Cayley-type theorems for g-dimonoids

Yu. M. Movsisyan and M. A. Yolchyan

Abstract

In this paper we prove Cayley-type theorems for g-dimonoids using the left (right) acts of sets and concept of dialgebra.

Key Words: g-dimonoid, dimonoid, act of set, dialgebra, morphism of acts, (l, r)-morphism of semigroup.
Mathematics Subject Classification 2010: 20M30, 03C05

Introduction

The concepts of a dimonoid and a dialgebra were introduced by Loday [1]. Dimonoids are a tool to study Leibniz algebras [1]. A dimonoid is a set with two binary associative operations satisfying certain additional identities. A dialgebra is a linear analogy of a dimonoid. The concept of a g-dimonoid (a generalized dimonoid) is introduced in [2]. The Cayley-type theorems for dimonoids are proved in [3].

In this paper two Cayley-type theorems for g-dimonoid are suggested.
Definition 1 An algebra ($X ; \prec, \succ$) with two binary operations is called g-dimonoid [2] if it satisfies the following four identities of associativity:

$$
\begin{align*}
& (x \prec y) \prec z=x \prec(y \prec z), \tag{1}\\
& (x \prec y) \prec z=x \prec(y \succ z), \tag{2}\\
& (x \prec y) \succ z=x \succ(y \succ z), \tag{3}\\
& (x \succ y) \succ z=x \succ(y \succ z) . \tag{4}
\end{align*}
$$

Definition 2 A g-dimonoid $(X ; \prec, \succ)$ is called dimonoid [1] if it satisfies the following additional identity of associativity, too:

$$
\begin{equation*}
(x \succ y) \prec z=x \succ(y \prec z) . \tag{5}
\end{equation*}
$$

Let us give two examples of a dimonoid.

Example 1 Let $(X ; \prec)$ be a zero semigroup, that is $x \prec y=0$ for all $x, y \in X$, where 0 is a fixed element of the set X. For fixed elements a, b of the set X, where $a \neq 0, b \neq 0, a \neq b$, we define on X the operation \succ, assuming

$$
x \succ y= \begin{cases}a, & x=y=b, \\ 0, & \text { otherwise }\end{cases}
$$

for all $x, y \in X$. It is easy to see that $(X ; \prec, \succ)$ is a dimonoid.
Example 2 Let $X \neq \varnothing$. Define the following operations on the set X :

$$
\begin{aligned}
& x \succ y=y, \\
& x \prec y=x,
\end{aligned}
$$

for all $x, y \in X$. Then the algebra $(X ; \prec, \succ)$ is a dimonoid.
Let us give an example of a g-dimonoid which is not a dimonoid.
Example 3 Let X be an arbitrary nonempty set, $|X| \geq 2$, and let X^{*} be the set of all finite nonempty words in the alphabet X. Denote the first (respectively, the last) letter of a word $\omega \in X^{*}$ by $\omega^{(0)}$ (respectively, by $\omega^{(1)}$). Define the following operations \prec, \succ on X^{*} :

$$
\begin{aligned}
& \omega \prec u=\omega^{(0)}, \\
& \omega \succ u=u^{(1)},
\end{aligned}
$$

for all $\omega, u \in X^{*}$. It is easy to check that the binary algebra $\left(X^{*} ; \prec, \succ\right)$ is a g-dimonoid, but is not a dimonoid.

Definition 3 Let S be a semigroup, $X \neq \varnothing$. The map $(\cdot): S \times X \rightarrow$ $X ;(s, x) \mapsto s \cdot x$ is called a left S-act of X if the identity $(s t) \cdot x=s \cdot(t \cdot x)$ holds.

Definition 4 Let S be a semigroup, $X \neq \varnothing$. The map $(\cdot): X \times S \rightarrow$ $X ;(x, s) \mapsto x \cdot s$ is called a right S-act of X if the identity $x \cdot(s t)=(x \cdot s) \cdot t$ holds.

Definition 5 Let the map (•) be a left S-act of X and the map (०) be a left S-act of Y : The map $\varphi: X \rightarrow Y$ is called morphism of that left S-acts if $\varphi(s \cdot x)=s \circ \varphi(x)$ for all $x \in X$ and $s \in S$.

A morphism of right S -acts can be defined in a similar way. Let $(S ; \bullet)$ be a semigroup, $X \neq \varnothing$. We can interpret the operation (\bullet) as a left and a right S-act of S.

Definition 6 Let $(S ; \bullet)$ be a semigroup, $X \neq \varnothing$, and maps (•) and (०) are respectively left and right S-acts of X; then the map $\varphi: X \rightarrow S$ is called (l, r)-morphism of semigroup S if the following conditions are valid:

$$
\begin{aligned}
& \varphi(s \cdot x)=s \bullet \varphi(x), \\
& \varphi(x \circ s)=\varphi(x) \bullet s,
\end{aligned}
$$

for all $x \in X$ and $s \in S$.
Definition 7 A dialgebra is a vector space over a field equipped with two binary bilinear operations satisfying the axioms of a dimonoid (1).

