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Abstract. In this paper we provide an implementable formal al-
gorithm for knowledge bases equivalence verification based on the
formal definition of knowledge base given by B. I. Plotkin in his
works and also study some important properties of automorphic
equivalence of models. In addition we show that notion of auto-
morphic equivalence is much wider than the notion of isomorphism.
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1. Introduction and Motivation

This is a mathematical paper whose subject is originated from

databases (DB) and knowledge bases (KB) theory particularly, and

from Theoretical Computer Science in general. We proved the following

theorem: the problem of informational equivalence of two knowledge

bases with finite corresponding multimodels is decidable.

On the other hand, a part of this theorem is effective and provides

an implementable formal algorithm for KB equivalence recognition.

Thus, we think that it is of practical importance and can find applica-

tions in KB theory. This feedback is one of our principal aims.
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More precisely, the goal of this paper is to construct an algorithm

for knowledge bases equivalence verification based on the formal defi-

nition of knowledge base given in [16, 18, 20, 21] and to study some

important properties of automorphic equivalence of models. We will

describe the concept of equivalence and formulate the criterion for the

equivalence of knowledge bases defined over finite models. Further we

will define multi-models and automorphic equivalence of models and

multi-models that are generalization of automorphic equivalence of al-

gebras.

The recent advances in knowledge base research and the growing

importance of effective knowledge management emphasized the signifi-

cance of the question of knowledge bases equivalence verification. This

problem has not been stated earlier, at least in a way that allows speak-

ing about algorithms for verification of informational equivalence, be-

cause it requires a formal mathematical definition of the corresponding

objects, while the majority of the existing approaches rely on informal

or descriptive definitions which make the exact solution impossible.

1.1. Knowledge Bases. Descriptive Definitions. There is no

single agreed definition of knowledge presently, and there remain nu-

merous competing theories. In any case knowledge is some essence

which requires representation of knowledge. Various artificial languages

and notations have been proposed for representing knowledge. They

are typically based on logic and mathematics, and have easily parsed

grammars to ease machine processing [3, 6, 11, 12, 13, 23, 26, 27].

In general, a knowledge base is not a static collection of informa-

tion (like a database), but a dynamic resource that may itself have the

capacity to learn, as part of an artificial intelligence component. These

kinds of knowledge bases can suggest solutions to problems sometimes

based on feedback provided by the user, and are capable of learning

from experience (like an expert system). Knowledge representation,

automated reasoning, argumentation and other areas of artificial intel-

ligence are tightly connected with knowledge bases.
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1.2. Equivalence Problem. We study an equivalence of knowl-

edge bases in respect to their informational abilities. In other words,

we would like to discuss informational equivalence of knowledge bases.

It means, we expect to get the same information but may be in different

formats.

The principal task here is to find out whether the problem of in-

formational equivalence verification is algorithmically solvable. If we

concentrate on finite objects then the reasonable answer is yes, we can

build the step-by-step procedure used to solve the problem. But when

we consider infinite objects it may be problematic. Evidently, knowl-

edge bases are the example of this case. On the other side, if we could

find some finite invariant (or system of invariants) of a knowledge base,

such that equivalence of those invariants would involve equivalence of

corresponding knowledge bases, then the problem would turn to algo-

rithmically solvable.

1.3. Problem in Question and the Main Results. Knowl-

edge base systems combine features of database management systems

with artificial intelligence techniques. The existing knowledge bases

are defined using informal description of internal relationships and as a

consequence they do not allow to identify equivalent knowledge repre-

sented in different ways by different knowledge base implementations.

This problem can be solved by providing a formal mathematical model

of a knowledge base. An algebraic model was presented in [17]. In

the papers [15, 16, 18, 19, 20, 21] it was proposed a solution for

the knowledge bases equivalence problem using an algebraic geome-

try approach [7, 16], category theory [2, 10, 14] and group-theoretic

methods [1, 4, 5, 8, 10, 22].

In particular the following theorem had been obtained:

Two knowledge bases are informationally equivalent if and only if the

corresponding subjects of knowledge are automorphically equivalent.

This result introduces the notion of automorphic equivalence as a

key tool of the theory. Study of this notion is one of the main objectives

of this paper.
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We hope that the ability to verify informational equivalence of two

different knowledge bases can be used to increase efficiency of knowl-

edge retrieval and detection of hidden knowledge. If retrieving infor-

mation from one knowledge base may be problematic, the same in-

formation can be possibly easily accessible in another informationally

equivalent knowledge base. Another application of knowledge bases

equivalence verification is the disambiguation of information that ar-

rived from different sources or was encoded in different formats. In this

case information that is considered equivalent can be skipped.

2. Algebraic Background

In this section we will discuss notions of model, multi-model and

automorphic equivalence of models and multi-models.

