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Abstract. This paper is devoted to the acceleration of the
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1 Introduction

One of the classical tools of mathematics is the apparatus of Fourier series,
based on the orthogonal system {eiπnx}, n = 0,±1,±2, . . . , complete in
L2[−1, 1]. However, in practice its usage is extremely limited because of the
poor approximation of a piecewise smooth function. Thus, in the case when
the function has discontinuity points (taking into account also discontinu-
ities at the ends of the interval [−1, 1]1, an intense oscillation arises in their
neighborhood (Gibbs phenomenon), and the uniform convergence is absent,

1 It is accepted that 1 + 0 = −1 + 0.
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although within the intervals of high smoothness of the decomposing func-
tion, a good convergence is observed. This leads to a slow L2-convergence
on the entire segment [−1, 1].

Respectively, a direction appeared in the scientific literature which is
characterized, in particular, as the ”overcoming of Gibbs phenomenon”
and ”the acceleration of convergence of Fourier series”. We shortly give the
main milestones of such studies.

1.1

The pioneer of the ”overcoming of the Gibbs phenomenon”, for the Fourier
series, is undoubtedly the outstanding scientist and engineer A. N. Krylov,
who as far back as at the dawn of the twentieth century ([1], 1907) proposed
the methods that he later developed in many times republished classical
work [2]. He developed an approach based on calculation the jumps of ap-
proximated piecewise smooth functions and their derivatives. Unfortunately,
in the international arena the ideas of A.N. Krylov remained in the shadow
for a long time.

However, difficulties in calculation of the above mentioned jumps directly
by the approximated function f , limits the scope of the practical application
of the Krylov method. In [6] (1993) Knut Eckhoff developed a ”spectral”
approach based on polynomial acceleration and proved to be much more
practical, since in the Krylov scheme only the Fourier coefficients of the
function f were used. On this path it was necessary to solve a certain linear
equation with the Vandermonde matrix.

We call this approach the Krylov-Eckhoff method (KE-method).

When realizing the KE-method, the convergence rate increases signifi-
cantly, but the solution of Eckhoff equation (for large number of used Fourier
coefficients) perceptibly increases of complexity of the coresponding algo-
rithm. In addition, K.Eckhoff used the polynomial acceleration of conver-
gence of the Fourier series. In a number of cases this is reflected already in
the efficiency of the KE-method itself. Apparently, this is one of the reasons
for the lack of realization of the KE-method proposed in the last century
even in such computer systems as Wolfram Mathematica and MatLab.

1.2

KE-method and other approaches to the acceleration of convergence of
Fourier series have been developed in different directions by many researchers
(see [3-5], [7-18] and their links). In particular, an algorithm is given in [9]
possessing a superconvergency (faster than any power-law convergence ) for
infinitely smooth functions. An explicit algorithm for the KE-method was
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constructed in [13] and the exact asymptotic error of the convergence accel-
eration was found.

We mention especially the phenomenon discovered numerically in the
paper [10]. A combination of KE-method and Pade approximation (applied
to the asymptotic expansion of the Fourier coefficients) is implemented there.
Some theoretical estimates and explicit formulas related to this approach
are given in [11] and [12]. As a result of numerical experiments, it turned
out that, as a rule, the corresponding algorithm was ”almost exact” on
an infinite-dimensional set of exponential functions, although only a finite
number of Fourier coefficients was used. A question was raised about the
theoretical justification for this unexpected phenomenon.

The acceleration algorithms proposed below are based on explicit for-
mulas. In sections 2 and 3 of the paper traditional ”universal” algotithms
are presented. The practical application of such an acceleration of conver-
gence of the Fourier series of any dimension is elementary: in classical partial
sums of Fourier series, instead of the Fourier exponents, certain predefined
functions must be inserted.

In sections 4 the hypothesis of [10] is proved and the corresponding adap-
tive algorithm is constructed. The effect of this phenomenon (called below
”over - convergence”) leads to an unprecedented increasing of the accuracy
of approximation of given smooth function on the basis of a finite number
of its Fourier coefficients.

Numerical results characterizing the proposed algorithms for the acceler-
ation of the convergence of partial sums of Fourier series for smooth functions
are given in section 5.

In section 6 a brief discussion of the results is given.