For the second order formulae (and the second order languages) see [4, 5, [6]. Let us recall, that a hyperidentity [7, 8, 9, 10, 11, 12] (or $\forall(\forall)$-identity) is a second-order formula of the following form:

$$
\forall X_{1}, \ldots, X_{m} \forall x_{1}, \ldots, x_{n}\left(\omega_{1}=\omega_{2}\right),
$$

where ω_{1}, ω_{2} are words (terms) in the alphabet of functional variables X_{1}, \ldots, X_{m} and objective variables x_{1}, \ldots, x_{n}. However hyperidentities are usually presented without universal quantifiers: $\omega_{1}=\omega_{2}$. A hyperidentity $\omega_{1}=\omega_{2}$ is said to be satisfied in the algebra $(Q ; \Sigma)$ if this equality holds whenever every object variable x_{j} is replaced by an arbitrary element from Q and every functional variable X_{i} is replaced by an arbitrary operation of the corresponding arity from Σ. A possibility of such replacement is assumed, that is:

$$
\left\{\left|X_{1}\right|, \ldots,\left|X_{m}\right|\right\} \subseteq\{|A| \mid A \in \Sigma\}=T_{(Q, \Sigma)}=T_{(\Sigma)}
$$

where $|S|$ is the arity of S, and $T_{(Q, \Sigma)}$ is called the arithmetic type of $(Q ; \Sigma)$. A T-algebra is an algebra with arithmetic type $T \subseteq N$. A class of algebras is called a class of T-algebras if every algebra in it is a T-algebra.

Definition 8 An algebra $(Q ; \Sigma)$ is called idempotent, if the following hyperidentity of idempotency is valid:

$$
\begin{equation*}
X(\underbrace{x, \ldots, x}_{n})=x, \tag{id}
\end{equation*}
$$

for all $n \in T_{(Q ; \Sigma)}$.
The hyperidentity is said to be non-trivial if $m>1$, and it is trivial if $m=1$. The number m is called the functional rank of the given hyperidentity.

A binary algebra $(Q ; \Sigma)$ is said to be a q-algebra (e-algebra) if there is an operation $A \in \Sigma$ such that $Q(A)$ is a quasigroup (a groupoid with a unit).

A binary algebra $(Q ; \Sigma)$ is called non-trivial if $|\Sigma|>1$. It is known [7, 8] (see also [9, 13]) that if an associative non-trivial hyperidentity is satisfied in a non-trivial q-algebra (e-algebra), then this hyperidentity can only be of the functional rank 2 and of one of the following forms:

$$
\begin{array}{ll}
X(x, Y(y, z))=Y(X(x, y), z), & (\text { asm })_{1} \\
X(x, Y(y, z))=X(Y(x, y), z), & (\text { asm })_{2} \\
Y(x, Y(y, z))=X(X(x, y), z) . & (\text { asm })_{3}
\end{array}
$$

Moreover, in the class of q-algebras (e-algebras) the hyperidentity $(a s m)_{3}$ implies the hyperidentity $(\text { asm })_{2}$ which, in its turn, implies the hyperidentity $(\text { asm })_{1}$.

The algebra $(Q ; \Sigma)$ is called hyperassociative, if it satisfies the hyperidentity of associativity $(\text { asm })_{1}$.

Example 4 Let A, B be nonempty sets, Σ be the set of all mappings from B to A, and Q be the set of all mappings from A to B. Then every element $\alpha \in \Sigma$ can be considered as a binary operation on Q,

$$
\alpha(a, b)=a \cdot \alpha \cdot b
$$

where $a, b \in Q$ and $a \cdot \alpha \cdot b$ is the usual superposition of mappings. So we obtain hyperassociative algebra $(Q ; \Sigma)$. Moreover, if $A=B$ we obtain second degree (order) algebra $(Q ; \Sigma ; \cdot)$ in the sense of (14].

Thus, hyperassociative algebras are algebras with semigroup operations. Hyperassociative algebras under the name of Γ-semigroups (gamma-semigroups) or doppelsemigroups were considered by various authors [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25).

Note that a g-dimonoid $(Q ; \prec, \succ)$ is hyperassociative iff $\left(A_{5}\right)$ and the following identitiy of associativity hold:

$$
\begin{equation*}
(x \prec y) \succ z=x \prec(y \succ z) . \tag{6}
\end{equation*}
$$

1 Main results

A Cayley-type theorem for dimonoids was proved in 3]. In this chapter we prove a more general result.

Theorem 1 Let S be a semigroup, $X \neq \varnothing$, and maps (\cdot) and (०) be left and right S-acts of X respectively, and let the map $\varphi: X \rightarrow S$ be $a(l, r)$ morphism of semigroup S. Define the operations \succ and \prec as follows:

$$
\succ: X \times X \rightarrow X, \quad x \succ y:=\varphi(x) \cdot y, \quad \forall x, y \in X
$$

$$
\prec: X \times X \rightarrow X, \quad x \prec y:=x \circ \varphi(y), \quad \forall x, y \in X .
$$

Then the algebra $(X ; \prec, \succ)$ is a g-dimonoid, which we denote by $C_{S}(X)$ and call Cayley's g-dimonoid.