2.1. Models.

Definition 2.1. We define a model as a triple (D,Φ, f), where D

is a data domain, that is, an algebra in a variety of algebras Θ (for

example, vector space over a field), Φ is a set of symbols of relations,

f is one of possible interpretations of these symbols as real relations in

D, i. e., if φ ∈ Φ is an n-ary relation in Φ, then f(φ) is a subset of

the Cartesian product Dn. Moreover, D may be a multi-sorted set, i.

e. , D = {Di, i ∈ Γ}, where Γ is a set of sorts [18, 25].

2.2. Multi-Models.

Definition 2.2. A multi- model is a triple (D,Φ, F ), where D is

a data domain (an algebra), Φ is a set of symbols of relations, F is a

set of different interpretations of Φ on D.

A model (D,Φ, f) is a particular case of a multi-model (D,Φ, F ).

The definition of multi-model takes into account that the instance (in-

terpretation) f can change, for example over time or under some other

circumstances. All these f constitute the set F . In general multi-

models may be infinite but we consider only the finite ones [18].
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2.3. Automorphic Equivalence of Models and Multi-Models.

For the given model (D,Φ, f) we have a group Aut(f) consisting of all

bijections s : D → D compatible with the interpretation of symbols of

relations. This means that for every n-ary relation φ ∈ Φ and every

element (a1, a2, ..., an) ∈ f(φ) the element (sa1, sa2, ..., san) belongs to

f(φ) as well. In the case of a multi-sorted model s = (si, i ∈ Γ). The

set of all such s form the group of automorphisms of the model de-

noted by Aut(f) (it should be noted that there are some cases when

this group is trivial).

Recall that two models (A,Φ1, f1) and (B,Φ2, f2) are called isomor-

phic if the sets Φ1 and Φ2 coincide and there is a bijection σ : A → B,

which is an isomorphism of algebras, and for any n-ary relation φ ∈ Φ

we have (a1, a2, ..., an) ∈ f1(φ) if and only if (σa1, σa2, ..., σan) ∈ f2(φ).

Definition 2.3. Let us consider two models (A,Φ1, f1) and (B,Φ2, f2).

Assume that A and B are algebras with the same operations, defined by

the variety of algebras Θ. They are called automorphically equivalent, if

there is an isomorphism µ : A → B such that groups of automorphisms

are conjugated by this isomorphism, i.e., Aut(f2) = µAut(f1)µ
−1.

The difference between automorphic equivalence of models and au-

tomorphic equivalence of algebras is the transformation µ : A → B.

For models we use the notion of isomorphism of algebras µ while for

algebras we referred to it as a bijection of sets δ.

Definition 2.4. Two multi-models (A,Φ1, F1) and (B,Φ2, F2) are

called automorphically equivalent, if there is a bijection α : F1 → F2,

such that the models (A,Φ1, f) and (B,Φ2, f
α) are automorphically

equivalent for every f ∈ F1.

This means that it is possible to correlate the instances of these

multi-models in such a way that the corresponding models turn to be

automorphically equivalent.

3. Multi-Models Automorphically Equivalent to a given one

Let us consider two ways to construct a multi-model (A,Φ, F1),

which is automorphically equivalent to the given multi-model (A,Φ, F ).
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We will use the multi-model to investigate automorphic equivalence

properties.

We will investigate two possible approaches:

(1) In order to get f ′ ∈ F1 some transformation σ will be applied

to f ∈ F .

(2) We will define f ′ ∈ F1 as a complement to f ∈ F .

Let us look at these two cases in more detail.

3.1. Construction of Automorphically Equivalent Multi-

Models Using Transformation σ. Let σ be an automorphism of

algebra A. For every interpretation f ∈ F we will construct another

interpretation fσ by the following rule: for n-ary relation ϕ ∈ Φ and

row (a1, a2, ..., an) ∈ An, we set: (a1, a2, ..., an) ∈ fσ(ϕ) if and only if

(aσ−1

1 , aσ−1

2 , ..., aσ−1

n ) ∈ f(ϕ).

Now we build a mapping µ : A → A, such that µ(a) = σ(a) for

every a ∈ A, and α : F → F1, such that fα = fσ for every f ∈ F .

Here we define a multi-model (A,Φ, F1), which is isomorphic to the

given multi-model (A,Φ, F ). Moreover, Aut(fα) = σAut(f)σ−1, which

means that these two multi-models are automorphically equivalent.

Thus, any automorphism of the algebra A induces a multi-model

which is isomorphic and, consequently, automorphically equivalent to

the given one.