2 Biorthogonal interpretation of the acceler-

ation of convergence of Fourier series

Take an integer n ≥ 1 and consider a system of linearly independent smooth
functions {Ψr(x)}, x ∈ [−1, 1], r = 0,±1, . . . ,±n. Denote by {ψr,k} the
corresponding Fourier coefficients. Here and below, the Fourier coefficients
{fs} of the function f ∈ L2[−1, 1] are determined by the formula

fs =
1

2

∫ 1

−1
f(t) exp(−i π s t) dt, s = 0,±1,±2, . . . . (1)

We shall construct a biorthogonal system {Ξk(x), 1/2 exp(iπkx)} in L2,
where the functions {Ξk} belong to the linear span of the system {Ψk}. It is
easy to see that such system exists (and is unique) if the matrix [ψr,k] (r, k =
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0,±1, . . . ,±n) is invertible. Consider the approximation

f(x) '
n∑

r=−n

fr Ξr(x), x ∈ [−1, 1]. (2)

Lemma 1 Approximation (1) is exact for any element of the linear span of
the system {Ψk}, k = 0,±1, . . . ,±n.

Proof. It follows that any element f =
∑n

k=−n ck Ψk(x), ck = const, can be
represented in the form f =

∑n
k=−n bk Ξk(x), bk = const. According to the

indicated biorthogonality, fr = br, so approximation (2) is exact. �

Remark 1 This scheme can be rephrased with regard to the ”acceleration”
of a given orthogonal (or biorthogonal) decomposition in some separable
Hilbert space. It is another matter whether such an approach in specific
cases will be effective in applying.

As for the known methods of accelerating the convergence of the partial
sums of the Fourier series created by the KE - method and its modifications
(see above 1.1 and 1.2), it turns out that they are also actually based on
the indicated biorthogonalization.

The most problematic moment in this ”acceleration” scheme is the realiza-
tion of the biorthogonalization process. For large n, the numerical imple-
mentation sometimes can be inefficient due to the accumulation of errors. In
addition, the study of the properties of approximation (2) is rather difficult
(for example, the estimate of its asymptotic error when n→∞).

In this paper we show that if the system {Ψr} consists of quasi-polinomials
(that is, linear combinations of functions of the form P (x) exp(z x), where
z ∈ C, and P is a polynomial), then such a biorthogonal system can be con-
structed in explicit, analytical form for any n, and the approximation of the
form (2) leads to effective acceleration of convergence of the Fourier series
to a function f sufficiently smooth on the whole interval [−1, 1]. Such linear
algorithms are called ”universal” below, since for a fixed n the same sys-
tem of quasi-polynomials {Ξk(x)} is used for approximation of any smooth
function f(x) ∈ L2[−1, 1] (see section 3).

In section 4 it is proved that the use of a finite number of Fourier co-
efficients of the function f leads to an exact approximation of f from an
infinite-dimensional set of quasi-polynomials. On this basis, an algorithm is
proposed that builds its own system {Ξr} for each function f . Below such
an nonlinear algorithm is called ”adaptive”.

Some of the proposed algorithms are numerically implemented in section
5. As the results in tables 1 and 2 show, adaptive algorithms have an
absolute advantage.



ON THE OVER-CONVERGENCE PHENOMENON 5

3 Some universal acceleration algorithms

3.1 The acceleration of the one-dimensional Fourier
series

For a fixed integer n ≥ 0 and r = 0,±1, . . . ,±n, consider the following
infinite rational sequence2

θr,s
def
= (−1)s−r (

n∏
p=−n
p6=r

s− p
r − p

)
n∏

q=−n

r − λr,q
s− λr,q

, s = 0,±1,±2, . . . (3)

where {λr,p} ⊂ C, p = 0,±1,±2, . . . ,±n, is a set of non-integers and s being
any integer. Note that θr,r = 1 and θr,s = 0 for s 6= r, s = 0,±1, . . . ,±n.

Now consider the following functions represented by their Fourier series.

Θr(x)
def
= exp(i π r x) +

∑
|s|≥n+1

θr,s exp(i π s x), x ∈ [−1, 1] (4)

Theorem 1 The system {Θr(x), 1/2 exp(i π r x)}, r = 0,±1, . . . ,±n, is bior-
thogonal on the segment x ∈ [−1, 1]. If λr,k − λr,p 6= 0, p 6= k, the functions
{Θr} are represented in the following explicit form

Θr(x) =
n∑

k=−n

cr,k exp(i π λr,k x), r = ±1,±2,±n, x ∈ [−1, 1], (5)

where 3

cr,k =
1

sinc(π(r − λr,k))
(

n∏
p=−n
p 6=k

r − λr,p
λr,k − λr,p

)
n∏

q=−n
q 6=r

λr,k − q
r − q

.

