ H are called biorthogonal if

〈ei, ϕj〉 = δij,

where δij is the Kronecker’s delta. Furthermore, if the linear spans of the
systems coincide then they are called generated biorthogonal systems, or
GBS, in short.

Generated biorthogonal systems play the same important role as orthog-
onal systems usually do when the question concerns to extremal problems.
When orthogonalization of {ek}nk=1 is inconvenient, constructing of {ϕk}nk=1

can be a good alternative.
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When H = L2(0,∞) and {ek} is the Dirichlet system {e−λkx}nk=1 or,
more generally, the system of Müntz-Szasz,

{e−λkx, xe−λkx, . . . , xmk−1e−λkx}pk=1,

where λi, i = 1, 2, . . . , p are distinct complex numbers from the right half-
plane and mi, i = 1, 2, . . . , p are natural numbers, the corresponding sys-
tem of functions ϕk was implicitly created and used by L. Schwartz [1] and
M. M. Jerbashian [2], respectively. Later, with use of Blaschke products, an
explicit representation of those functions was obtained by V. Kh. Musoyan
[3], who elaborated the method of GBS for solving approximation prob-
lems. Some of the results benefited from the method can be found in [4]-[6].
These materials mostly refer to fast approximation problems, the area that
our recent research has been focused on.

In this paper, we consider the system of Dirichlet in L2(0, a) instead of
L2(0,∞). This brings up the question of whether or not the Musoyan’s
method developed in [3] can be still applied for constructing generated
biorthogonal systems. The simplest answer to this question is no, but fur-
ther analysis is made to show that the Blaschke product cannot be replaced
by another function to make the previous method applicable to the case of
L2(0, a). Despite this inconvenience, it turns out that estimation of Dirich-
let polynomials is still possible. In the second part of this paper Markov-
Bernstein-type inequalities for Dirichlet polynomials and their higher order
derivatives are established, where the best constants and extremal polyno-
mials are obtained in terms of the Gram matrix of the original system.

1 Generated Biorthogonal Systems in L2(0, a)

Consider the finite system
{e−λkx}nk=1, (1)

where λ1, λ2, . . . , λn are distinct complex numbers chosen from the right
half-plane Π+ = {λ : Reλ > 0}.

For 0 < a ≤ +∞, denote by {ϕ(a)
k (x)}nk=1 the system of functions chosen

from the linear span of (1) so that∫ a

0

ϕ
(a)
k (t)e−λrtdt = δkr,

for 1 ≤ k, r ≤ n. In short, this means that the systems (1) and {ϕ(a)
k (x)}nk=1

are GBS in L2(0, a). Let

J
(a)
k (λ) =

∫ a

0

ϕ
(a)
k (t)e−λtdt, λ ∈ Π+.
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For a given value of a ∈ (0,+∞], we examine the existence of some function
L(λ), analytic in Π+, such that

L(λ)

L′(λk)(λ− λk)
= J

(a)
k (λ), λ ∈ Π+. (2)

If a = +∞, then the Blaschke product

L(λ) =
n∏
k=1

λ− λk
λ+ λk

comfortably fits (2), which enables us (see [3]) to acquire ϕ
(+∞)
k explicitly:

ϕ
(+∞)
k (x) =

1

L′(λk)

n∑
m=1

e−λmx

L′(λm)(λm + λk)
.

The following result shows that the above method cannot be extended for
finite values of a to construct the GBS explicitly in L2(0, a).

Theorem 1 If 0 < a < +∞ then there is no function L(λ) satisfying the
equation (2).

Proof. Suppose the opposite. Then some function L(λ) will satisfy

L(λ) = L′ (λ1) (λ− λ1) J (a)
1 (λ) = L′ (λ2) (λ− λ2) J (a)

2 (λ) = . . .

. . . = L′ (λn) (λ− λn) J
(a)
n (λ), λ ∈ Π+.

To simplify notations let us admit Ai = L′(λi), i = 1, 2, . . . , n. Since

(λ− λ1)J (a)
1 (λ) =

Ak
A1

(λ− λk)J (a)
k (λ), k = 1, 2, . . . , n,

we arrive to

J
(a)
1 (λ)

λ− λ1
λ− λk

=
Ak
A1

∫ a

0

ϕ
(a)
k (t)e−λtdt, 1 ≤ k ≤ n. (3)

On the other hand,

J
(a)
1 (λ)

λ− λ1
λ− λk

= J
(a)
1 (λ)− (λ1 − λk)

J
(a)
1 (λ)

λ− λk
, 1 ≤ k ≤ n. (4)

Let’s fix a and k and denote ψ(t) =

∫ t

0

ϕ
(a)
1 (u)e−λkudu, where 0 ≤ t ≤ a.

Then

J
(a)
1 (λ)

λ− λk
=

1

λ− λk

∫ a

0

ϕ
(a)
1 (t)e−λkte−(λ−λk)tdt =

1

λ− λk

∫ a

0

e−(λ−λk)tdψ(t).



