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Introduction

The concepts of a dimonoid and a dialgebra were introduced by Loday [1].
Dimonoids are a tool to study Leibniz algebras [1]. A dimonoid is a set with
two binary associative operations satisfying certain additional identities. A
dialgebra is a linear analogy of a dimonoid. The concept of a g-dimonoid
(a generalized dimonoid) is introduced in [2]. The Cayley-type theorems for
dimonoids are proved in [3].

In this paper two Cayley-type theorems for g-dimonoid are suggested.

Definition 1 An algebra (X;<,>) with two binary operations is called
g-dimonoid [2] if it satisfies the following four identities of associativity:

(x<y)<z=2<(y<2), (Ay)
(x<y)<z=z<(y > 2), (Asz)
(x<y)=z=z> (y > 2), (A3)
(x>=y)=z=z> (y > 2). (Ag)

Definition 2 A g-dimonoid (X; <,>) is called dimonoid [1l] if it satisfies
the following additional identity of associativity, too:

(x=y)<z=x> (y<2). (As)
Let us give two examples of a dimonoid.
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Example 1 Let (X;<) be a zero semigroup, that is x < y = 0 for all
x,y € X, where 0 is a fired element of the set X. For fived elements a,b
of the set X, where a # 0,b # 0,a # b, we define on X the operation =,

assuming
a, T=1vy=0>o,
r-Y= { Y

0, otherwise,

for all x,y € X. It is easy to see that (X;=<,>) is a dimonoid.
Example 2 Let X # (. Define the following operations on the set X :

rT=Yy=y,

x<y=um,
for all z,y € X. Then the algebra (X; <, >) is a dimonoid.

Let us give an example of a g-dimonoid which is not a dimonoid.

Example 3 Let X be an arbitrary nonempty set, | X| > 2, and let X* be
the set of all finite nonempty words in the alphabet X. Denote the first
(respectively, the last) letter of a word w € X* by w (respectively, by w™).
Define the following operations <, > on X*:

w=<u=w?,

w=u=ub,

for all w,u € X*. It is easy to check that the binary algebra (X*;<,>) is a
g-dimonoid, but is not a dimonoid.

Definition 3 Let S be a semigroup, X # O. The map (1) : S x X —
X;(s,xz) — s-x is called a left S-act of X if the identity (st) -x =s-(t-x)
holds.

Definition 4 Let S be a semigroup, X # . The map (-) : X x § —
X; (z,8) v - s is called a right S-act of X if the identity x - (st) = (x-s)-t
holds.

Definition 5 Let the map (-) be a left S-act of X and the map (o) be a left
S-act of Y: The map ¢ : X — Y 1is called morphism of that left S-acts if
o(s-z)=sop(x) foralz e X and s € S.

A morphism of right S-acts can be defined in a similar way. Let (S;e) be a
semigroup, X # ). We can interpret the operation (e) as a left and a right
S-act of S.
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Definition 6 Let (S;e) be a semigroup, X # O, and maps (-) and (o) are
respectively left and right S-acts of X; then the map ¢ : X — S is called
(I,7)-morphism of semigroup S if the following conditions are valid:

p(s- ) = sep(x),

p(ros)=p(r)es,
forallz € X and s € S.

Definition 7 A dialgebra is a vector space over a field equipped with two
binary bilinear operations satisfying the azioms of a dimonoid [1].

For the second order formulae (and the second order languages) see [4] 5],
60]. Let us recall, that a hyperidentity [7, [8 @) 10, 1T, 12] (or V(V)-identity)
is a second-order formula of the following form:

\V/Xl, ce ,vaxl, R ,xn(wl = WQ),

where wy,ws are words (terms) in the alphabet of functional variables
Xq,...,X,, and objective variables 1, ..., x,. However hyperidentities are
usually presented without universal quantifiers: w; = ws. A hyperidentity
w; = wo is said to be satisfied in the algebra (Q;) if this equality holds
whenever every object variable x; is replaced by an arbitrary element from @
and every functional variable X; is replaced by an arbitrary operation of the
corresponding arity from Y. A possibility of such replacement is assumed,
that is:
X1l 1 Xul} C{Al A €S} = Tl = Ts),

where |S] is the arity of S, and T{¢ x) is called the arithmetic type of (Q; X).
A T-algebra is an algebra with arithmetic type 7' C N. A class of algebras
is called a class of T-algebras if every algebra in it is a T-algebra.