Proof. We note at first that Θr ∈ L2[−1, 1], since evidently θr,s = O(1/s)
for s→∞ . Biorthogonality follows immediately from (4).

To prove the representation (5), note that for fixed r the function (3) is
meromorphic by s ∈ C and can be decomposed into simple fractions. Since
it has only simple poles, the easiest way to obtain such a decomposition is
to use the residues at the points {s = λr,k}.

2To avoid complications in formulas, the dependence of some quantities on n will be
omitted below.

3 sinc(z) = sin(z)/z, z ∈ C, sinc(0) = 1.
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From the other hand it is easy to verify that for λ ∈ C we have

exp(i π λ x) =
∞∑

s=−∞

sinc(π(s− λ)) exp(i π s x), x ∈ [−1, 1]. (6)

Therefore, it is easy to verify the validity of formula (5). �

The acceleration of convergence is given by the following biorthogonal
approximation

f(x) ' Fn(x)
def
=

n∑
r=−n

frΘr(x), x ∈ [−1, 1]. (7)

According to (4), the error

Rn(x)
def
= f(x)− Fn(x) (8)

of this approximation has the form

Rn(x) =
∑
|s|≥n+1

(fs −
n∑

r=−n

frθr,s) exp(i π s x), x ∈ [−1, 1] (9)

which allows to write down L2-norm of Rn(x) also in an explicit form.
According to Lemma 1, Rn(x) ≡ 0, x ∈ [−1, 1], for any element of the

linear span of the system {Θr}, r = 0,±1, . . . ,±n.

Remark 2 Some of the above restrictions on parameters {λr,k} can be re-
moved. Thus, in the representation (3) we can assume, for example, that
λr,0 = λr,1 and then in the proof of Theorem 1 the function, which is mero-
morphic with respect to s, is equal to θr,s has a second-order pole and then
the formula (5) have to be corrected. In this case a term of the form
c x exp(i π λr,0x) will arise in Θr(x) (c=const.). In the general case Θr(x)
will be a quasi-polynomial (see also below 3.3.1, 3.3.2 and Theorem 3).

3.2 The acceleration of the multi-dimensional Fourier
series

We give one simple generalization of this universal approximation algorithm
to the multidimensional case. Let x = (x1, x2, . . . , xm),m ≥ 2, be a point
of the m-dimensional space, and a function f is given in the domain Dm,
defined as the direct product of the segments −1 ≤ xk ≤ 1, k = 1, 2, . . . ,m.
Denote by {fr}, r = (r1, r2, . . . , rm) its m-dinensional Fourier coefficients.
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For a given vector n = (n1, n2, . . . , nm) with nonnegative integer com-
ponents we will say that the corresponding partial sum of Fourier series is
approximated (”accelerated”) by the following quasi-polynomial Fn on m
variables

f(x)
def
= Fn(x) =

n1∑
r1=−n1

n2∑
r2=−n2

· · ·
nm∑

rm=−nm

fr

m∏
k=1

Θrk(xk), (10)

where the functions {Θrk(xk)} are quasi-polynomials, determined on each
variable xk with the own set of parameters {λrk,sk} (see (4) and Remark 2).

It is not difficult to formulate analogues of considered above results for
multi-dimensional case. Thus, obviously the approximation (10) is an ex-
pansion by the biorthogonal system

{
m∏
k=1

Θrk(xk),
1

2m

m∏
k=1

exp(i π k xk) }, xk ∈ [−1, 1], k = 1, 2, . . . ,m.

3.3 Some special cases

For a fixed n ≥ 1 and r in a one-dimensional sequence (3) there are (2n+1)2

complex parameters {λr,q}. In the m-dimensional case (see (10)), when
nk = n,∀k, their number is equal to m (2n+ 1)2. As one can see the choice
of these parameters is quite wide. Here we shall dwell only on the following
two special cases.

3.3.1 Algorithm A

In this case the non-integer parameters {λr,q} depend only on the the second
index (λr,p = λp, p = 0,±1, . . . , n), so

θr,s = (−1)s−r (
n∏

p=−n
p 6=r

s− p
r − p

)
n∏

q=−n

r − λq
s− λq

, s = 0,±1,±2, . . . (11)

If λp 6= λq, p 6= q, the formulas (7) and (10) are approximations of the
function f(x) by linear combinations of exponents.

