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Abstract. The purpose of this paper is to establish a new re-
sult, which guarantees the asymptotic stability and boundedness
of the zero solution and the square integrability of solutions and
their derivatives to neutral type nonlinear differential equations
of fourth order. We illustrate our results by an example at the
end of the paper.
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Introduction

The investigation of qualitative behaviour of the solution of nonlinear delay
differential equation of fourth order has received considerable attention and
has been subject of many articles in the literature, for instance, Abou-El-
Ela et al. [1], Bereketoglu [3], Chin [7], Ezeilo [9]-[12], Kang [18], Omeike
[19], Rahmane and Fatmi and Remili [21], Rahmane and Remili [22], Remili
and Rahmane [28, 29, 30], Sadek [31], Sinha [32], Tejumola and Tchegnani
[33], Tunç [34], Vlček [35], Wu and Xiong [36]. For nonlinear differential
equations of neutral type, there are few results of stability, boundedness,
and square integrability of solutions.

In this article, we investigate some asymptotic properties of solutions of
the fourth-order nonlinear neutral delay differential equation(

x(t) + ρx (t− r)
)′′′′

+ a (t)x′′′(t) + b (t)x′′(t) + c (t)x′(t)

+ d (t)h (x (t)) = p(t, x(t), x′(t), x′′(t), x′′′(t)), (1)

where ρ and r are positive constants to be determined later, a(.), b(.), c(.), d(.),
and h(x) are continuous functions depending only on the arguments shown,
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and h′(x) exists and is continuous. For the sake of convenience, we introduce
the following notation

X(t) = x(t) + ρx(t− r),
Y (t) = x′(t) + ρx′(t− r),
Z(t) = x′′(t) + ρx′′(t− r),
W (t) = x′′′(t) + ρx′′′(t− r).

By a solution of (1) we mean a continuous function x : [tx,∞)→ R such that
X(t) ∈ C3([tx,∞),R) and which satisfies equation (1) on [tx,∞).

Without further mention, we will assume throughout that every solution
x(t) of (1) under consideration here is continuable to the right and nontrivial,
i.e, x(t) is defined on some ray [tx,∞). Moreover, we tacitly assume that
(1) possesses such solutions.

The problem of interest here is to investigate conditions under which
all solutions of (1) converge to zero and are square integrable. We shall
use appropriate Lyapunov functions and impose suitable conditions on the
function h(x).

1 Assumptions and main results

We shall state here some assumptions which will be used on the functions
that appeared in equation (1), and suppose that there are positive constants
a0, b0, c0, d0, a1, b1, c1, d1, h0, δ, and δ0 such that the following conditions hold:

i) 0 < a0 ≤ a (t) ≤ a1, 0 < b0 ≤ b (t) ≤ b1, 0 < c0 ≤ c (t) ≤ c1,
0 < d0 ≤ d (t) ≤ d1, and d′ (t) ≤ 0 for t ≥ 0.

ii) h (0) = 0 ,
h (x)

x
≥ δ > 0 for x 6= 0.

iii) h0 −
a0δ0
d1
≤ h′ (x) ≤ h0

2
for x ∈ R.

iv) b0 >
c1
a0

+
a1h0d1
c0

+
δ0
a0

= κ.

The following lemma will be useful in the proof of the next theorem.

Lemma 1 [17] Let h(0) = 0, xh(x) > 0 (x 6= 0) and

δ(t)− h′(x) ≥ 0 (δ(t) > 0).

Then,

2δ(t)H(x) ≥ h2(x), where H(x) =

∫ x

0

h(s)ds.

The first main result in this paper establishes sufficient conditions under
which all solutions of the fourth-order nonlinear differential equation (1)
and their first, second, and third derivatives converge to zero as t→∞.
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Theorem 1 In addition to assumptions (i)–(iv), assume that there are pos-
itive constants η1 and η2 such that the following conditions are satisfied:

H1)
∫ +∞
0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)| − d′ (t)) dt ≤ η1;

H2) |p(t, x, x′, x′′, x′′′)| ≤ |e(t)| and
∫ +∞
0
|e (t)| dt < η2.