3.2. Construction of Automorphically Equivalent Multi-

Models Using f . Let (A,Φ, F ) be a multi-model. For every f ∈ F we

build f using the following rule: f(ϕ) = f(ϕ), where bar denotes the

complement in the corresponding Cartesian product. Denote by F the

set of all f . Let us consider a mapping α : F → F defined by fα = f .

It is clear that this map is a bijection. Now we use an identity trans-

formation mapping µ : A → A. Obviously, we have Aut(f) = Aut(f),

and the equality Aut(f) = µAut(f)µ−1, where f ∈ F , takes place.

Thus, the multi-models (A,Φ, F ) and (A,Φ, F ) are automorphically

equivalent. Note that they are not isomorphic.
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4. Some Properties of Automorphic Equivalence

Our next aim is to investigate some properties of automorphic

equivalence. With this end we consider graphs as a particular example

of models.

4.1. Graphs. To each graph G = (V,E), where V is a set of

vertices and E is a set of edges, corresponds a model (V, ϕ,E) where

V is a domain of the model, ϕ is the only relation that exists on the

graph and defines edges between vertices, E is an interpretation of the

relation ϕ on the domain V , i.e., E ⊆ V × V .

As usual, an automorphism of a graph is a permutation on the set

of vertices preserving edges. All automorphisms of a graph constitute

a group, which is a subgroup of symmetric group acting on vertices.

The automorphism group of a graph characterizes its symmetries, and,

therefore, is very useful in determining some of its properties.

4.2. Investigation of a Tree Structure Preservation. In graph

theory a tree is a graph in which any two vertices are connected by ex-

actly one path. Alternatively, any connected graph with no cycles is a

tree. We show that automorphic equivalence of graphs does not pre-

serve tree structure of a graph.

4.2.1. Building Automorphically Aquivalent Multi-Models Using Al-

gebra Automorphism. Assume that G1 = (V1, E1) is a tree and G2 =

(V2, E2) is an arbitrary graph. Let G1 and G2 be automorphically

equivalent graphs. It means that there exists a bijection α that trans-

forms E1 to E2, a bijection µ that transforms V1 to V2 and Aut(G1)

and Aut(G2) are conjugated: Aut(G2) = µAut(G1)µ
−1.

Now let us consider the following example. We have two graphs on

Figure 1:
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Figure 1.

The set of vertices for graph G1 is V1 = {1, 2, 3, 4} and set of edges is

E1 = {e1
1 = (1, 2), e2

1 = (2, 1), e3
1 = (1, 3), e4

1 = (3, 1), e5
1 = (1, 4), e6

1 = (4, 1)}
. The automorphisms group consists of all permutations of 2, 3 and 4.

For graph G2 we have V2 = {1, 2, 3, 4} and the set of edges is E2 =

(e1
2 = (1, 2), e2

2 = (2, 1), e3
2 = (1, 3), e4

2 = (3, 1), e5
2 = (2, 3), e6

2 = (3, 2)).

The automorphisms group consists of all permutations of 1, 2 and 3.

Let us demonstrate that these two graphs are automorphically equiv-

alent.

(1) There exists a bijection α : E1 → E2, α =
(

e1
1 e2

1 e3
1 e4

1 e5
1 e6

1

e1
2 e2

2 e3
2 e4

2 e5
2 e6

2

)

(2) There exists a bijection µ as defined below (here we use cyclic

representation of permutations):

Figure 2.
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Groups of automorphisms are conjugated by bijection µ. Therefore,

graphs are automorphically equivalent. This example illustrates that

automorphic equivalence of two graphs does not preserve the basic

characteristics of those graphs, like being a tree.

Let us consider an additional example with directed graphs (Figure

3).

Figure 3.

The set of vertices for graph G1 is V1 = {1, 2, 3, 4, 5} and the set

of edges is E1 = (e1
1 = (1, 2), e2

1 = (1, 3), e3
1 = (3, 4), e4

1 = (3, 5)). The

automorphisms group consists of the following permutations (12345
12354) and

(12345
12345).

The vertices of graph G2 are V2 = {1, 2, 3, 4, 5} and edges of this

graph are E2 = (e1
2 = (1, 2), e2

2 = (2, 3), e3
2 = (3, 1), e4

2 = (2, 1)). The

automorphisms of the graph are (12345
12354) and (12345

12345).

We can see that these two graphs are automorphically equivalent.

(1) There exists bijection α : E1 → E2

α =
(

e1
1 e2

1 e3
1 e4

1 e5
1 e6

1

e1
2 e2

2 e3
2 e4

2 e5
2 e6

2

)

(2) There exists bijection µ as defined below (here we use cyclic

representation of permutations):
18
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Figure 4.

Groups of automorphisms are conjugated by bijection µ. Therefore,

graphs are automorphically equivalent. Thus, the graphs on Figure 3

are automorphically equivalent but the property of being a tree is not

preserved since G2 is not a tree.

