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Abstract. We consider the problem of parameter estimation by
observations of inhomogeneous Poisson processes. The intensity
function of the process is supposed to be a smooth function with
respect to the unknown parameter. We propose a Chi-square
statistic on the base of aggregated observations and we define a
Minimum Chi-square Estimator with the help of this statistics.
We show that this estimator is consistent and asymptotically
normal. We discuss possible generalizations of the obtained re-
sults.
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Introduction

Statistical inference for inhomogeneous Poisson processes provides interest-
ing problems of mathematical statistics. It consists in inferring the unknown
characteristics of the observed statistical model which is present in the in-
tensity function of the inhomogeneous Poisson process. We can mention
among others: Kutoyants [11, 12, 13], Karr [10], Kutoyants and Spokoiny
[14], Aubry and Dabye [1], Ba and Dabye [2]. The most important aspects of
inference are the theory of estimation and hypothesis testing. The method of
Minumum Chi-square Estimation occupies an important place in this field.
There are many applications in biology (Greenwood and Nikulin [6]), astro-
physics (Mighell [15]), nuclear physics (Harris and Kandji [7]), as well as the
references therein. The list is not exhaustive.

The Chi-square goodness of fit test was introduced in the work of Karl
Pearson in the early twentieth century. Originally, this is a simple hypothesis
testing problem. The study was made thanks to the statistics built by him
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that bears his name. As a result, many of the contributions have been made
later. Over the years, given the changing contexts, this method was applied
to many different statistical models and has led to many other interesting
tests. In the work by Greenwood and Nikulin [6], one can find a detailed
summary of the history of the development of this method done by many
researchers in this field.

The controversy between Pearson and Fisher regarding the distribution
to be compared is one of the great stories in the history of statistics.

Nowadays we know that the results from this remarkable and fantas-
tic discovery are only true for the case of simple null hypotheses. In 1924,
Fisher proved that in the case of composite hypotheses, where we need to
make estimates, the limit distribution of the Pearson’s statistic is no longer
valid. Moreover, this limit distribution depends on the method used to esti-
mate the parameters. In particular, if the parameters are estimated by the
Karl Pearson’s statistic minimization method or by any other asymptoti-
cally equivalent method, then the limit distribution may still be Chi-square,
but the number of degrees of freedom is reduced by the dimension of the
estimated parameter. Chernoff and Lehmann proved in [4] that using the
maximum likelihood method derived from raw data, the limit distribution of
the Pearson’s statistic changes dramatically. This distribution depends on
the unknown parameter and therefore is unusable for the test. Once again,
the problem of determining a free statistic (Asymptotic Distribution Free)
arises.

We know that the method of the Maximum Likelihood Estimation is
widely used and its sovereignty has been questioned by Berkson [3], who ar-
gues that the Minimum Chi-square, and not the Maximum Likelihood, is the
basic principle of the statistical inference. In any application, there is a wide
class of estimators that Berkson would classify as Minimum Chi-square esti-
mators, whereas in the literature the definition of such a class is not unam-
biguous. Moreover, according to Berkson, the Pearson’s Chi-square statistic
formulation requires data from a discrete distribution, or data from a con-
tinuous distribution grouped into intervals (or more generally subsets) of the
sample space. There is no doubt that the minimization of Pearson’s Chi-
square statistics almost invariably requires tedious and complex procedures,
but current authors believe that the preference for maximum likelihood is
perhaps more due to prejudice than to real computational problems.

Without going so far as to advocate the universal application of the
estimation based on the minimization of Chi-square statistics, they feel that
there are situations where it may be preferable to use other methods and, if
necessary, to use modern powerful calculation techniques.

Shortly after, Greenwood and Nikulin [6] contributed, under some regu-
larity conditions and for any continuous probability law, a limit distribution
that does not depend on an unknown parameter of the statistic constructed



ON PARAMETER ESTIMATION BY AGGREGATED POISSON OBSERVATIONS 3

from the Maximum Likelihood Estimator (MLE). Also worth mentioning is
Moore’s significant contribution in [16], which summarized all these results.
He showed, in particular, that the modifications made to Pearson’s statistics
are derived from Wald’s approach [17].