Then, there exists a finite positive constant K such that every solution x(.)
of (1) and their derivatives x′(.), x′′(.), x′′′(.), and X ′′′(.) satisfy :

1. |x(t)| ≤
√
K, | x′(t)| ≤

√
K, |x′′(t)| ≤

√
K, |X ′′′(t)| ≤

√
K,

for all t ≥ 0.
2.

∫∞
0

(
x2(s) + x′2(s) + x′′2(s) + x′′′2(s)

)
ds <∞,

provided that

ρ < min
{

1,
2ε

αh0
,

2εc0
αc1 + αd1λ0

, 2
b0 − κ− ε (a1 + c1)

αb1 + β + αd1λ0 + αd1
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
, (2)

where

α =
1

a0
+ ε , β =

d1h0
c0

+ ε and ε < min

{
1

a0
,
d1h0
c0

,
b0 − κ
a1 + c1

}
. (3)

Proof. We first will write equation (1) as the equivalent system{
x′ = y, y′ = z, z′ = w,

W ′(t) = −a (t)w − b (t) z − c (t) y − d (t)h (x) + p(t, x, y, z, w).
(4)

It easy to see from (4) that
X ′(t) = y(t) + ρy(t− r) = Y (t)

X ′′(t) = z(t) + ρz(t− r) = Z(t)

X ′′′(t) = w(t) + ρw(t− r) = W (t).

Our main tool is the continuously differentiable function U = U(t, x, y, z, w)
defined by

U = G(t)V = e−
1
η

∫ t
0 γ(s)dsV, (5)

where γ (t) = |a′ (t)|+|b′ (t)|+|c′ (t)|−d′ (t), the function V = V (t, x, y, z, w)
is defined by

2V = [a (t)− β + αb (t)]z2 + [2βa (t) + 2αc (t)]yz + 2βyW + 2zW

+2d (t)h (x) y + 2αd (t)h (x)Z +
[
βb (t)− αh0d (t) + c (t)

]
y2

+αW 2 + αρd (t) (z (t− r))2 + 2βd (t)H (x)

+µ1

∫ t

t−r
z2 (s) ds+ µ2

∫ t

t−r
w2 (s) ds,
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and η is a positive constant to be determined later in the proof. By adding
and subtracting some terms, we can rewrite 2V as

2V = V1 + V2 + V3 + V4 + a (t)

[
W

a (t)
+ z + βy

]2
+c (t)

[
d (t)h (x)

c (t)
+ y + αz

]2
+
d2 (t)h2 (x)

c (t)

+µ1

∫ t

t−r
z2 (s) ds+ µ2

∫ t

t−r
w2 (s) ds,

where

V1 = 2d (t)

∫ x

0

h (s)

[
d1h0
c0
− 2

d (t)

c (t)
h′ (s)

]
ds,

V2 =
[
αb (t)− β − α2c (t)

]
z2,

V3 =
[
βb (t)− αh0d (t)− β2a (t)

]
y2 +

[
α− 1

a (t)

]
W 2,

V4 = 2εd (t)H (x) + 2αρd (t)h (x) z (t− r) + αρd (t) (z (t− r))2 .

To prove that V is positive definite, it suffices to show that V1, V2, V3, and
V4 are positives. Remark that the estimate (3) implies

1

a0
< α < 2

1

a0
and

d1h0
c0

< β < 2
d1h0
c0

. (6)

Then, using conditions i) ∼ iv), and inequalities (3) and (6), we obtain

V1 ≥ 2d (t)

∫ x

0

h (s)
d1
c0

[h0 − 2h′ (s)] ds

≥ 4
d0d1
c0

∫ x

0

h (s)

[
h0
2
− h′ (s)

]
ds ≥ 0.