4.2.2. Constructing Automorphically Equivalent Multi-Models Us-

ing Complement Interpretation. For multi-model of the given graph

(A,Φ, F ) = (V,Φ, E) we will build an automorphically equivalent multi-

model (A,Φ, F ) = (V,Φ, E) using the approach from Section 3.2.

Figure 5.

In order to build the second graph we connect two vertices that

were not connected in the original graph and, vice versa, if vertices

were connected in the original graph then we do not connect them in

the new one.
19



Here we have just one interpretation in each multi-model, so there is

no problem to build a bijection α : F → F . This bijection is α(E) = E.

The second bijection µ : A → A is the identity transformation

and in this example it is the permutation µ = (1 2 3 4 5
1 2 3 4 5). According

to the criterion of automorphic equivalence two our multi-models are

automorphically equivalent.

Since the second graph is not a tree, automorphic equivalence does

not preserve this property.

4.3. Graph Connectedness and Automorphic Equivalence.

4.3.1. Building Automorphically Equivalent Multi-Models Using Al-

gebra Automorphism. From the example in subsection 4.1.1, we can see

that the first graph is connected (tree) but the second one is not. As

we proved already two corresponding multi-models are automorphically

equivalent. So, automorphic equivalence of multi-models does not keep

connectedness of the graphs.

4.3.2. Building Automorphically Equivalent Multi-Models Using In-

verse Interpretation. Again we start from multi-model of connected

graph (A,Φ, F ) = (V,Φ, E) and we build automorphically equivalent

multi-model by the second approach, (A,Φ, F ) = (V,Φ, E).

Figure 6.

Here we use bijection α : F → F , where α(E) = E, and identical

bijection µ : A → A, i. e., µ = (1 2 3 4
1 2 3 4). Then the following equality

takes place Aut(f) = µAut(f)µ−1. This shows that two multi-models

are automorphically equivalent.

In this second example we also see that automorphic equivalence

does not save connectedness of the graph.
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5. Knowledge Bases Informational Equivalence Verification

Algorithm Outline

It is not clear a priori whether the information equivalence problem

for knowledge bases is algorithmically decidable. By its nature a knowl-

edge base is an infinite object since it possesses an infinite number of

queries (see [17] for precise definitions).

We assume that every knowledge under consideration is represented

by three components:

1) The description of knowledge. It is a syntactical part of knowl-

edge, written out in the language of the given logic.

2) The subject of knowledge which is an object in the given applied

field, i.e., an object for which we determine knowledge.

3) The content of knowledge (its semantics).

Let (A,Φ, F ) be a multi-model. To every such multi-model corre-

sponds a knowledge base KB = KB(A,Φ, F ). Roughly speaking,

A knowledge base KB = KB(A,Φ, F ) consists of the category of

knowledge description LΘ(Φ) and the categories of knowledge content

KΦΘ(f). They are related by the functors

Ctf : LΘ(Φ) → KΦΘ(f).

These functors Ctf transform knowledge description to content of

knowledge.

We view the description T as a query to a knowledge base, and

A = T f as a reply to this query.

Let KB(A,Φ1, F1) and KB(B,Φ2, F2) be two knowledge bases.

Theorem 5.1. The problem of informational equivalence of two

knowledge bases is algorithmically decidable if the the corresponding

multimodels are finite.

The proof relies on the following theorem [17]

Theorem 5.2. Two knowledge bases KB(A,Φ1, F1) and KB(B,Φ2, F2)

are informationally equivalent if and only if their finite multi-models are

automorphically equivalent.
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In other words two knowledge bases are informationally equiva-

lent if and only if the corresponding multi-models are automorphically

equivalent.

This theorem provides a possibility to build an effective algorithm

for knowledge bases informational equivalence verification. That is:

Lemma 5.3. For two given multi-models (A,Φ1, F1) and (B,Φ2, F2)

there exists algorithm for their automorphic equivalence verification.

We prove this lemma by constructing a formal algorithm:

begin verification

if algebrasA and B are not isomorphic

exit with not automorphically equivalent

else

find group of automorphisms Aut(A)

find group of automorphisms Aut(B)

find set AutFA of all subgroups Aut(f) from Aut(A), where f ∈ F1

find set AutFB of all subgroups Aut(f) from Aut(A), where f ∈ F2

build bipartite graph (V,E) of conjugated (fi, fj) from F1 × F2

if exists fi without corresponding fj

exit with not automorphically equivalent

else

find bijection α : F1 → F2 so that (f, fα) ∈ E for all f ∈ F1

if α exists

exit with automorphically equivalent

else

exit with not automorphically equivalent

end verification
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