Many researchers preferred to focus their work on the tests, rather than
on the estimate of the Minimum Chi-square. The authors also discovered
that there are almost no works on Poisson processes in continuous time.

In this paper, after introducing our statistical model of continuous time
Poisson processes, we introduce a Chi-square type statistic and construct an
estimator of the parameter ϑ with the help of this statistic. Subsequently,
we study the asymptotic properties (the consistency and the asymptotic
normality) of this estimator. We are advancing the perspectives, and propose
possible generalizations of the obtained results.

1 Statistical model and the Minimum Chi-

square Estimator

Suppose that we observe n samples of an inhomogeneous Poisson process
Xj = {Xj(t), 0 ≤ t ≤ T}, j = 1, . . . , n. The mean and intensity functions
are denoted as Λ(ϑ, ·) and λ(ϑ, ·) respectively, i.e.

EϑXj(t) = Λ(ϑ, t) =

∫ t

0

λ(ϑ, s)ds, Λ(ϑ, T ) <∞.

The parameter ϑ ∈ Θ = (α, β), where |α|+ |β| <∞. Here ϑ is the unknown
parameter and Eϑ is the mathematical expectation.

Our goal is to construct an estimator of ϑ by aggregated data.
We introduce a partition A of the interval [0, T ] in the following way: we

choose numbers a0, . . . , aL such that

0 = a0 < a1 < . . . < aL−1 < aL = T,

and we obtain the intervals

A1 = [a0, a1), A2 = [a1, a2), . . . , AL = [aL−1, aL].

Note that these intervals verify the following relations

Al ∩ Am = ∅, l 6= m, ∪Ll=1Al = [0, T ], Λ(ϑ,Al) =

∫
Al

λ(ϑ, s) ds.

Here and in the sequel, in the notation ”Λ(ϑ,Al)”, Λ is the intensity measure.
Let us denote as well

X l
j = Xj(al)−Xj(al−1) =

∫ al

al−1

dXj(t), l = 1, . . . , L, j = 1, . . . , n,
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then Xj =
(
X l
j, l = 1, . . . , L

)
, j = 1, . . . , n, are independent Poisson

random vectors which verify

P
(
X l
j = k

)
=

(
Λ
(
ϑ, [al−1, al)

))k
k!

exp
{
− Λ

(
ϑ, [al−1, al)

)}
.

Our goal is to introduce the Chi-square type statistic and to construct
an estimator of the parameter ϑ with the help of this statistic.

Let us put

Tn(ϑ) =
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)2

Λ(ϑ,Al)
,

where

Λ̂n(Al) =
1

n

n∑
j=1

(
Xj(al)−Xj(al−1)

)
=

1

n

n∑
j=1

X l
j.

We have to estimate ϑ by the observations Xn =
(
Xj, j = 1, . . . , n

)
. We

denote ϑ0 the true value of the parameter. The derivative of any function
f(ϑ, t) (ϑ ∈ Θ, t ∈ [0, T ]) with respect to ϑ will be always denoted ḟ(ϑ, t).

Let us introduce the following functions

ρ (ϑ0, ϑ) =
L∑
l=1

(
Λ(ϑ,Al)− Λ(ϑ0, Al)

)2

Λ(ϑ0, Al)
, ψ(ϑ0, γ) = inf

|ϑ−ϑ0|>γ

√
ρ (ϑ0, ϑ),

δl = Λ̂n(Al)− Λ(ϑ0, Al), ϕl(ϑ) = Λ(ϑ0, Al)− Λ(ϑ,Al).

Define the Minimum Chi-square Estimator (MCE) ϑ?n which minimizes
the function Tn(ϑ) as a solution of the equation

Tn(ϑ?n) = inf
ϑ∈Θ

Tn(ϑ).

If this equation has more than one solution then any of them can be taken
as the MCE. In the sequel we will write

ϑ?n = arg inf
ϑ∈Θ

Tn(ϑ).

We are interested in asymptotic properties of the MCE for large samples
(n→∞). We need the following conditions.

Conditions C.
C1: κ∗ = min1≤l≤L infϑ∈Θ Λ(ϑ,Al) > 0.