Rearranging V2, we obtain the estimate

V2 = α

[
b (t)− βa (t)− αc (t)

]
z2 + β

[
αa (t)− 1

]
z2

≥ α

[
b (t)−

(d1h0
c0

+ ε
)
a (t)−

( 1

a0
+ ε
)
c (t)

]
z2 + β

[
a(t)

a0
− 1

]
z2

≥ α

[
b0 −

a1d1h0
c0

− c1
a0
− ε
(
a1 + c1

)]
z2

≥ α

[
b0 − κ− ε (a1 + c1)

]
z2 ≥ 0.
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We also have,

V3 ≥ β

(
b0 −

α

β
h0d1 − βa1

)
y2 +

(
α− 1

a0

)
W 2

≥ β

(
b0 −

c0
a0
− a1

d1h0
c0
− ε(c0 + a1)

)
y2 + εW 2

≥ β
(
b0 − κ− ε(c1 + a1)

)
y2 + εW 2 ≥ 0.

From the estimate on ρ, we have

V4 = 2εd (t)

∫ x

0

h(ξ)dξ + αρd (t)
[
(z (t− r) + h (x))2 − h2 (x)

]
≥ 2εd (t)

∫ x

0

h(ξ)dξ − 2αρd (t)

∫ x

0

h′(ξ)h(ξ)dξ

≥ 2d (t)

∫ x

0

(
ε− αρh0

2

)
h(ξ)dξ

≥ 2d0

(
ε− αρh0

2

)
H(x).

Thus, there exists a positive number D0 such that

2V ≥ D0

(
y2 + z2 +W 2 +H(x)

)
.

By Lemma 1 and condition iii) we conclude that there exists a positive
number D1 such that

2V ≥ D1

(
x2 + y2 + z2 +W 2

)
; (7)

thus, V is positive-definite. Then we can find positive-definite functions
U1(‖ξ‖) and U2(‖ξ‖) such that U1(‖ξ‖) ≤ V ≤ U2(‖ξ‖). By (5) and in-
equality (7), we get

U ≥ D2(x
2 + y2 + z2 +W 2), (8)

where D2 =
D1

2
e−

η1
η . Therefore, by conditions H1) and H2), we can find

positive-definite functions W1(‖ξ‖) and W2(‖ξ‖) such that

W1(‖ξ‖) ≤ U ≤ W2(‖ξ‖).

Now we prove that U̇ is a negative-definite function. Along any solution
(x(t), y(t), z(t), w(t)) of system (4), we have

2
.

V (4) = V5 + V6 + V7 + V8 + V9 + 2(βy + z + αW )p(t, x, y, z, w),
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where

V5 = −2

(
d1h0
c0

c (t)− d (t)h′ (x)

)
y2 − 2αd (t)

(
h0 − h′ (x)

)
yz,

V6 = −2
(
b (t)− αc (t)− βa (t)

)
z2,

V7 = −2
(
αa (t)− 1

)
w2,

V8 = −2εc (t) y2 − 2αρa(t)wtw − 2αρb(t)zwt − 2αρc (t) ywt

+2αρd (t)h′ (x) yzt + µ1z
2 + µ2w

2 − µ1z
2
t − µ2w

2
t

+2αρd (t) ztwt + 2ρwwt + 2βρzwt,

V9 = d′ (t)
[
2βH (x)− αh0y2 + 2h (x) y + 2αh (x) z

]
+ c′ (t)

[
y2 + 2αyz

]
+b′ (t)

[
αz2 + βy2

]
+ a′ (t)

[
z2 + 2βyz

]
+ αρd′ (t) [z (t− r) + h(x)]2

−αρd′ (t)h2(x).

Again, using conditions i), iii), iv), and inequalities (3) and (6), we get

V5 ≤ −2 [d (t)h0 − d (t)h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)]

[(
y +

α

2
z
)2
−
(α

2
z
)2]

≤ α2

2
d (t) [h0 − h′ (x)] z2.