Conversely, for any arbitrary g-dimonoid G there exists a semigroup S, and $X \neq \varnothing$, and left and right S-acts of X, and an (l, r)-morphism of semigroup S such that the g-dimonoid G coincides with $C_{S}(X)$, i.e. $G=$ $C_{S}(X)$.

Proof. Let us prove the first part of the result. For this, it suffices to verify the following four identities:

$$
\begin{align*}
& \text { 1) }(x \prec y) \prec z=(x \circ \varphi(y)) \prec z=(x \circ \varphi(y)) \circ \varphi(z)=x \circ(\varphi(y) \varphi(z))= \tag{1}\\
& x \circ \varphi(y \circ \varphi(z))=x \prec(y \circ \varphi(z))=x \prec(y \prec z),
\end{align*}
$$

$\left(A_{2}\right)(x \prec y) \prec z=(x \prec y) \circ \varphi(z)=(x \circ \varphi(y)) \circ \varphi(z)=x \circ(\varphi(y) \varphi(z))=$ $x \circ \varphi(\varphi(y) \cdot z)=x \prec(\varphi(y) \cdot z)=x \prec(y \succ z)$,
$\left(A_{3}\right)(x \prec y) \succ z=(x \circ \varphi(y)) \succ z=\varphi(x \circ \varphi(y)) \cdot z=(\varphi(x) \varphi(y)) \cdot z=$ $\varphi(x) \cdot(\varphi(y) \cdot z)=x \succ(\varphi(y) \cdot z)=x \succ(y \succ z)$,
$\left(A_{4}\right)(x \succ y) \succ z=(\varphi(x) \cdot y) \succ z=\varphi(\varphi(x) \cdot y) \cdot z=(\varphi(x) \varphi(y)) \cdot z=$ $\varphi(x) \cdot(\varphi(y) \cdot z)=x \succ(\varphi(y) \cdot z)=x \succ(y \succ z)$.

Hence, the algebra $(X ; \prec, \succ)$ is a g-dimonoid and $(X ; \prec, \succ)=C_{S}(X)$.
Now we prove the second part of the result. Let the algebra $D=(D ; \prec$ $, \succ)$ be a g-dimonoid. We denote by \sim the least congruence on D for which the quotient g-dimonoid is a semigroup. It is clear that \sim is the congruence generated by the relation $\sigma=\{(a, a),(a \succ b, a \prec b),(a \prec b, a \succ b): a, b \in$ $D\}$. Let $x \sim y$. According to the definition of the congruence, we can say that there exist $b_{1}, c_{1}, \ldots, b_{n}, c_{n} \in D$ and $o_{1}, o_{1}^{\prime}, \ldots, o_{n}, o_{n}^{\prime} \in\{\succ, \prec\}$ such that the following condition holds:

$$
x=\left(b_{1} o_{1} c_{1}\right) \sigma\left(b_{1} o_{1}^{\prime} c_{1}\right)=\left(b_{2} o_{2} c_{1}\right) \sigma\left(b_{2} o_{2}^{\prime} c_{2}\right)=\ldots=\left(b_{n} o_{n} c_{n}\right) \sigma\left(b_{n} o_{n}^{\prime} c_{n}\right)=y .
$$

According to the identities A_{3}, A_{4}, we have:

$$
\left(b_{i} o_{i} c_{i}\right) \succ a=\left(b_{i} o_{i}^{\prime} c_{i}\right) \succ a, \forall i=1, \ldots, n, \forall a \in D .
$$

Thus,

$$
\begin{aligned}
& x \succ a=\left(b_{1} o_{1} c_{1}\right) \succ a=\left(b_{1} o_{1}^{\prime} c_{1}\right) \succ a=\ldots=\left(b_{n} o_{n} c_{n}\right) \succ a= \\
& =\left(b_{n} o_{n}^{\prime} c_{n}\right) \succ a=y \succ a \rightarrow x \succ a=y \succ a, \forall a \in D .
\end{aligned}
$$

According to the identities A_{1}, A_{2}, we have a $\prec x=a \prec y, \forall a \in D$, i.e.

$$
x \sim y \rightarrow x \succ a=y \succ a \& a \prec x=a \prec y, \forall a \in D .
$$

It means，that the congruence \sim is contained in the congruence：

$$
\tau=\{(x, y) \in D \times D \mid x \succ a=y \succ a \& a \prec x=a \prec y, \forall a \in D\}
$$

Now let us pick any congruence θ which satisfies the condition $\sim \subseteq \theta \subseteq \tau$ ． Hence D / θ is an algebra with two binary operations，which are equal，be－ cause θ contains the congruence \sim ．So D / θ is a semigroup，which we denote by S ，and for arbitrary $x \in D$ we denote by $[x]$ ，the class of the congruence θ that contains x ．Define the maps：

$$
\begin{align*}
& \cdot: S \times D \rightarrow D, \quad[x] \cdot y:=x \succ y \tag{1}\\
& \circ: D \times S \rightarrow D, x \circ[y]:=x \prec y \tag{2}
\end{align*}
$$