C2: ψ(ϑ0, γ) > 0 for all ϑ0 ∈ Θ and γ > 0.

C3: The function Λ(ϑ, ·) is differentiable with respect to ϑ ∈ Θ, and

inf
ϑ∈Θ
D(ϑ) > 0, D(ϑ) =

L∑
l=1

Λ̇2(ϑ,Al)

Λ(ϑ,Al)
.
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2 Consistency

Theorem 1 Suppose that the conditions C1 and C2 hold. Then the MCE ϑ?n
is consistent. More precisely,

Pθ0 {|ϑ?n − ϑ0| > γ} ≤ 4 Λ(ϑ0, T )

nκ∗ ψ(ϑ0, γ)2 −−−−→n→+∞
0. (1)

Proof. Using the properties of the norm

‖a+ b‖ ≥ ‖a‖ − ‖b‖ and ‖a+ b‖ ≤ ‖a‖+ ‖b‖,

for any γ > 0 we can write

Pθ0 {|ϑ?n − ϑ0| > γ} = Pθ0
{

inf
|ϑ−ϑ0|≤γ

√
Tn(ϑ) > inf

|ϑ−ϑ0|>γ

√
Tn(ϑ)

}
= Pθ0

{
inf

|ϑ−ϑ0|≤γ

∥∥∥ δl
Λ(ϑ,Al)

+
ϕl(ϑ)

Λ(ϑ,Al)

∥∥∥ > inf
|ϑ−ϑ0|>γ

∥∥∥ δl
Λ(ϑ,Al)

+
ϕl(ϑ)

Λ(ϑ,Al)

∥∥∥}

≤ Pθ0

{
inf

|ϑ−ϑ0|≤γ

∥∥∥ δl
Λ(ϑ,Al)

+
ϕl(ϑ)

Λ(ϑ,Al)

∥∥∥
> inf
|ϑ−ϑ0|>γ

(∥∥∥ ϕl(ϑ)√
Λ(ϑ,Al)

∥∥∥− ∥∥∥ δl√
Λ(ϑ,Al)

∥∥∥)}.
Here and in the sequel ‖a‖ means ‖(a1, . . . , aL)‖, where ‖.‖ is the Euclidian
norm in RL. Further,

Pθ0 {|ϑ?n − ϑ0| > γ}

≤ Pθ0

{
inf

|ϑ−ϑ0|≤γ

∥∥∥ δl√
Λ(ϑ,Al)

∥∥∥+ inf
|ϑ−ϑ0|≤γ

∥∥∥ ϕl(ϑ)√
Λ(ϑ,Al)

∥∥∥
> inf
|ϑ−ϑ0|>γ

(∥∥∥ ϕl(ϑ)

Λ(ϑ,Al)

∥∥∥− ∥∥∥ δl√κ∗

∥∥∥)}

≤ Pθ0

{
2
∥∥∥ δl√κ∗

∥∥∥ > inf
|ϑ−ϑ0|>γ

∥∥∥ ϕl(ϑ)√
Λ(ϑ,Al)

∥∥∥} = Pθ0
{

2
∥∥∥ δl√κ∗

∥∥∥ > ψ(ϑ0, γ)

}
,

since

inf
|ϑ−ϑ0|≤γ

∥∥∥ ϕl(ϑ)√
Λ(ϑ,Al)

∥∥∥ = 0.



6 E. O. ACCRACHI, C. T. AÏDARA AND A. S. DABYE

Hence, we obtaine

Pθ0 {|ϑ?n − ϑ0| > γ} ≤ Pθ0
{

2
∥∥∥ δl√κ∗

∥∥∥ > ψ(ϑ0, γ)

}

= Pθ0

 2
√κ∗

(
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)2
) 1

2

> ψ(ϑ0, γ)


≤ 4

κ∗ ψ(ϑ0, γ)2Eϑ0

(
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ0, Al)

)2
)

=
4

κ∗ ψ(ϑ0, γ)2

L∑
l=1

Vϑ0

( 1

n

n∑
j=1

X l
j

)
=

4

nκ∗ ψ(ϑ0, γ)2

L∑
l=1

Λ(ϑ0, Al)

=
4 Λ(ϑ0, T )

nκ∗ ψ(ϑ0, γ)2 −−−−→n→+∞
0,

where we used the Tchebychev inequality and the fact that

L∑
l=1

Λ(ϑ0, Al) =
L∑
l=1

∫ al

al−1

λ(ϑ0, s) ds = Λ(ϑ0, T ).