Therefore,

V5 + V6 ≤ −2

[
b (t)− αc (t)− βa (t)− α2

4
d (t) [h0 − h′ (x)]

]
z2

≤ −2

[
b0 −

(
1

a0
+ ε

)
c1 −

(
d1h0
c0

+ ε

)
a1 −

α2

4
(a0δ0)

]
z2

≤ −2

[
b0 −

c1
a0
− d1h0a1

c0
− δ0
a0
− ε (a1 + c1)

]
z2

≤ −2 [b0 − κ− ε (a1 + c1)] z
2 ≤ 0,

V7 ≤ −2 [αa0 − 1]w2 = −2εa0w
2 ≤ 0,

and

V8 ≤ [−2εc (t) + αρc1 + αρd1λ0]y
2 + [αρb1 + βρ+ µ1]z

2

+[αρa1 + µ2 + 2ρ]w2 + [αρd1λ0 − µ1 + αρd1]z
2
t

+[αρa1 + αρb1 − µ2 + αρc1 + αρd1 + 2ρ+ βρ]w2
t

−2ρ|wwt|+ (ρ− ρ2)w2
t

≤ − (2εc0 − αρc1 − αρd1λ0) y2 + (αρb1 + βρ+ µ1) z
2

+ (αρa1 + 2ρ+ µ2)w
2 + (αρd1λ0 + αρd1 − µ1) z

2
t

+ (αρa1 + αρb1 + αρc1 + αρd1 + βρ+ 3ρ− µ2)w
2
t

−ρ2w2
t − 2ρ|wwt|,
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where

λ0 = max
{h0

2
,

∣∣∣∣h0 − a0δ0
d1

∣∣∣∣}.
By taking {

µ1 = αρd1λ0 + αρd1,
µ2 = αρa1 + αρb1 + αρc1 + αρd1 + βρ+ 3ρ,

we obtain

V8 ≤ − (2εc0 − αρc1 − αρd1λ0) y2 + (αρb1 + βρ+ µ1) z
2

+ (αρa1 + 2ρ+ µ2)w
2 − ρ2w2

t − 2ρ|wwt|.
Then we have

V5 + V6 + V7 + V8 ≤ −ρ2w2
t − 2ρ|wwt| − (2εc0 − αρc1 − αρd1λ0) y2

−2

[
b0 − κ− ε (a1 + c1)

]
z2

+

[
ρ (αb1 + β + αd1λ0 + αd1)

]
z2

−

(
2εa0 − ρ (2αa1 + 5 + αb1 + αc1 + αd1 + β)

)
w2,

provided that

ρ < min
{

1,
2ε

αh0
,

2εc0
αc1 + αd1λ0

, 2
b0 − κ− ε (a1 + c1)

αb1 + β + αd1λ0 + αd1
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
.

Hence, there exists a positive constant D3 such that,

V5 + V6 + V7 + V8 ≤ −2D3

(
y2 + z2 + w2 + ρ2w2

t + 2ρ|wwt|
)

≤ −2D3

(
y2 + z2 +W 2

)
. (9)

Using condition iii) and Lemma 1, we obtain

h2(x) ≤ h0H(x),

consequently,

|V9| ≤ −d′ (t)
[
2βH (x) + αh0y

2 +
(
h2 (x) + y2

)]
−d′ (t)

[
α
(
h2 (x) + z2

)
+ αρh2(x)

]
+|c′ (t) |

[
y2 + α

(
y2 + z2

)]
+ |b′ (t) |

[
αz2 + βy2

]
+|a′ (t) |

[
z2 + β

(
y2 + z2

)]
≤ λ2θ(t)

(
y2 + z2 +W 2 +H (x)

)
≤ 2

λ2
D0

θ(t)V,
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where we take

λ2 = max
{

2β + (αρ+ α + 1)h0, αh0 + α + 2β + 2, 1 + β + 3α
}
,

θ(t) = |a′ (t)|+ |b′ (t)|+ |c′ (t)| − d′ (t) .

By taking
1

η
=

1

D0

λ2, we obtain

.

V (4) ≤−D3(y
2 + z2 +W 2) +

1

η
θ(t)V

+
(
βy + z + αW

)
p(t, x, y, z, w). (10)

From (H2), (8), (10) and the Cauchy-Schwartz inequality, we get

.

U (4) =

(
.