The correctness of definitions of the maps \cdot and \circ follows from the fact that $\theta \subseteq \tau$ ．We now check that the maps • and o are left and right S－acts of D ， respectively：

$$
\begin{aligned}
& ([a][b]) \cdot x=[a \prec b] \cdot x \stackrel{\text { ®1P }}{=}(a \prec b) \succ x \stackrel{\left(A_{3}\right)}{=} \\
& a \succ(b \succ x) \stackrel{\text { ⿻上丨 }}{=} a \succ([b] \cdot x) \stackrel{\text { ⿻上丨] }}{=}[a] \cdot([b] \cdot x), \\
& x \circ([a][b])=x \circ[a \succ b] \stackrel{[2]}{=} x \prec(a \succ b) \stackrel{\left(A_{2}\right)}{=} \\
& (x \prec a) \prec b \stackrel{[2]}{=}(x \circ[a]) \prec b \stackrel{\text { 22] }}{\underline{2}}(x \circ[a]) \circ[b] \text {. }
\end{aligned}
$$

We now consider the map $\Phi: D \rightarrow S, \Phi(x)=[x]$ and show that it is a (l, r)－morphism of S ：

$$
\begin{aligned}
& \Phi([a] \cdot x)=\Phi(a \succ x)=[a \succ x]=[a][x]=[a] \Phi(x), \\
& \Phi(x \circ[a])=\Phi(x \prec a)=[x \prec a]=[x][a]=\Phi(x)[a] .
\end{aligned}
$$

Note，that the conditions of the first part of the theorem are satisfied，so $\left(D ; \prec^{\prime}, \succ^{\prime}\right)=C_{S}(D)$ where：

$$
\begin{aligned}
& \succ^{\prime}: D \times D \rightarrow D, x \succ^{\prime} y:=\Phi(x) \cdot y, \forall x, y \in D, \\
& \prec^{\prime}: D \times D \rightarrow D, x \prec^{\prime} y:=x \circ \Phi(y), \forall x, y \in D .
\end{aligned}
$$

Also note that：

$$
\begin{aligned}
& \succ^{\prime}=\succ, \\
& \prec^{\prime}=\prec,
\end{aligned}
$$

hence $\left(D ; \prec^{\prime}, \succ^{\prime}\right)=C_{S}(D)$ ．

Let K be a field, X be a nonempty set: $X=\left\{x_{i} \mid i \in I\right\}$. Denote $G:=\left\{\left\{\alpha_{i} x_{i} \mid i \in I\right\}\left|\exists J \subset I,|I \backslash J|<\infty, \alpha_{j}=0, \forall j \in J, \alpha_{i} \in K\right\}\right.$, where $\alpha_{i} x_{i}$ is just symbol. For any $x_{t} \in X$, considering $x_{t}=\left\{\alpha_{i} x_{i} \mid i \in I\right\}$, where $\alpha_{t}=1$, and $\alpha_{i}=0$ if $i \neq t$, we obtain that $X \subseteq G$. Now we define the operation + on G :

$$
\left\{\alpha_{i} x_{i} \mid i \in I\right\}+\left\{\beta_{i} x_{i} \mid i \in I\right\}=\left\{\left(\alpha_{i}+\beta_{i}\right) x_{i} \mid i \in I\right\} .
$$

Because $K(+)$ is an abelian group, $G(+)$ will be an abelian group, too. We now define the operation $\cdot: K \times G \rightarrow G$ as follows:

$$
\alpha \cdot\left\{\alpha_{i} x_{i} \mid i \in I\right\}=\left\{\left(\alpha \alpha_{i}\right) x_{i} \mid i \in I\right\} .
$$

Then $G(+)$ with operation \cdot will be a free K-module, which we denote by $K[X]$. It is easy to see, that if D is a dimonoid, then $K[D]$ is a dialgebra. This fact is used in the proof of the following result.

Theorem 2 Let S be a semigroup satisfying the following additional identity:

$$
\begin{equation*}
x y z=t l p . \tag{*}
\end{equation*}
$$

Define the operations \succ and \prec on $S \times S$ in the following way:

$$
\begin{align*}
& (g, h) \prec(k, l)=(g k, h k), \tag{1}\\
& (g, h) \succ(k, l)=(g k, g l), \tag{2}
\end{align*}
$$

where $(g, h),(k, l) \in S \times S$. Then $\bar{S}=(S \times S ; \prec, \succ)$ is a g-dimonoid, which satisfies the following hyperidentity:

$$
\begin{equation*}
X(x, Y(y, z))=Z(T(t, l), p) \tag{**}
\end{equation*}
$$

In particular the g-dimonoid \bar{S} will be hyperassociative.
Conversely, for any g-dimonoid D with the hyperidentity (**) there exists a semigroup H with the identity (*) such that D is isomorphically embedded into \bar{H}.