The theorem is proved. �

Remark 1 For the proof of consistency there is no condition on the reg-
ularity of the model. This means that the obtained result is valid for the
discontinuous intensity functions λ(.).

3 Asymptotic normality

In this section we prove the weak convergence to a normal law of the MCE ϑ?n.
By ”⇒ ” we denote the convergence in distribution. The following theorem
is valid.

Theorem 2 If the conditions C are fulfilled, then the MCE ϑ?n is asymptot-
ically normal, that is

√
n
(
ϑ?n − ϑ0

)
⇒ N

(
0,D(ϑ0)−1

)
.

Proof. Let us recall that the function Tn(ϑ) is defined by

Tn(ϑ) =
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)2

Λ(ϑ,Al)
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and let us remind that the MCE ϑ?n is a solution of the equation

ϑ?n = arg inf
ϑ∈Θ

Tn(ϑ).

The function Tn(ϑ) is differentiable with respect to ϑ. The MCE ϑ?n mini-
mizes the function Tn(ϑ) and is consistent for ϑ0 in the open set Θ. So the
MCE is in the open set Θ with a probability converging to 1, and with the
same probability the derivative

∂

∂ϑ
Tn(ϑ?n) = 0. (2)

The calculation of the derivative Tn(ϑ) with respect to ϑ gives us

∂

∂ϑ
Tn(ϑ) = −2

L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)
Λ̇(ϑ,Al)

Λ(ϑ,Al)

−
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)2

Λ̇(ϑ,Al)

Λ(ϑ,Al)
2

= −
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ,Al)

)
Λ̇(ϑ,Al)

Λ(ϑ,Al)
2

(
Λ̂n(Al) + Λ(ϑ,Al)

)
.

Therefore, the equation (2) becomes

L∑
l=1

(
Λ̂n(Al)− Λ(ϑ?n, Al)

)
Λ̇(ϑ?n, Al)

Λ(ϑ?n, Al)
2

(
Λ̂n(Al) + Λ(ϑ?n, Al)

)
= 0. (3)

Recall that

Λ̂n(Al) =
1

n

n∑
j=1

X l
j

and, according to the weak law of large numbers,

Λ̂n(Al)→ Eϑ0X l
j = Λ(ϑ0, Al). (4)

As the MCE is consistent and the functions Λ (ϑ,Al) , Λ̇ (ϑ,Al) are continues,
the equation (3) can be rewritten as

L∑
l=1

(
Λ̂n(Al)− Λ(ϑ?n, Al)

)
Λ̇(ϑ?n, Al)

Λ(ϑ?n, Al)
2

(
2Λ(ϑ0, Al)

)(
1 + o(1)

)

= 2
L∑
l=1

(
Λ̂n(Al)− Λ(ϑ?n, Al)

)
Λ̇(ϑ0, Al)

Λ(ϑ0, Al)

(
1 + o(1)

)
= 0
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where o(1) is convergence in probability.
Let us introduce the random variable

ζn(ϑ0, Al) =
√
n
(

Λ̂n(Al)− Λ(ϑ0, Al)
)

=
1√
n

n∑
i=1

(
Xj(al)−Xj(al−1)− Λ(ϑ0, Al)

)
=

1√
n

n∑
i=1

(
X l
j − Λ(ϑ0, Al)

)
=⇒ ζl ∼ N (0,Λ(ϑ0, Al)) . (5)

Adding and subtracting Λ(ϑ0, Al) to ζn(ϑ?n, Al) and using the Taylor expan-
sion, we obtain

ζn(ϑ?n, Al) =
√
n
(

Λ̂n(Al)− Λ(ϑ?n, Al)
)

=
√
n
(

Λ̂n(Al)− Λ(ϑ0, Al)
)
−
√
n
(

Λ(ϑ?n, Al)− Λ(ϑ0, Al)
)

= ζn (ϑ0, Al)−
√
n
(
ϑ?n − ϑ0

)
Λ̇
(
ϑ̃n, Al

)
,

where ϑ̃n is an intermediate value between ϑ0 and ϑ?n. Then

L∑
l=1

(
ζn(ϑ0, Al)−

√
n
(
ϑ?n − ϑ0

)
Λ̇(ϑ̃n, Al)

)
Λ̇(ϑ0, Al)

Λ(ϑ0, Al)

(
1 + o(1)

)
= 0.