Definition 8 An algebra (Q;Y) is called idempotent, if the following hyper-
wdentity of idempotency is valid:

X(z,...,x) ==, (id)

for alln € Tig;x).

The hyperidentity is said to be non-trivial if m > 1, and it is trivial if
m = 1. The number m is called the functional rank of the given hyperiden-
tity.

A binary algebra (Q; X)) is said to be a g-algebra (e-algebra) if there is an
operation A € ¥ such that Q(A) is a quasigroup (a groupoid with a unit).
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A binary algebra (Q;) is called non-trivial if |X| > 1. It is known [7], [§
(see also [9] [13]) that if an associative non-trivial hyperidentity is satisfied
in a non-trivial g-algebra (e-algebra), then this hyperidentity can only be of
the functional rank 2 and of one of the following forms:

X(x,Y(y,2)) =Y (X(z,y),2), (asm);
X(x,Y(y,2)) = X(Y(z,y),2), (asm),
Y(e,Y(y, ) = X(X(2,5), 2). (asm)s

Moreover, in the class of g-algebras (e-algebras) the hyperidentity (asm)s
implies the hyperidentity (asm)y which, in its turn, implies the hyperiden-
tity (asm);.

The algebra (Q;) is called hyperassociative, if it satisfies the hyperi-
dentity of associativity (asm);.

Example 4 Let A, B be nonempty sets, 3 be the set of all mappings from
B to A, and Q be the set of all mappings from A to B. Then every element
a € X can be considered as a binary operation on @),

ala,b) =a-a-b,

where a,b € Q and a - « - b is the usual superposition of mappings. So we
obtain hyperassociative algebra (Q); ). Moreover, if A = B we obtain second
degree (order) algebra (Q;%;-) in the sense of [17)].

Thus, hyperassociative algebras are algebras with semigroup operations.
Hyperassociative algebras under the name of I'-semigroups (gamma-semi-
groups) or doppelsemigroups were considered by various authors [15], [16] 17,
18, 19, 20, 21, 22) 23, 24, 25].

Note that a g-dimonoid (Q; <, >) is hyperassociative iff (A5) and the
following identitiy of associativity hold:

(x<y)=z=2=<(y = 2). (Ag)

1 Main results

A Cayley-type theorem for dimonoids was proved in [3]. In this chapter we
prove a more general result.

Theorem 1 Let S be a semigroup, X # O, and maps (-) and (o) be left
and right S-acts of X respectively, and let the map ¢ : X — S be a (I,7)-
morphism of semigroup S. Define the operations > and < as follows:

=X x X =X, z=y:=¢) -y VryelX,
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<X xX =X, z<y:=z0¢p(y), Vr,yec X.

Then the algebra (X; <, >) is a g-dimonoid, which we denote by Cs(X) and
call Cayley’s g-dimonoid.

Conversely, for any arbitrary g-dimonoid G there exists a semigroup S,
and X # O, and left and right S-acts of X, and an (I,7)-morphism of
semigroup S such that the g-dimonoid G coincides with Cs(X), i.e. G =
Cs(X).

Proof. Let us prove the first part of the result. For this, it suffices to verify
the following four identities:

(A) ($<y)<z—(:voso(y))<z—(xo ©(y)) o p(2) = z o (p(y)p(2)) =
zop(yop(z)) =z =< (yow(z) =z < (y < 2),

(Az) (:r<y)<2—(
row(p(y)-2) = (90 y)

v/‘\

Hence, the algebra (X; <, >) is a g-dimonoid and (X; <, >) = Cg(X).
Now we prove the second part of the result. Let the algebra D = (D; <
>) be a g-dimonoid. We denote by ~ the least congruence on D for which
the quotient g-dimonoid is a semigroup. It is clear that ~ is the congruence
generated by the relation o = {(a,a),(a = b,a < b),(a < b,a > b) : a,b €
D}. Let z ~ y. According to the definition of the congruence, we can say
that there exist by, ¢y, ..., by, ¢, € D and 01,0}, ..., 0,, 0, € {,<} such that
the following condition holds:

x = (bio1¢1)o(biojcr) = (baoacy)o(beohes) = ... = (bponcn)o(byolcn) = y.
According to the identities Az, A4, we have:
(bjoic;) = a = (bioje;) = a, Vi=1,...,n, Ya € D.
Thus,

x> a=(hoc) =a=(bojc1) = a=..=(bonc,) = a=

= (byolcy) -a=y>=a—zx>=a=y>a, Va€ D.
According to the identities Ay, Ay, we have a < x =a <y, Ya € D, i.e.