Proof. For proving the first part of the assertion, we use the previous theorem. Namely, we define the left and right S-acts of $S \times S$:

$$
\begin{aligned}
& a \cdot(b, c)=(a b, a c), \\
& (b, c) \circ a=(b a, c a) .
\end{aligned}
$$

We also define the operation $\varphi: S \times S \rightarrow S,(a, b) \mapsto a$ and check that the map φ is a (l, r)-morphism of S :

$$
\varphi(a \cdot(b, c))=\varphi((a b, a c))=a b=a \varphi((b, c))
$$

$$
\varphi((b, c) \circ a)=\varphi((b a, c a))=b a=\varphi((b, c)) a .
$$

Then

$$
\begin{gathered}
(g, h) \prec(k, l)=(g k, h k)=(g, h) \circ k=(g, h) \circ \varphi(k, l), \\
(g, h) \succ(k, l)=(g k, g l)=g \cdot(k, l)=\varphi(g, h) \cdot(k, l),
\end{gathered}
$$

for all $(g, h),(k, l) \in S \times S$. Now according to Theorem 1, we obtain, that \bar{S} is a g-dimonoid. Using the identity $(*)$, it is easy to check that \bar{S} satisfies the hyperidentity $(* *)$. We should check the following cases:

1. $(g, h) \prec((k, l) \succ(p, t))=((m, n) \prec(r, s)) \succ(u, v)$,
2. $(g, h) \prec((k, l) \succ(p, t))=((m, n) \prec(r, s)) \prec(u, v)$,
3. $(g, h) \prec((k, l) \succ(p, t))=((m, n) \succ(r, s)) \succ(u, v)$,
4. $(g, h) \prec((k, l) \succ(p, t))=((m, n) \succ(r, s)) \prec(u, v)$,
5. $(g, h) \succ((k, l) \succ(p, t))=((m, n) \prec(r, s)) \succ(u, v)$,
6. $(g, h) \succ((k, l) \succ(p, t))=((m, n) \prec(r, s)) \prec(u, v)$,
7. $(g, h) \succ((k, l) \succ(p, t))=((m, n) \succ(r, s)) \succ(u, v)$,
8. $(g, h) \succ((k, l) \succ(p, t))=((m, n) \succ(r, s)) \prec(u, v)$,
9. $(g, h) \prec((k, l) \prec(p, t))=((m, n) \prec(r, s)) \succ(u, v)$,
10. $(g, h) \prec((k, l) \prec(p, t))=((m, n) \prec(r, s)) \prec(u, v)$,
11. $(g, h) \prec((k, l) \prec(p, t))=((m, n) \succ(r, s)) \succ(u, v)$,
12. $(g, h) \prec((k, l) \prec(p, t))=((m, n) \succ(r, s)) \prec(u, v)$,
13. $(g, h) \succ((k, l) \prec(p, t))=((m, n) \prec(r, s)) \succ(u, v)$,
14. $(g, h) \succ((k, l) \prec(p, t))=((m, n) \prec(r, s)) \prec(u, v)$,
15. $(g, h) \succ((k, l) \prec(p, t))=((m, n) \succ(r, s)) \succ(u, v)$,
16. $(g, h) \succ((k, l) \prec(p, t))=((m, n) \succ(r, s)) \prec(u, v)$.

Indeed:
1.

$$
\begin{aligned}
& (g, h) \prec((k, l) \succ(p, t))=(g, h) \prec(k p, k t)=(g k p, h k p) \stackrel{(*)}{=} \\
& (m r u, m r v)=(m r, n r) \succ(u, v)=((m, n) \prec(r, s)) \succ(u, v) ;
\end{aligned}
$$

2.

$$
\begin{aligned}
& (g, h) \prec((k, l) \succ(p, t))=(g, h) \prec(k p, k t)=(g k p, h k p) \stackrel{(*)}{=} \\
& (m r u, n r u)=(m r, n r) \prec(u, v)=((m, n) \prec(r, s)) \prec(u, v) ;
\end{aligned}
$$

3.

$$
\begin{gathered}
(g, h) \prec((k, l) \succ(p, t))=(g, h) \prec(k p, k t)=(g k p, h k p) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, m s) \succ(u, v)=((m, n) \succ(r, s)) \succ(u, v) ;
\end{gathered}
$$

4.

$$
\begin{gathered}
(g, h) \prec((k, l) \succ(p, t))=(g, h) \prec(k p, k t)=(g k p, h k p) \stackrel{(*)}{=} \\
(m r u, m s u)=(m r, m s) \prec(u, v)=((m, n) \succ(r, s)) \prec(u, v) ;
\end{gathered}
$$

5.

$$
\begin{aligned}
& (g, h) \succ((k, l) \succ(p, t))=(g, h) \succ(k p, k t)=(g k p, g k t) \stackrel{(*)}{=} \\
& (m r u, m r v)=(m r, n r) \succ(u, v)=((m, n) \prec(r, s)) \succ(u, v) ;
\end{aligned}
$$

6.