It follows from Lemma 1 that if the function f belongs to the linear span
of the system {exp(i π λp x)}, p = 0,±1, . . . ,±n, then the approximations
(7) and (10) are exact. If some of the parameters in {λq} coincide, then

θr,s = (−1)s−r (
n∏

p=−n
p 6=r

s− p
r − p

)
m∏
q=1

(
r − λq
s− λq

)nq
, s = 0,±1, . . . (12)
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where {nq}, q = 1, . . . ,m, are the positive integers and
∑m

q=1 nq = 2n +
1, λk 6= λp if k 6= p. In this case, the basis of the acceleration algorithm is
the following decomposition into the simple fractions∏n

p=−n
p 6=r

(s− p)∏m
q=1(s− λq)nq

=
m∑
k=1

nq∑
p=1

ak,p
(s− λq)p

, ak,p = const., s ∈ C. (13)

It is not difficult to present here the corresponding system {Θr(x)} (see
Lemma 1, Remark 2 and Theorem 3 below).

3.3.2 Algorithm B

Here non-integer parameters {λr,q} depend only on the first index r (λr,p =
λr). Respectively, let us consider for fixed n ≥ 1 and r (= 0,±1, . . . ,±n)
the rational with respect to s sequence

θr,s = (−1)s−r
(
r − λr
s− λr

)2n+1 n∏
p=−n
p 6=r

s− p
r − p

, s = 0,±1,±2, . . . (14)

If λr = 0,∀r, then the formula formula (7) is an approximation of a function
f(x) by polynomials of at most 2n-th order.

Theorem 2 If {λr} ⊂ C, then the system {Θr(x)} consists of the following
functions

Θr(x) = (r − λr) (
n∏

p=−n
p 6=r

r − λr
r − p

)
2n∑
k=0

br,2n−k Λr,k(x), r = 0,±1,±2,±n, (15)

where the system {Λr,k(x)} consists of the following quasi-polynomials

Λr,k(x)
def
=
−π
k!

dk

d λkr

exp(i π λr x)

sin(πλr)
, (16)

and

br,k =
1

k!

dk

dλkr

n∏
p=−n
p 6=r

(λr − p), k = 0, 1, . . . , 2n, r = 0,±1,±2,±n.

Proof. First we consider the power series at the point z = λr for the fol-
lowing polynomials of degree 2n
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Pr(z)
def
=

n∏
p=−n
p6=r

(z − p) =
2n∑
k=0

br,k(z − λr)k, br,k = P (k)
r (λr)/k!, z ∈ C.

Of course the coefficients {br,k} (also depending on n) can be explicitly ex-
pressed with the help of Vieta’s formulae.

According to (11) and (16), we have

θr,s = (r − λr) (
n∏

p=−n
p 6=r

r − λr
r − p

)
2n∑
k=0

br,k (s− λr)−k−1, r = 0,±1, . . . ,±n. (17)

Denoting now

Λr,k(x) =
∞∑

s=−∞

(−1)s exp(i π s x)

(s− λr)k
, (18)

it is not difficult to verify the validity of formula (15). So {Θr} is a system
of quasi-polynomials. �

4 Adaptive algorithms

In each of the universal algorithms given above, the value of n and parame-
ters {λp} are fixed and in the acceleration process a finite number of Fourier
coefficients {fs}, of the approximated function f are used.

It is natural to ask whether it is possible to construct an algorithm that,
figuratively speaking, pulls out of an additional information from the same
Fourier coefficients because of the optimal choice of the parameters {λp}.

A positive answer to this question was obtained earlier in [10] (see 1.2
above) at the level of some numerical experiments. Below, we give a rigor-
ous justification for the phenomenon noted there, on the basis of which an
algorithm will be implemented a significant additional acceleration of the
convergence of Fourier series.

4.1 Some definitions and clarifications

The classical definition of the partial sum of the Fourier series used above
is related to traditional numbering of the Fourier system and, apparently, is
justified only by the fact that Fourier coefficients tend to zero. The following
reasoning is based on the natural definition of the partial sum, which is more
flexible than the classical one.
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Definition 1 We call a partial sum of the Fourier series for a function f
any sum of the form

Sn(x)
def
=
∑
k∈Dn

fk exp(i π k x), x ∈ [−1, 1], (19)

where {fk} are Fourier coefficients of f(x), and Dn = {dk}, k = 1, . . . , n, is
a set of n different integers (n ≥ 1). Let’s assume that D0 = ∅.