r~y—x-a=y=-a&ka<r=a<y,VaeD.
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It means, that the congruence ~ is contained in the congruence:
T={(z,y)eDxD|z>=a=y>a&ka<z=a<y,Vae D}

Now let us pick any congruence 6 which satisfies the condition ~C 6 C 7.
Hence D/6 is an algebra with two binary operations, which are equal, be-
cause  contains the congruence ~. So D/ is a semigroup, which we denote
by S, and for arbitrary = € D we denote by [z], the class of the congruence
0 that contains z. Define the maps:

2 SxD— D, [z] y:=x>y, (1)

0:DxS—D, zoly] =x<y. (2)

The correctness of definitions of the maps - and o follows from the fact that
60 C 7. We now check that the maps - and o are left and right S-acts of D,
respectively:

(a-<b)>—x(A:3)
)

(la][0]) -2 =[a<b] @
am(b=2) Do (0] -2)D1a - (1] -2),

zo([a][b])=zo0[a> 1D $-<(a>b)(’4:2)

(@<a)<b @ @ola) <6 (xoa])o[H].

We now consider the map ® : D — S, ®(x) = [z] and show that it is a
(1, 7)-morphism of S:

O([a] - 2) = ®(a > z) = [a > 2] = [a][z] = [a]®(2),

O(zolal) =P(x < a) =[x < a] = [z][a] = P(x)[a].

Note, that the conditions of the first part of the theorem are satisfied, so
(D; <, >") = Cg(D) where:

='"DxD— Dx>"y:=®x) y, Vr,ye D,

<'"DxD—Dxz<"y:=x0d(y), Vr,y € D.
Also note that:

hence (D; </, ") = Cs(D). O
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Let K be a field, X be a nonempty set: X = {x;|i € I}. Denote
G={{az;|iel}|3JCI,|I\J| <00, aj=0,VjeJa €K}, where
a;x; is just symbol. For any z; € X, considering x; = {oyz; | i € I}, where
a; = 1, and oy = 0 if ¢ £ ¢, we obtain that X C G. Now we define the
operation + on G:

Because K (+) is an abelian group, G(+) will be an abelian group, too. We
now define the operation - : K x G — G as follows:

a-{az; i€ I} = {(aw)z; | i € T}.

Then G(+) with operation - will be a free K-module, which we denote by
K[X]. Tt is easy to see, that if D is a dimonoid, then K[D] is a dialgebra.
This fact is used in the proof of the following result.

Theorem 2 Let S be a semigroup satisfying the following additional iden-

tity:
xyz = tip. (%)
Define the operations = and < on S x S in the following way:
<g7 h’) = (ka l) = (gka hk)a (Opl)
(gah) ~ (ka l) = (gkagl)u (0p2)

where (g, h), (k,1) € S x S. Then S = (S x S;<,=) is a g-dimonoid, which
satisfies the following hyperidentity:

X(I,Y(y, Z)) = Z(T(t,l),p). (**)

In particular the g-dimonoid S will be hyperassociative.

Conversely, for any g-dimonoid D with the hyperidentity (xx) there exists
a semigroup H with the identity (x) such that D is isomorphically embedded
into H.

Proof. For proving the first part of the assertion, we use the previous the-
orem. Namely, we define the left and right S-acts of S x S:

a-(b,c) = (ab,ac),

(b,c) oa = (ba,ca).

We also define the operation ¢ : S x S — S, (a,b) — a and check that the
map ¢ is a (I, r)-morphism of S:

p(a-(b,¢)) = p((ab, ac)) = ab = ap((b, ¢)),



(g,h) o @k, 1),

(gk,gl) = g (k,1) = (g, h) - (k,1),

(g,h) ok =

©((ba, ca)) = ba = ¢((b, c))a.