4 M. S. MARTIROSYAN AND D. M. MARTIROSYAN

Since for k ≥ 2 we have ψ(0) = ψ(a) = 0, integration by parts yields

J
(a)
1 (λ)

λ− λk
=

∫ a

0

ψ(t)eλkte−λtdt. (5)

From (3), (4), and (5) we conclude∫ a

0

(
Ak
A1

ϕ
(a)
k (t)− ϕ(a)

1 (t) + (λ1 − λk)ψ(t)eλkt
)
e−λtdt = 0, λ ∈ Π+,

and by Laplace transform uniqueness,

Ak
A1

ϕ
(a)
k (t)− ϕ(a)

1 (t) + (λ1 − λk)ψ(t)eλkt = 0,

where 2 ≤ k ≤ n, 0 ≤ t ≤ a. As a result, ψ(t)eλkt belongs to the linear span
of (1), which we’ll show below is not possible.

Let ϕ
(a)
1 (t) =

n∑
m=1

αme
−λmt. Then

ψ(t) =

∫ t

0

ϕ
(a)
1 (u)e−λkudu =

n∑
m=1

αm

∫ t

0

e−(λm+λk)udu =
n∑

m=1

αm
1− e−(λm+λk)t

λm + λk
,

which implies

ψ(t)eλkt = eλkt
n∑

m=1

αm

λm + λk
−

n∑
m=1

αm
e−λmt

λm + λk
.

Since Re(−λk) < 0, the function ψ(t)eλkt belongs to the linear span of (1)
if and only if

n∑
m=1

αm

λm + λk
= 0,

which is equivalent to∫ ∞
0

ϕ
(a)
1 (t)e−λktdt = 0 (k ≥ 2).

Similarly, we’ll obtain∫ ∞
0

ϕ
(a)
r (t)e−λktdt = 0 (k 6= r).

Due to the uniqueness of GBS, there should exist coefficients c
(a)
r ∈ C\{0}

such that ϕ
(a)
r (t) = c

(a)
r ϕ

(+∞)
r (t). Hence, the equations∫ a

0

ϕ
(+∞)
r (t)e−λktdt = 0 (k 6= r)

are valid for any positive variable a, and therefore, ϕ
(+∞)
r (t) ≡ 0, which is

false. �
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2 Estimation of Dirichlet Polynomials in L2(0, a)

In general, for any pair of generated biorthogonal systems in a Hilbert space
the following lemma takes place.

Lemma 1 If {ek}nk=1 and {ϕk}nk=1 are GBS in a Hilbert space then

ϕk =
1

det(G)
· det


〈e1, e1〉 〈e2, e1〉 . . . 〈en, e1〉

...
...

...
...

e1 e2 . . . en
...

...
...

...
〈e1, en〉 〈e2, en〉 . . . 〈en, en〉

 , (6)

where [ e1 e2 . . . en ] stands in the kth row and G denotes the Gram
matrix [〈ei, ej〉]ni,j=1.

Proof. Let ϕk = αk1e1+αk2e2+ . . .+αknen. Then αk1〈e1, er〉+αk2〈e2, er〉+
. . .+ αkn〈en, er〉 = δkr, for r = 1, 2, . . . , n. By Cramer’s rule,

αkj =
1

det(GT )
· det


〈e1, e1〉 . . . 0 . . . 〈en, e1〉

... . . .
... . . .

...
〈e1, ek〉 . . . 1 . . . 〈en, ek〉

... . . .
... . . .

...
〈e1, en〉 . . . 0 . . . 〈en, en〉

 ,

where [ 0 . . . 1 . . . 0 ]T stands in the jth column. Then by Laplace

expansion theorem, αkj =
Ckj

det(G)
, where Ckj is the k, j cofactor of GT .

Thus,

ϕk =
1

det(G)

n∑
j=1

Ckjej,

which is equivalent to (6). �

From now on, by vectors ek, k = 1, 2, . . . , n we will mean the functions of
the system (1) in L2(0, a), where a is finite. The value of a will not variate,

and thus the former notation ϕ
(a)
k will be simply replaced by ϕk. We have

〈ei, ϕj〉 = δij, 1 ≤ i, j ≤ n, where the inner product of f, g ∈ L2(0, a) is
defined as

〈f, g〉 =

∫ a

0

f(x)g(x)dx.

The set of Dirichlet polynomials generated by (1) will be denoted by E =
span{ek}nk=1 = span{ϕk}nk=1.
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Lemma 2 If P ∈ E then

P (z) =

∫ a

0

P (t)K(z, t)dt (z ∈ C),

where

K(z, t) = − 1

det(G)
· det


0 e−λ1t . . . e−λnt

e−λ1z

G
...

e−λnz

 . (7)

Proof. Let P (x) be a Dirichlet polynomial generated by (1). Then it is
analytically continued to the entire function

P (z) =
n∑
k=1

〈P, ϕk〉e−λkz =

∫ a

0

P (t)
n∑
k=1

ϕk(t)e
−λkzdt.