$$
\begin{aligned}
& (g, h) \succ((k, l) \succ(p, t))=(g, h) \succ(k p, k t)=(g k p, g k t) \stackrel{(*)}{=} \\
& (m r u, n r u)=(m r, n r) \prec(u, v)=((m, n) \prec(r, s)) \prec(u, v) ;
\end{aligned}
$$

7.

$$
\begin{gathered}
(g, h) \succ((k, l) \succ(p, t))=(g, h) \succ(k p, k t)=(g k p, g k t) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, m s) \succ(u, v)=((m, n) \succ(r, s)) \succ(u, v) ;
\end{gathered}
$$

8.

$$
\begin{gathered}
(g, h) \succ((k, l) \succ(p, t))=(g, h) \succ(k p, k t)=(g k p, g k t) \stackrel{(*)}{=} \\
(m r u, m s u)=(m r, m s) \prec(u, v)=((m, n) \succ(r, s)) \prec(u, v) ;
\end{gathered}
$$

9.

$$
\begin{gathered}
(g, h) \prec((k, l) \prec(p, t))=(g, h) \prec(k p, l p)=(g k p, h k p) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, n r) \succ(u, v)=((m, n) \prec(r, s)) \succ(u, v) ;
\end{gathered}
$$

10.

$$
\begin{aligned}
& (g, h) \prec((k, l) \prec(p, t))=(g, h) \prec(k p, l p)=(g k p, h k p) \stackrel{(*)}{=} \\
& (m r u, n r u)=(m r, n r) \prec(u, v)=((m, n) \prec(r, s)) \prec(u, v) ;
\end{aligned}
$$

11.

$$
\begin{gathered}
(g, h) \prec((k, l) \prec(p, t))=(g, h) \prec(k p, l p)=(g k p, h k p) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, m s) \succ(u, v)=((m, n) \succ(r, s)) \succ(u, v) ;
\end{gathered}
$$

12.

$$
\begin{gathered}
(g, h) \prec((k, l) \prec(p, t))=(g, h) \prec(k p, l p)=(g k p, h k p) \stackrel{(*)}{=} \\
(m r u, m s u)=(m r, m s) \prec(u, v)=((m, n) \succ(r, s)) \prec(u, v) ;
\end{gathered}
$$

13.

$$
\begin{gathered}
(g, h) \succ((k, l) \prec(p, t))=(g, h) \succ(k p, l p)=(g k p, g l p) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, n r) \succ(u, v)=((m, n) \prec(r, s)) \succ(u, v) ;
\end{gathered}
$$

14.

$$
\begin{gathered}
(g, h) \succ((k, l) \prec(p, t))=(g, h) \succ(k p, l p)=(g k p, g l p) \stackrel{(*)}{=} \\
(m r u, n r u)=(m r, n r) \prec(u, v)=((m, n) \prec(r, s)) \prec(u, v) ;
\end{gathered}
$$

15.

$$
\begin{gathered}
(g, h) \succ((k, l) \prec(p, t))=(g, h) \succ(k p, l p)=(g k p, g l p) \stackrel{(*)}{=} \\
(m r u, m r v)=(m r, m s) \succ(u, v)=((m, n) \succ(r, s)) \succ(u, v) ;
\end{gathered}
$$

16.

$$
\begin{gathered}
(g, h) \succ((k, l) \prec(p, t))=(g, h) \succ(k p, l p)=(g k p, g l p) \stackrel{(*)}{=} \\
(m r u, m s u)=(m r, m s) \prec(u, v)=((m, n) \succ(r, s)) \prec(u, v) .
\end{gathered}
$$

Now, we turn to the proof of the second part of the theorem. Let $D=$ $(D ; \prec, \succ)$ be a g-dimonoid satisfying the hyperidentity (**). By D^{0} we denote D with an adjoined element 0 (called zero) such that $x * 0=0=0 * x$, for all $x \in D^{0}$, and $* \in\{\succ, \prec\}$. Let K be a field and $H=(D / \theta)^{0} \times K\left[D^{0}\right]$ (we invoke the notation from the proof of Theorem 1). On H we define a binary operation \bullet :

$$
([a], x) \bullet([b], y)=([a \succ b],(a \succ y)+(x \prec b)),
$$

for all $a, b, x, y \in D^{0}$. This operation is well-defined, because for a congruence θ we have:

$$
a \theta a^{\prime} \rightarrow a \succ y=a^{\prime} \succ y \& x \prec a=x \prec a^{\prime},
$$

for all $x, y \in D$.
We now check, that \bullet is associative:

$$
\begin{gathered}
(([a], x) \bullet([b], y)) \bullet([c], z)=([a \succ b],(a \succ y)+(x \prec b)) \bullet([c], z)= \\
([a \succ b \succ c],(a \succ b \succ z)+(((a \succ y)+(x \prec b)) \prec c))= \\
([a \succ b \succ c],(a \succ b \succ z)+((a \succ y) \prec c)+(x \prec b \prec c))) \stackrel{\left(A_{5}\right)}{=} \\
([a \succ b \succ c],(a \succ b \succ z)+(a \succ(y \prec c))+(x \prec b \prec c))= \\
([a \succ b \succ c],(a \succ((b \succ z)+(y \prec c)))+(x \prec b \prec c))= \\
([a], x) \bullet([b \succ c],(b \succ z)+(y \prec c))= \\
([a], x) \bullet(([b], y) \bullet([c], z)) .
\end{gathered}
$$