(gk, hk)
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(gkp, hkp)
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(9., h) < ((k,1) = (p,£)) = (g, h) < (kp, kt) = (gkp, hkp) =

(mru,nru) = (mr,nr) < (u,v) = ((m,n) < (r,s)) < (u,v);

(9, h) < ((k,1) = (p,£)) = (g, h) < (kp, kt) = (ghkp, hkp) =

(mru, mrv) = (mr,ms) = (u,v) = ((m,n) = (r,s)) = (u,v);

(9., h) < ((k,1) = (p,£)) = (g, h) < (kp, kt) = (gkp, hkp) =

(mru,msu) = (mr,ms) < (u,v) = ((m,n) = (r,s)) < (u,v);

(9.h) = ((k,1) = (,1)) = (g, h) = (kp, kt) = (gkp, gkt) =

(mru, mrv) = (mr,nr) = (u,v) = ((m,n) < (r,s)) = (u,v);

(9.h) = ((k, 1) = (p,1)) = (g, h) = (kp, kt) = (gkp, ght) &

(mru,nru) = (mr,nr) < (u,v) = ((m,n) < (r,s)) < (u,v);

(9.h) = ((k,1) = (p,1)) = (g, h) = (kp, kt) = (gkp, gkt) =

(mru, mrv) = (mr,ms) = (u,v) = ((m,n) = (r,s)) = (u,v);

(9. 1) = ((k,1) = (p,£)) = (g, h) = (kp, kt) = (gkp, gkt) =

(mru,msu) = (mr,ms) < (u,v) = ((m,n) = (r,s)) < (u,v);

(9., h) < ((k,1) < (p,£)) = (g, h) < (kp,Ip) = (gkp, hkp) <

(mru,mrv) = (mr,nr) = (u,v) = ((m,n) < (r,s)) = (u,v);

(9:h) < ((k,1) < (p,£)) = (g, h) < (kp,Ip) = (gkp, hkp) &

(mru,nru) = (mr,nr) < (u,v) = ((m,n) < (r,s)) < (u,v);

(9. 1) < ((k,1) < (p,£)) = (g, h) < (kp,1p) = (gkp, hkp) <

(mru, mrv) = (mr,ms) = (u,v) = ((m,n) = (r,s)) = (u,v);
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12.
(9.1) < (k1) < (p.1) = (9.) < (kp,1p) = (gkp, hkp)
(mru, msu) = (mr,ms) < (u,v) = ((m,n) = (r,5)) < (u,v);
13.
(9.h) = (k1) < (p.1)) = (g.h) = (kp,1p) = (ghp. glp) =
(mru, mrv) = (mr,nr) = (u,v) = ((m,n) < (r,s)) = (u,v);
14.
(9.1) > ((k,1) < (p:1)) = (9, 1) > (kp,Ip) = (ghp.glp) =
(mru,nru) = (mr,nr) < (u,v) = ((m,n) < (r,s)) < (u,v);
15.
(9.1) > ((k,1) < (p.1)) = (g, h) = (kp,Ip) = (ghp.glp) &
(mru, mrv) = (mr,ms) = (u,v) = ((m,n) = (r,s)) = (u,v);
16.

(9.:h) = ((k,1) < (p,£)) = (g, h) = (kp,1p) = (gkp, glp) <

(mru, msu) = (mr,ms) < (u,v) = ((m,n) = (r,5)) < (u,v).

Now, we turn to the proof of the second part of the theorem. Let D =
(D;<,=) be a g-dimonoid satisfying the hyperidentity (x*). By D° we
denote D with an adjoined element 0 (called zero) such that xx0 = 0 = Oxzx,
for all x € DY, and * € {>, <}. Let K be a field and H = (D/0)° x K[D"]
(we invoke the notation from the proof of Theorem [1). On H we define a
binary operation e:

([a], ) o ([B], ) = ([a > b], (a > y) + (x < D)),

for all a, b, x,y € D°. This operation is well-defined, because for a congruence
0 we have:
aba' wa=-y=d -y&zr<a=x<d,

for all z,y € D.
We now check, that e is associative:

(([a], ) o ([b],y)) ® ([c], 2) = ([a = ], (a = y) + (x < D)) o ([c], 2) =
([a=b>c,(a=b=2)+(((a>y)+ (x<b)) <c)) =
)