V (4) −
1

η
γ (t)V

)
G(t)

≤ −D3

(
y2 + z2 +W 2

)
G(t)(

βy + z + αW
)
p(t, x, y, z, w)

)
G(t)

≤ (β|y|+ |z|+ α|W |) |p(t, x, y, z, w)|
≤ D4 (|y|+ |z|+ |W |) |e(t)|
≤ D4

(
3 + y2 + z2 +W 2

)
|e(t)|

≤ 3D4|e(t)|+
D4

D2

U |e(t)|, (11)

where D4 = max{α, β, 1}. Integrating (11) from 0 to t, and using the
condition (H2) and Gronwall inequality, we obtain

U(t, x, y, z,W ) ≤ A0 + 3D4η2

+
D4

D2

∫ t

0

U
(
s, x(s), y(s), z(s),W (s)

)
|e(s)|ds

≤
(
A0 + 3D4η2

)
e
D4
D2

∫ t
0 |e(s)|ds

≤
(
A0 + 3D4η2

)
e
D4
D2

η2 = K1 <∞, (12)

where A0 = U
(
0, x(0), y(0), z(0),W (0)

)
. In view of inequalities (8) and (12),

(x2 + y2 + z2 +W 2) ≤ 1

D2

U ≤ K, (13)

where K = K1

D2
. Clearly, (13) implies that

|x(t)| ≤
√
K, |y(t)| ≤

√
K, |z(t)| ≤

√
K, |W (t)| ≤

√
K for all t ≥ 0.
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Hence,

|x(t)| ≤
√
K, |x′(t)| ≤

√
K, |x′′(t)| ≤

√
K, |X ′′′(t)| ≤

√
K for all t ≥ 0.

(14)
Now, we prove the square integrability of solutions and their derivatives.

First, from (10 ) we obtain

.

V (4) ≤−D3(y
2 + z2 + w2) +

1

η
γ (t)V +

(
βy + z + αW

)
p(t, x, y, z, w),

thus,

.

U (4) =

(
.

V (4) −
1

η
γ (t)V

)
G(t)

≤ −D3

(
y2 + z2 + w2

)
G(t)

+
(
βy + z + αW

)
p(t, x, y, z, w)G(t). (15)

Now, we define Ft = F (t, x(t), y(t), z(t), w(t)) by

Ft = U + σ

∫ t

0

(
y2(s) + z2(s) + w2(s)

)
ds,

where σ > 0. It is easy to see that Ft is positive definite, since U =

U(t, x, y, z, w) is already positive definite. Using the estimate e−
η1
η ≤ G(t) ≤

1 by (H1), and (15), imply
.

Ft(4) ≤ −D3

(
y2(t) + z2(t) + w2(t)

)
e−

η1
η

+D4

(
|y(t)|+ |z(t)|+ |W (t)|

)
|p(t, x, y, z, w)|

+σ
(
y2(t) + z2(t) + w2(t)

)
,

where D4 is positive constant. By choosing σ = D3e
− η1
η , we obtain

.

Ft(4) ≤ D4

(
3 + y2(t) + z2(t) +W 2(t)

)
|e(t)|

≤ D4

(
3 +

1

D2

U
)
|e(t)|

≤ 3D4|e(t)|+
D4

D2

Ft|e(t)|. (16)

Integrating the last inequality (16) from 0 to t, by Gronwall inequality and
the condition (H2), we get

Ft ≤ F0 + 3D4η2 +
D4

D2

∫ t

0

Fs|e(s)|ds

≤
(
F0 + 3D4η2

)
e
D4
D2

∫ t
0 |e(s)|ds

≤
(
F0 + 3D4η2

)
e
D4
D2

η2 = K2 <∞.
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Therefore,∫ ∞
0

y2(s)ds < K2 ,

∫ ∞
0

z2(s) < K2 and

∫ ∞
0

w2(s)ds < K2,

which implies that∫ ∞
0

x′2(s)ds ≤ K2 ,

∫ ∞
0

x′′2(s)ds ≤ K2 ,

∫ ∞
0

x′′′2(s)ds ≤ K2. (17)