Consider the following random variable

u?n =
√
n
(
ϑ?n − ϑ0

)
, ϑ?n = ϑ0 +

u?n√
n
.

We can write
L∑
l=1

Λ̇(ϑ0, Al)

Λ(ϑ0, Al)
ζn(ϑ0, Al) (1 + o (1))− u?n

L∑
l=1

Λ̇(ϑ0, Al)
2

Λ(ϑ0, Al)

(
1 + o(1)

)
= 0

and

u?n =

(
L∑
l=1

Λ̇(ϑ0, Al)
2

Λ(ϑ0, Al)

)−1 L∑
l=1

Λ̇(ϑ0, Al)

Λ(ϑ0, Al)
ζn(ϑ0, Al)

(
1 + o(1)

)
.

Further,

L∑
l=1

Λ̇(ϑ0, Al)

Λ(ϑ0, Al)
ζn(ϑ0, Al) =⇒

L∑
l=1

Λ̇(ϑ0, Al)

Λ(ϑ0, Al)
ζl ∼ N (0,D (ϑ0)) ,

and hence

u?n =
√
n (ϑ?n − ϑ0) =⇒ N

(
0,D (ϑ0)−1) .

�
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Remark 2 According to the theorem, the limit variance of the MCE is the
same as the limit variance of the MLE. This is an important property of the
MCE.

The detailed analysis of the proof shows that we have the convergence of
moments too and, in particular,

lim
n→∞

nEϑ0 (ϑ?n − ϑ0)2 = D (ϑ0) .

Moreover, this convergence is uniform on compacts K = [α1, β1] ⊂ Θ:

lim
n→∞

sup
ϑ0∈K

∣∣nEϑ0 (ϑ?n − ϑ0)2 −D (ϑ0)
∣∣ = 0. (6)

4 On asymptotic efficiency

Let us fix a partition A and denote
{
P(n)
ϑ , ϑ ∈ Θ

}
the family of measures

induced in the space RnL by the observations Xn = (X1, . . . , Xn). The
likelihood ratio formula is

L (ϑ,Xn) = exp

{
n∑
j=1

L∑
l=1

X l
j ln Λ (ϑ,Al)− n

L∑
l=1

Λ (ϑ,Al)−
n∑
j=1

L∑
l=1

ln
(
X l
j

)}
.

We suppose that the conditions C are fulfilled and put ϕn = n−1/2. Then
the normalized likelihood ratio

Zn (u) =
L (ϑ0 + ϕnu,X

n)

L (ϑ0, Xn)
, u ∈ Un =

(
α− ϑ0

ϕn
,
β − ϑ0

ϕn

)
admits the representation

Zn (u) = exp

{
u∆n (ϑ0, X

n)− u2

2
I (ϑ0) + εn

}
.

Here

∆n (ϑ0, X
n) =

1√
n

n∑
j=1

L∑
l=1

Λ̇ (ϑ0, Al)

Λ (ϑ0, Al)

[
X l
j − Λ (ϑ0, Al)

]
,

I (ϑ0) =
L∑
l=1

Λ̇ (ϑ0, Al)
2

Λ (ϑ0, Al)
, ∆n (ϑ0, X

n) =⇒ N (0, I (ϑ0))

and εn → 0 (convergence in probability).

Therefore the family of measures
{
P(n)
ϑ , ϑ ∈ Θ

}
is locally asymptotically

normal (LAN), and we have the following minimax lower bound on the risk
of all the estimators ϑ̄n

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|≤δ

nEϑ
(
ϑ̄n − ϑ

)2 ≥ I (ϑ0)−1 ,

for all ϑ0 ∈ Θ.
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This lower bound allows us to define the class of asymptotically efficient
estimators as estimators ϑ̄n which satisfy the equality

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|≤δ

nEϑ
(
ϑ̄n − ϑ

)2
= I (ϑ0)−1 ,

for all ϑ0 ∈ Θ.