Then $H(\bullet)$ is a semigroup with zero element $([0], 0)$. Define a map $f: D \rightarrow$ \bar{H} in the following way:

$$
f(x)=(([x], 0),([0], x)) .
$$

It is easy to see, that f is an injective map. Furthermore:

$$
\begin{gathered}
f(a) \succ f(b)=(([a], 0),([0], a)) \succ(([b], 0),([0], b))= \\
(([a], 0) \bullet([b], 0),([a], 0) \bullet([0], b))= \\
(([a \succ b],(a \succ 0)+(0 \prec b)),([0],(a \succ b)+(0 \prec 0)))= \\
\quad(([a \succ b], 0),([0], a \succ b))=f(a \succ b) .
\end{gathered}
$$

We obtain $f(a) \prec f(b)=f(a \prec b)$ in a similar way. Hence, f is a monomorphism of the g-dimonoids. Then D is isomorphically embedded into \bar{H}. Using the hyperidentity $(* *)$, it is easy to show that the semigroup \bar{H} satisfies the identity $(*)$. Indeed:

$$
\begin{gathered}
\left([g], x_{g}\right) \bullet\left([k], x_{k}\right) \bullet\left([t], x_{t}\right)=\left([g \succ k],\left(g \succ x_{k}\right)+\left(x_{g} \prec k\right)\right) \bullet\left([t], x_{t}\right)= \\
\left([g \succ k \succ t],\left(g \succ k \succ x_{t}\right)+\left(\left(g \succ x_{k}\right) \prec t\right)+\left(\left(x_{g} \prec k\right) \prec t\right)\right) \stackrel{(* *)}{=} \\
\left([h \succ r \succ l],\left(h \succ r \succ x_{l}\right)+\left(\left(h \succ x_{r}\right) \prec l\right)+\left(\left(x_{h} \prec r\right) \succ l\right)\right)= \\
\left([h \succ r],\left(h \succ x_{r}\right)+\left(x_{h} \prec r\right)\right) \bullet\left([l], x_{l}\right)=\left([h], x_{h}\right) \bullet\left([r], x_{r}\right) \bullet\left([l], x_{l}\right) .
\end{gathered}
$$

2 Corollaries

Corollary 1 ([3]) Let S be a semigroup and X be both a left S-act and a right S-act with commuting actions, and let $\varphi: X \rightarrow S$ be a (l, r)-morphism of S. Then the set X with two binary operations \prec and \succ defined by the following rules:

$$
\begin{aligned}
& x \prec y:=x \circ \varphi(y), \\
& x \succ y:=\varphi(x) \cdot y,
\end{aligned}
$$

for all $x, y \in X$, is a dimonoid. Conversely, any dimonoid can be so constructed.

Corollary 2 (Cayley-type theorem for idempotent g-dimonoids) Let S be a semigroup and $X \neq \emptyset$, let the maps (\cdot) and (o) be left and right S -acts respectively, let the map $\varphi: X \rightarrow S$ be a (l, r)-morphism of S which satisfies the following condition:

$$
\varphi(x) \cdot x=x \circ \varphi(x)=x, \forall x \in X .
$$

In this case $C_{S}(\mathrm{X})$ is an idempotent g-dimonoid.
Conversely, for any arbitrary idempotent g-dimonoid G there exists a semigroup S, and $X \neq \varnothing$, a left and a right S-acts of X, and a (l, r) morphism of S, which satisfies (\#) such that G coincides with $C_{S}(\mathrm{X})$, i.e. $G=C_{S}(X)$.

Corollary 3 (Cayley-type theorem for hyperassociative g-dimonoids) Let S be a semigroup and $X \neq \varnothing$, let the maps (\cdot) and (०) be respectively left and right S-acts, let the map $\Phi: X \rightarrow S$ be a (l, r)-morphism of S which satisfies the following conditions:

$$
\begin{aligned}
(\varphi(x) \varphi(y)) \cdot z=x & \circ(\varphi(y) \varphi(z)), \quad \forall x, y, z \in X, \\
(\varphi(x) \cdot y) & \circ \varphi(z)=\varphi(x) \cdot(y \circ \varphi(z)), \forall x, y, z \in X .
\end{aligned}
$$

In this case $C_{S}(X)$ is a hyperassociative g-dimonoid.
Conversely, for any arbitrary hyperassociative g-dimonoid G there exists a semigroup S, a non empty set X, and a left and a right S-acts of X, and a (l, r)-morphism of S, which satisfies (\#\#) and (\#\#\#), that G coincides with $C_{S}(\mathrm{X})$, i.e. $G=C_{S}(X)$.