Sometimes it is more convenient to use an equivalent recording

Sn(x) =
n∑
k=1

fdk exp(i π dk x),

where the set {dk} is numbered (for instance) in the ascending order.
Consider a set of non-integer numbers {λr,k} ⊂ C, r, k ∈ Dn. We use (in

place of (3)) the following sequence

tr,s
def
= (−1)s−r (

∏
p∈Dn
p6=r

s− p
r − p

)
∏
q∈Dn

r − λr,q
s− λr,q

, r ∈ Dn, s = 0,±1, . . . . (20)

Here the numbering of the parameters {λr,k} is related to k ∈ Dn.
By analogy with definitions (4), (7) and (8) we have

Tr(x) = exp(i π r x) +
∑
s 6∈Dn

tr,s exp(i π s x), r ∈ Dn,

f(x) ' Fn(x)
def
=
∑
r∈Dn

frTr(x), Rn(x)
def
= f(x)− Fn(x), x ∈ [−1, 1]. (21)

The system {Tr(x), 1/2 exp(i π r x)}, r ∈ Dn, is biorthogonal in L2[0, 1].
The estimation of the L2-error of the approximation f(x) ' Fn(x) has

(by analogy with (9)) the form

||Rn||2 =
∑
s 6∈Dn

||fs −
∑
r∈Dn

frtr,s||2 (22)

Definition 2 We say that the definitions (19) - (22) are symbolic if the
corresponding parameters {λk} are symbolic.

Definition 3 Let n ≥ 1 be an integer. Consider a system of functions
Un = {exp(i π µk x)}, µk ∈ C, x ∈ [−1, 1], k = 1, 2, . . . , n, where {µk} are
arbitrary parameters. Denote by Qn its linear span (Qn = span (Un)). We
call a function q ∈ Qn a quasi-polynomial of degree at most n.
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It is easy to see that if q ∈ Qn, then either q(x) ≡ 0 or q(x) =∑
k Pβk(x) exp(i π µk x), where each polynomial Pβk(x) 6≡ 0 has exact de-

gree βk and
∑

k(1 + βk) ≤ n (see 3.3.1). From the biorthogonality of the
system {Tr(x), 1/2 exp(i π r x)}, r ∈ Dn, we have (see the proof of Lemma
1) q(x) =

∑
r∈Dn

qr Tr(x), x ∈ [−1, 1], where {qk} are the Fourier coefficients
of the function q.

Definition 4 We denote q ∈
0

Qn, if q ∈ Qn and

q(x) =
∑
k∈Dn

Pβk(x) exp(i π µk x),

where the values of {µk} are not integers.

The condition f ∈ Qn imposes certain restrictions on the total number of
non-zero coefficients {cp} and non-zero polynomials {Pβk(x)} with allowance
for their powers {βk} (see Definition 3 and the corresponding clarification).

We also note that the set
0

Qn is not closed in Qn.

4.2 A simplest example of the phenomenon

Consider a function f ∈ Q1, f(x) 6≡ 0 and a simplest partial sum S1(x) =
fk exp(i π k x), fk 6= 0. We have (up to a non-zero constant factor)

fs = sinc(π(s− µ)), µ ∈ C, s = 0,±1,±2, . . .

.
From (20), we have the following symbolic representation (λ = λ1,1)

tk,s =
(−1)s−k(k − λ)

(s− λ)
, s = 0,±1,±2, . . . .

Now let the value λ be chosen from the condition

fs − fk tk,s = 0, s 6= k, (23)

for a fixed s.
Suppose we know the values of fk and fs but do not know the value of

µ. Let’s consider the following cases.

1). µ 6∈
0

Q1. Then (here sin(π λ) 6= 0)

fs − fk tk,s = c1

(
(λ− µ) (k − s)

(k − µ) (s− λ) (µ− s)

)
= 0, c1 6= 0.
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Then (see (21)) λ = µ, and f(x) = fkTk(x) = fk exp(i π µ x). That is, we
exactly found the parameter µ (with the function f (see Lemma 1)) only
in terms of the two non-zero Fourier coefficients fk and fs. Note, that here
the set {c exp(i π µ x)}, c = const ∈ C, µ ∈ C, when µ is not integer, is
infinite-dimensional in L2[−1, 1].