Next, multiplying (1) by x(t) and integrating by parts from 0 to t, we obtain∫ t

0

d(s)x(s)h(x(s))ds = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + L0, (18)

where
I1(t) = x′(t)X ′′(t)− x(t)X ′′′(t)−

∫ t
0
x′′2(s)ds− ρ

∫ t
0
x′′(s)x′′(s− r)ds,

I2(t) = −a(t)x(t)x′′(t) +
∫ t
0
a′(s)x(s)x′′(s)ds+

∫ t
0
a(s)x′(s)x′′(s)ds,

I3(t) = −b(t)x(t)x′(t) +
∫ t
0
b′(s)x(s)x′(s)ds+

∫ t
0
b(s)x′2(s)ds,

I4(t) = −1

2
c(t)x2(t) +

1

2

∫ t
0
c′(s)x2(s)ds,

I5(t) =
∫ t
0
x(s)p(t, x(s), x′(s), x′′(s), x′′′(s))ds,

and

L0 = [X ′′′(0) + a(0)x′′(0) + b(0)x′(0)]x(0)− x′(0)X ′′(0) +
1

2
c(0)x2(0).

From (14), (17) and conditions (i) and (H1), we have

I1(t) ≤ (2 + ρ)K +
1

2
ρ

∫ t

0

x′′2(s)ds+
1

2
ρ

∫ t

0

x′′2(s− r)ds,

≤ (2 + ρ)K +
1

2
ρ

∫ t

0

x′′2(s)ds

+
1

2
ρ

∫ 0

−r
x′′2(s)ds+

1

2
ρ

∫ t−r

0

x′′2(s)ds,

I2(t) ≤ a1K +K

∫ t

0

|a′(s)|ds+ a1

∫ t

0

x′(s)x′′(s)ds,

≤ a1K +
1

2
a1(x

′2(t)− x′2(0)) +K

∫ t

0

|a′(s)|ds,

I3(t) ≤ b1K +K

∫ t

0

|b′(s)|ds+ b1

∫ t

0

x′2(s)ds,

I4(t) ≤
1

2
c1K +

1

2
K

∫ t

0

|c′(s)|ds,

I5(t) ≤
√
K

∫ t

0

|e(s)|ds.
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It follows that

lim
t→+∞

I1(t) ≤ (2 + ρ)K +
1

2
ρK2 +

1

2
ρ

∫ 0

−r
x′′2(s)ds+

1

2
ρ

∫ +∞

0

x′′2(s)ds,

≤ (2 + ρ)K + ρK2 +
1

2
ρKr = L1,

lim
t→+∞

I2(t) ≤ 2a1K +Kη1 = L2, lim
t→+∞

I3(t) ≤ b1K +Kη1 + b1K2 = L3,

lim
t→+∞

I4(t) ≤
1

2
c1K +

1

2
Kη1 = L4, and lim

t→+∞
I5(t) ≤

√
Kη2 = L5.

Thus,

lim
t→+∞

(
I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

)
≤

5∑
i=1

Li <∞. (19)

Consequently, (18) and (19), and condition ii) give∫ ∞
0

x2(s)ds ≤ 1

d0δ

∫ ∞
0

d(s)x(s)h(x(s))ds ≤ 1

d0δ

5∑
i=0

Li <∞,

which completes the proof of the theorem. �

Remark 1 If p(t, x, y, z, w) = 0, similarly to above proof, the inequality (9)
becomes

V5 + V6 + V7 + V8 ≤ −2D3

(
y2 + z2 + (|w|+ ρ|wt|)2

)
,

then,

.

V (4) ≤−D3(y
2 + z2 + (|w|+ ρ|wt|)2)

+
1

η

(
|a′ (t)|+ |b′ (t)|+ |c′ (t)| − d′ (t)

)
V. (20)

From (H1), ( 8 ), ( 20 ) and the Cauchy-Schwartz inequality, we get

.

U (4) =

(
.

V (4) −
1

η
γ (t)V

)
G(t)

≤ −D3

(
y2 + z2 + (|w|+ ρ|wt|)2

)
G(t)

≤ −µ
(
y2 + z2 + (|w|+ ρ|wt|)2

)
≤ −µ

(
y2 + z2 +W 2

)
,

where µ = D3e
− η1
η . It can also be seen that the only solution of system

(4) for which
.