Due to Lemma 1 and the identity 〈ei, ej〉 = 〈ej, ei〉, the function K(z, t) =
n∑
k=1

ϕk(t)e
−λkz is now representable as

K(z, t) =
1

det(G)
·
n∑
k=1

det


〈e1, e1〉 〈e1, e2〉 . . . 〈e1, en〉

...
...

...
...

e−λkze−λ1t e−λkze−λ2t . . . e−λkze−λnt

...
...

...
...

〈en, e1〉 〈en, e2〉 . . . 〈en, en〉

 , (8)

where the vector [ e−λkze−λ1t e−λkze−λ2t . . . e−λkze−λnt ] stands for the
kth row of the Gram matrix G. It remains to check that the cofactor ex-
pansion of the right-hand side of (7) along the first column is equal to the
right-hand side of (8). �

Theorem 2 Let r be a non-negative integer. Then for any z ∈ C the equal-
ity

max
P∈E

|P (r)(z)|
||P ||L2(0,a)

=
√

Φr(z)

holds, where

Φr(z) = − 1

det(G)
· det


0 λr1e

−λ1z . . . λrne
−λnz

λr1e
−λ1z

G
...

λrne
−λnz

 . (9)

Moreover, for any fixed value of z ∈ C the maximum is reached for polyno-

mial Pz(t) =
dr

dzr
K(z, t).
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Note: when r = 0 we assume P (r)(z) ≡ P (z) and
dr

dzr
K(z, t) = K(z, t).

Proof. Due to the integral representation provided in Lemma 2, the proof
of this theorem in case of r = 0 may formally repeat the proof of its analogue
obtained earlier in [3] for L2(0,∞). Indeed, by Cauchy-Schwartz inequality,

|P (z)| ≤ ||P ||L2(0,a)||K(z, t)||L2(0,a), P ∈ E .

Then, by taking Pz(t) = K(z, t) ∈ E we arrive to K(z, z) = ||K(z, t)||2L2(0,a),

which results in |P (z)| ≤
√
K(z, z)||P ||L2(0,a) =

√
Φ0(z)||P ||L2(0,a).

Now let r ≥ 1. When P ∈ E , Lemma 2 yields

P (r)(z) =

∫ a

0

dr

dzr
K(z, t)P (t)dt (z ∈ C), (10)

and therefore, again by Cauchy-Schwartz inequality,

|P (r)(z)| ≤ ||P ||L2(0,a)||
dr

dzr
K(z, t)||L2(0,a), P ∈ E . (11)

Let’s notice that
dr

dzr
K(z, t) =

n∑
k=1

(−1)rλrke
−λkzϕk(t), which means that for

any fixed value of z ∈ C the function Pz(t) =
dr

dzr
K(z, t) belongs to E . Then

formula (10) works for Pz(t), i.e.

P (r)
z (z) =

∫ a

0

dr

dzr
K(z, t)

dr

dzr
K(z, t)dt = || d

r

dzr
K(z, t)||2L2(0,a) (z ∈ C).

Now according to (11), for any P ∈ E we will have the inequality

|P (r)(z)| ≤
√
P

(r)
z (z)||P ||L2(0,a) (z ∈ C),

where the equality holds for P ≡ Pz.
To complete the proof it remains to show that P

(r)
z (z) = Φr(z). The

first step to be taken on this direction is the r times differentiation of the
equation (8) with respect to z.

dr

dzr
K(z, t) =

(−1)r

det(G)
·

n∑
k=1

λrke
−λkzdet


〈e1, e1〉 〈e1, e2〉 . . . 〈e1, en〉

...
...

...
...

e−λ1t e−λ2t . . . e−λnt

...
...

...
...

〈en, e1〉 〈en, e2〉 . . . 〈en, en〉

 ,
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where the vector [ e−λ1t e−λ2t . . . e−λnt ] stands in the kth row of the
determinant. Applying the complex conjugate to both sides of this equation
followed by r times differentiation with respect to t we come to an expression
for P

(r)
z (t). The replacement of t by z in that expression produces

P (r)
z (z) =

=
1

det(G)

n∑
k=1

λrke
−λkzdet


〈e1, e1〉 〈e2, e1〉 . . . 〈en, e1〉

...
...

...
...

λr1e
−λ1z λr2e

−λ2z . . . λrne
−λnz

...
...

...
...

〈e1, en〉 〈e2, en〉 . . . 〈en, en〉

 . (12)

On the other hand, expanding the determinant in formula (9) along the first
column allows us to represent Φr as follows.

Φr(z) =
1

det(G)

n∑
k=1

λrke
−λkzdet


〈e1, e1〉 〈e1, e2〉 . . . 〈e1, en〉

...
...

...
...

λr1e
−λ1z λr2e

−λ2z . . . λrne
−λnz

...
...

...
...

〈en, e1〉 〈en, e2〉 . . . 〈en, en〉

 . (13)

The right-hand sides of (12) and (13) are complex conjugates of each other.

Since P
(r)
z (z) is real, we conclude P

(r)
z (z) = P

(r)
z (z) = Φr(z). �
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