2). µ = k. Here fs = 0 and fk = 1. It is easy to see that again λ = µ
and f(x) = fk Tk(x) = fk exp(i π k x).

3).µ 6= k. Here fs 6= 0 and fk = 0. The equation is c = 0, c 6= 0, so there
is no solution.

4). If in the previous case we solve Eq.(23) by the least square method,
then we obtain λ = 0 and f(x) ' 0.

Below we show that the phenomenon noted in 1) is also observed in the
general case, when we use (see 3.3.1) an A-type algorithm for n ≥ 2.

4.3 Main theorem

In the previous example, we first used the value of fk and the symbolic
parameter λ. Then an additional coefficient fs was used, which allowed to
find the unknown value λ = µ by solving one linear equation (23). If the
function f is not an exponential, then this algorithm could be interpreted
as the ”separation of the main exponential part” from f(x). The following
procedure is based on the realization of such an idea in the general case.

Below we assume that our parameters do not depend on r ({λr,k} =
{λk}, k ∈ Dn).

4.3.1 The scheme of the basic algorithm

Consider the following calculation scheme for the realization of an adaptive
approximation (21) for a smooth function f .

Let Sn(x) be a partial sum of Fourier series (see (19)). We consider the
sequence (20) in the symbolic form (see Definition 3) with known coefficients
{fk ∈ Dn}. Now we choose another set of different integers D̃n = {d̃k}, k =
1, 2, . . . , n, Dn ∩ D̃n = ∅. To determine the values of parameters {λq}, q ∈
Dn, we additionally use Fourier coefficiens {fs}, s ∈ D̃n, and solve (similarly
to Eq.(23)) the following system of equations

fs −
∑
r∈Dn

frtr,s = 0, s ∈ D̃n. (24)

Such a choice is natural, since, as a rule, it reduces the approximation error
(see (22)). This is our adaptive approach to the choice of the parameters
{λq}, since they now depend on the Fourier coefficients of the given function
f (in contrast to the universal algorithms discussed in 2 above).
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If the solution exists, the quasi-polynomials {Fn} (see (21)) are used
to approximate f . According to Definition 1, this scheme relates to the
acceleration of the convergence of the following partial sum of a Fourier
series

S2n(x) =
∑

k∈Dn∪D̃n

fk exp(i π k x), x ∈ [−1, 1].

Of course, a number of questions arise here. For example, it is unclear
how to solve equation (24) (especially for large n) and it is not specified how
to act if the solution does not exist or exists, but is not unique. These and
other details will be clarified below.

4.3.2 Algorithm A

Here we propose an implementation of the above scheme.
Let’s call Algorithm A the realization of the following steps:
Step 1. Reduce each equation of the system (24) to the common de-

nominator and consier the equality to zero of each numerator. Then we
have

fs

n∏
q=1

(s− λq) =
∑
r∈Dn

(−1)s−rfr (
∏
p∈Dn
p 6=r

s− p
r − p

)
n∏
q=1

(r − λq), s ∈ D̃n. (25)

Step 2. Using the Vieta’s formula decompose the products in Eq.(25) con-
taining parameters from {λk}, and denote

uk = (−1)k
∑

i1<i2<···<ik

λi1λi2 , . . . , λik , k = 1, 2, . . . , n.

It is not difficult to see that now Eq. (25) will take the form of the system
of linear equations with respect to the variables {uk}.

Step 3. Solve resulting equation by the least square method.
Step 4. Using the soluition, find (again according to the Vieta’s for-

mulae) all roots{zk}, k = 1, 2, . . . , n, of the corresponding polynomial zn +∑n
p=1 up z

n−p and put {λk} = {zk}.
Step 5. Taking into account the multiplicities of these roots, finally,

implement the analog of the Algorithm A (see 3.3.1) for the sequence (20)
when {λr,q} = {λq} (see (12)). If the system {Fn} could not be constructed
( for example, if in step Step 4 a zk is integer, see (20)), we must return to
step Step 1 and add some new Fourier coefficients to Dn and D̃n.
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Remark 3 Assume we know a finite set S of Fourier coefficients of the
function f , that contains the set D = Dn