U (4)(t, x, y, z,W ) = 0 is the solution x = y = z = w = 0.
The above discussion guarantees that the trivial solution of equation (1) is
uniformly asymptotically stable, and the same conclusion as in the proof of
Theorem 1 can be drawn for square integrability of solutions of equation (1).
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2 Example

We consider the following fourth-order non-autonomous differential equation
of neutral type

(
x (t) +

1

322
x (t− r)

)′′′′
+
(
e−t sin t+ 2

)
x′′′

+

(
sin (t) + 7et + 7e−t

et + e−t

)
x′′ +

(
e−2t sin3 t+ 2

)
x′

+

(
1

20 cosh t
+

1 + 2 (1 + t2)

20 (1 + t2)

)(
x

x2 + 1
+

x

10

)
=

2 sin t

t2 + (x (t) + x′ (t))2 + (x′′ (t)x′′′ (t))2 + 1
. (21)

By taking

p(t, x(t), x′(t), x′′(t), x′′′(t)) =
2 sin t

t2 + (x (t) + x′ (t))2 + (x′′ (t)x′′′ (t))2 + 1

≤ e (t) =
2 sin t

t2 + 1
,

h (x) =
x

x2 + 1
+

x

10
,

h0 −
a0δ0
d1

= −53

10
≤ h′(x) =

1− x2

(1 + x2)2
+

1

10
(x) ≤ h0

2
=

11

10
,

a0 = 1 ≤ a (t) = e−t sin t+ 2 ≤ a1 = 3,

b0 =
13

2
≤ b (t) =

sin (t) + 7et + 7e−t

et + e−t
≤ b1 =

15

2
,

c0 = 1 ≤ c (t) = e−2t sin3 t+ 2 ≤ c1 = 3,

d0 =
1

10
≤ d (t) =

1

20 cosh t
+

1 + 2 (1 + t2)

20 (1 + t2)
≤ d1 =

1

5
,

and

b0 =
13

2
> κ =

d1h0a1
c0

+
c1 + δ0
a0

=
291

50
, for δ0 =

3

2
,

ε =
1

20
< min

{
1

a0
,
d1h0
c0

,
b0 − κ
a1 + c1

}
,

λ0 =
53

10
= max

{
h0
2
,

∣∣∣∣h0 − a0δ0
d1

∣∣∣∣} ,
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we find

α =
21

20
=

1

a0
+ ε, β =

49

100
=
d1h0
c0

+ ε,

ρ =
1

322
< min

{
1,

2ε

αh0
,

2εc0
α(c1 + d1λ0)

, 2
b0 − κ− ε (a1 + c1)

α(b1 + d1λ0 + d1) + β
,

2εa0
α(2a1 + b1 + c1 + d1) + 5 + β

}
.

It follows easily that∫ +∞

0

|e (t)| dt =

∫ +∞

0

∣∣∣∣ 2 sin t

t2 + 1

∣∣∣∣ dt ≤ ∫ +∞

0

2

t2 + 1
dt = π,∫ +∞

0

|a′ (t)| dt =

∫ +∞

0

∣∣ (cos t) e−t − (sin t) e−t
∣∣ dt ≤ ∫ +∞

0

2e−tdt = 2,∫ +∞

0

|b′ (t)| dt =

∫ +∞

0

∣∣∣∣(et + e−t) cos t− (et − e−t) sin t

(et + e−t)2

∣∣∣∣ dt
≤

∫ +∞

0

(
1

et + e−t
+

et − e−t

(et + e−t)2

)
dt ≤ π

2
,∫ +∞

0

|c′ (t)| dt =

∫ +∞

0

∣∣ 3
(
cos t sin2 t

)
e−2t − 2

(
sin3 t

)
e−2t

∣∣ dt
≤

∫ +∞

0

5e−2tdt =
5

2
,

and ∫ +∞

0

(−d′ (t)) dt =

∫ +∞

0

1

20

(
sinh t

cosh2 t
+

2t

(1 + t2)2

)
dt =

1

10
.

Therefore ∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)| − d′ (t)) dt < +∞.

Thus, all the assumptions of Theorem 1 hold, so solutions of (21) are bounded
and square integrable.
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