Note that the MLE ϑ̂n, defined by the relation L
(
ϑ̂n, X

n
)

= supϑ∈Θ L (ϑ,Xn)

is one of the solutions of the equation

n∑
j=1

L∑
l=1

Λ̇(ϑ̂n, Al)

Λ(ϑ̂n, Al)

[
X l
j − Λ(ϑ̂n, Al)

]
= 0.

This estimator is consistent, asymptotically normal

√
n(ϑ̂n − ϑ0) =⇒ N

(
0, I (ϑ0)−1)

and asymptotically efficient (see [11] and [9]).
Thanks to the convergence (6), we can write

sup
|ϑ−ϑ0|≤δ

nEϑ
(
ϑ̄n − ϑ

)2 −→ sup
|ϑ−ϑ0|≤δ

D (ϑ) −→ D (ϑ0) = I (ϑ0)−1

as n→∞ and δ → 0. Therefore, the MCE ϑ?n is asymptotically efficient.

5 Possible generalizations

1. The multidimensional case
(
ϑ ∈ Θ ⊂ Rd, d > 1

)
can be treated by the

similar way. The only difference is in the definition of the matrix

D (ϑ)r,m =
L∑
l=1

∂Λ(ϑ, Al)

∂ϑr

∂Λ(ϑ, Al)

∂ϑm
, r,m = 1, . . . , d.

The MCE in this case is asymptotically normal with the limit covari-
ance matrix D(ϑ0)−1.

2. Let us consider the following problem. Suppose we have the possibility
to choose the partitionA = (Al, l = 1, . . . , L) such that ∪Ll=1Al = [0, T ]
and Al ∩ Am = ∅ if l 6= m. The following question naturally arises:
how to choose it in optimal way? We know that the limit variance of
the MCE is D(ϑ0,A)−1, where

D(ϑ0,A) =
L∑
l=1

Λ̇(ϑ0, Al)
2

Λ(ϑ0, Al)
.
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Therefore, in order to minimize D(ϑ0,A)−1 we have to maximize
D(ϑ0,A). In other words, we have to find A∗ = (A?l , l = 1, . . . , L)
such that

D?(ϑ0,A) =
L∑
l=1

Λ̇(ϑ0, A
?
l )

2

Λ(ϑ0, A?l )
≥ D(ϑ0,A),

for any choice of the partition A = (Al, l = 1, . . . , L). Of course, the
optimal choice A∗ = A∗ (ϑ0) depends on the unknown parameter ϑ0.
The partitionA∗ (ϑ0) is obtained as a result of the corresponding prob-
lem of optimization. A similar problem for the MLE was considered
by Kutoyants and Spokoiny [14] (see also Kutoyants [13], section 4.3).
As in these works, the solution carried is out in two steps. First, we
construct a preliminary consistent estimator θ̄N of the parameter ϑ0

by one part of observations XN = (X1, . . . , XN), where N < n. To do
it we can take any A satisfying the conditions C. Then, using this es-
timator, we can take the partition A∗

(
ϑ̄N
)

and prove the asymptotic
“optimality” of this construction.

3. Another interesting problem can be the choice of the partition in such a
way that the contributions of the observations from different intervals
to the limit variance of MCE are equal. This means that A is such
that

d(ϑ0) =
Λ̇(ϑ0, A1)2

Λ(ϑ0, A1)
=

Λ̇(ϑ0, Al)
2

Λ(ϑ0, Al)
, l = 2, . . . , L.

Once more, the “optimal” A depends on the unknown parameter ϑ0.
The solution of this problem can be carried out in two steps, too. First,
we construct, as above, a consistent estimator, and then we use it to
define the sets.

4. The obtained results allow constructing the corresponding goodness-
of-fit test with basic parametric hypothesis. The test can be asymp-
totically distribution free, but it is consistent against a special class of
alternatives. As in classical case, the alternatives which give the same
values of Λ (ϑ0, Al) cannot be detected by the test.
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