([a>b>c],(a>b>z)—|—((a>y)<C)+(x_<b_<c))(g)

([a=b=cl,(a=b=2)+(a>(y<c)+(x<b=<c))
([a=b>cl,(a=((b=2)+y=<c))+(xr<b=<c))=
(lal, ) o ([b =], (b= 2) + (y < ¢)) =
(lal, ) o (([b], y) o ([c], 2)).
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Then H(e) is a semigroup with zero element ([0],0). Define a map f: D —
H in the following way:

It is easy to see, that f is an injective map. Furthermore:

f(a) = f(b) = (([a], 0), ([0], a)) > (([0], 0), ([0],)) =
((la], 0) o ([0],0), ([al, 0) ® ([0], b)) =
(([a >8], (a > 0) + (0 < b)), ([0], (@ > b) + (0 < 0))) =
((la > 61,0), ([0],a > b)) = f(a > b).
We obtain f(a) < f(b) = f(a < b) in a similar way. Hence, f is a monomor-
phism of the g-dimonoids. Then D is isomorphically embedded into H. Us-

ing the hyperidentity (), it is easy to show that the semigroup H satisfies
the identity (x). Indeed:

([9]; 2g) @ ([K], i) o ([t], 1) = (lg = K], (g9 = ) + (g <)) @ ([t], 1) =

([g>k>t],(g>k>xt)+((g>:ck)<t)+((:cg<k)<t))(§)

([h=r=1,(h=r>=x)+ ((h>=2x.) <)+ ((xp <7) > 1))
([ =], (=) + (2 < 7)) @ (U], 21) = ([R],2n) ® ([r], /) @ ([1], ).
O

2 Corollaries

Corollary 1 ([3]) Let S be a semigroup and X be both a left S-act and a
right S-act with commuting actions, and let ¢ : X — S be a (I, r)-morphism
of S. Then the set X with two binary operations < and > defined by the
following rules:

r <y :=xz0p(y),
z =y =)y,

for all z,y € X, is a dimonoid. Conversely, any dimonoid can be so con-
structed.

Corollary 2 (Cayley-type theorem for idempotent g-dimonoids) Let S be
a semigroup and X # @, let the maps () and (o) be left and right S-acts
respectively, let the map ¢ : X — S be a (I, r)-morphism of S which satisfies
the following condition:

o(x) - x=z0p(r)=uVreX. (#)

11



12 Yu. M. MOVSISYAN, M. A. YOLCHYAN

In this case Cs(X) is an idempotent g-dimonoid.

Conversely, for any arbitrary idempotent g-dimonoid G there exists a
semigroup S, and X # ), a left and a right S-acts of X, and a (I,7)-
morphism of S, which satisfies (#) such that G coincides with Cg(X), i.e.
G = Cs(X).

Corollary 3 (Cayley-type theorem for hyperassociative g-dimonoids) Let
S be a semigroup and X # ), let the maps (-) and (o) be respectively left
and right S-acts, let the map ® : X — S be a (I,r)-morphism of S which
satisfies the following conditions:

(p(@)p(y)) -z =x0(p(y)p(2)), Yz,y,2 € X, (##)

(p(z) -y) op(2) = p(z) - (yo p(2)), Va,y,2 € X. (###)

In this case Cs(X) is a hyperassociative g-dimonoid.

Conversely, for any arbitrary hyperassociative g-dimonoid G there exists
a semigroup S, a non empty set X, and a left and a right S-acts of X, and
a (I,r)-morphism of S, which satisfies (##) and (##+), that G coincides
with Cs(X), ie. G = CS(X)

Corollary 4 Let S be a commutative semigroup. Define the operations >
and < on S x S as in (op1) and (opy). Then S = (S x S;<,>) is a g-
dimonoid, which satisfies the following identity:

rT-y=y < (s * )

Conversely, for any g-dimonoid D with the condition (x % x) there exists
a commutative semigroup H such that D is isomorphically embedded into H.

Definition 9 A g-dialgebra is a vector space over a field equipped with two
binary bilinear operations satisfying the axioms of a g-dimonoid.

Open problem 1. Prove a Cayley-type theorem for g-dialgebras.
Open problem 2. Characterize the free g-dialgebras.
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