Corollary 4 Let S be a commutative semigroup. Define the operations \succ and \prec on $S \times S$ as in $\left(o p_{1}\right)$ and $\left(o p_{2}\right)$. Then $\bar{S}=(S \times S ; \prec, \succ)$ is a g dimonoid, which satisfies the following identity:

$$
\begin{equation*}
x \succ y=y \prec x . \tag{***}
\end{equation*}
$$

Conversely, for any g-dimonoid D with the condition $(* * *)$ there exists a commutative semigroup H such that D is isomorphically embedded into \bar{H}.

Definition 9 A g-dialgebra is a vector space over a field equipped with two binary bilinear operations satisfying the axioms of a g-dimonoid.

Open problem 1. Prove a Cayley-type theorem for g-dialgebras.
Open problem 2. Characterize the free g-dialgebras.

Acknowledgments. This research is partially supported by the State Committee of Science of the Republic of Armenia, grants: 10-3/1-41, 18T-1A306.

References

[1] J. L. Loday, Dialgebras. Dialgebras and Related Operads, Lect. Notes Math., Springer, Berlin, (2001), pp. 7-66.
[2] Yu. M. Movsisyan, S. Davidov, M. Safaryan, Construction of free g dimonoids, Algebra Discrete Math., 18 (2014), no. 1, pp. 138-148.
[3] A. V. Zhuchok, A. B. Gorbatkov, On the structure of dimonoids, Semigroup Forum, (2016), pp. 194-203.
[4] A. Church, Introduction to Mathematical Logic Vol.1, Princeton University Press, Princeton, 1956.
[5] A. I. Mal'tsev, Some questions of the theory of classes of models (in Russian), Proceedings of the IVth All-Union Mathematical Congress, 1, (1963), pp. 169-198.
[6] A. I. Mal'tsev, Algebraic systems, Springer-Verlag, Berlin-HeidelbergNew York, 1973.
[7] Yu. M. Movsisyan, Introduction to the theory of algebras with hyperidentities (in Russian), Yerevan State University Press, 1986.
[8] Yu. M. Movsisyan, Hyperidentities and hypervarieties in algebras (in Russian), Yerevan State University Press, 1990.
[9] Yu. M. Movsisyan, Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk 53 (1), (1998), pp. 61-114, Russian Math. Surveys, 53 (1), (1998), pp. 57-108.
[10] Yu. M. Movsisyan, Hyperidentities and Related Concepts. I, Armen. J. Math. 2, (2017), pp. 146-222.
[11] Yu. M. Movsisyan, Hyperidentities and Related Concepts. II, Armen. J. Math. 4, (2018), pp. 1-85.
[12] L. A. Skornyakov (Editor), General algebra. V. 2 (in Russian), Moscow, 1991.
[13] Yu. M. Movsisyan, Hyperidentities and hypervarieties, Scientiae Mathematicae Japonicae, 54 (2001), no. 3, pp. 595-640.
[14] Yu. M. Movsisyan, Biprimitive classes of algebras of second degree (in Russian), Matematicheskie Issledovaniya 9 (1974), pp. 70-84.
[15] W. E. Barnes, On Г-rings of Nobusawa, Pacific J. Math. 3 (1966), pp. 411-422.
[16] N. Kehayopulu, On regular duo po-Г-semigroups, Math. Slovaca 61 (2011), No. 6, pp. 871-884.
[17] J. Luh, On the theory of simple Г-rings, Michigan Math. J. 16 (1969), pp. 65-75.
[18] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1(1964), pp. 81-89.
[19] S. K. Sardar, S. Gupta, K. P. Shum, Г-semigroups with unities and Morita equivalence for monoids, European Journal of Pure and Applied Mathematics, 6 (2013), no. 1, pp. 1-10.
[20] M. K. Sen, On Γ-semigroup, In: Algebra and Its Applications, New Delhi, (1981), Lecture Notes in Pure and Appl. Math., Dekker, New York, 91 (1984), pp. 301-308.
[21] M. K. Sen, N. K. Saha, On Г-semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), pp. 180-186.
[22] A. Seth, Γ-group congruences on regular Γ-semigroups, Int. J. Math. Math. Sci. 15 (1992), no. 1, pp. 103-106.
[23] M. K. Sen, S. Chattopadhyay, Г-Semigroups. A Survey, In Book: Algebra and Its Applications, (2016).
[24] A. V. Zuchok, Relatively free doppelsemigroups, Potsdam University Press, (2018).
[25] A. V. Zuchok, Y. V. Zhuchok, J. Koppitz, Free rectangular doppelsemigroups, J. Algebra Appl. September (2019), DOI: 10.1142/SO219498820502059.

Yuri Movsisyan
Yerevan State University,
Alex Manoogian 1, 0025 Yerevan, Armenia.
movsisyan@ysu.am
Marlen Yolchyan
Yerevan State University,
Alex Manoogian 1, 0025 Yerevan, Armenia.
marlen.yolchyan94@gmail.com
Please, cite to this paper as published in
Armen. J. Math., V. 12, N. 3(2020), pp. 114