⋃
D̃n, (D ⊂ S). If S \D = ∅, then

we will apply Step 3. Otherwise we choose a set S1 ⊂ (S \D), S1 6= ∅, and
solve the equation in Step 2 for s ∈ D̃n

⋃
S1 (instead of s ∈ D̃n) by the least

square method. In this case f must be approximated by the formula

f(x) ' Fn(x)
def
=

∑
r∈Dn

frTr(x) +
∑

s∈S\Dn

(fs −
∑
r∈Dn

frtr,s) exp(i π s x). (26)

This approximation, generally speaking, is more accurate than the ap-
proximation from (21).The effectiveness of such an approximations is con-
firmed by a number of our numerical experiments (see, for example, 5.1.1,
c) and Table 1 below).

Remark 4 The solution of the system (24) is a set of n parameters {λk},
regardless of its numbering. Indeed, a change in the numbering leads only to
a permutation of the last product in (20).

4.3.3 The quasi-polynomial representation

If the parameters {λk} and corresponding multiplicities {nk} are known,
then (according to (13)) we can use the representation

tr,s = (−1)s−r (
∏
p∈Dn
p6=r

s− p
r − p

)
∏
j∈Dm

(
r − λj
s− λj

)nj
, s = 0,±1, . . . , (27)

where r ∈ Dn, Dm ⊂ Dn, {nq} are corresponding positive integers, and∑
j∈Dm nj = n, λp 6= λq if p 6= q.
The following theorem generalizes Theorem 1 for the case {λr,p} = λp, p ∈

Dm.

Theorem 3 Suppose the sequence (27) is given. Then the corresponding
functions {Tr} are quasi-polynomials and have the following explicit form

Tr(x) =
∑
j∈Dm

nj∑
k=1

cr,j,k Λj,k(x), r ∈ Dn, x ∈ [−1, 1], (28)

where (see (16)) the system {Λr,k} consists of the following quasi-polynomials

Λj,k(x) =
−π

(k − 1)!

dk−1

d λk−1j

(csc(πλj) exp(i π λj x)) ,
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and

cr,j,k =
(−1)r

∏
j∈Dm(r − λj)nj∏

p∈Dn
p 6=r

(r − p)

nj∑
k=1

(nj − 1)!

(nj − k)!

dnj−k

dλ
nj−k
j

 ∏
p∈Dn
p 6=r

(λj − p)∏
p∈Dn
p 6=j

(λj − λp)np



Proof. The function Tr(s) = tr,s, considered for s ∈ C, is rational with
poles at s = λj of order nj, j ∈ Dm.

Let U ⊂ C be a simply connected open subset containing the points
{λj}, j ∈ Dm, with the positively oriented simple boundary curve γ = ∂U .
We have Tr(s) = (1/s), s → ∞, therefore, according to Cauchy’s residue
theorem

0 =
1

2 π i

∫
γ

Tr(t)

t− s
dt = Tr(s) +

∑
j∈Dm

Rest=λj(
Tr(t)

t− s
), s ∈ U.

Let us show how these residues can be explicitly calculated. For given
r ∈ Dn and j ∈ Dm, the problem is reduced (see (27)) to finding the residue
at the point t = λj for the function

W1(t) =
W (t)

(s− t)(t− λj)nj
, where W (t) =

∏
p∈Dn
p6=r

(t− p)∏
p∈Dn
p 6=j

(t− λp)np
.

From here

Rest=λjW1(t) =
dnj−1

dλ
nj−1
j

(
W (λj)

s− λj
) =

nj∑
k=1

(nj − 1)!

(nj − k)! (s− λj)k
dnj−k

dλ
nj−k
j

W (λj).

This implies (see (18) and (21)) the formula (29). �

Remark 5 From Theorem 3 we have

Fn(x) =
∑
j∈Dm

nj∑
k=1

aj,k Λj,k(x), (29)

where aj,k =
∑

r∈Dn fr cr,j,k. It follows that approximation f ' Fn can be
carried out directly by this formula, avoiding the use of the system {Tr}.
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4.3.4 The phenomenon

The following theorem is the main result of this paper.

Theorem 4 {The phenomenon of the over-convergence}. Let f ∈
0

Qn and the sets Dn, D̃n and the Fourier coefficients {fs}, s ∈ Dn ∪ D̃n, of
the function f be given. Then the approximation using Algorithm A is exact
(that is f(x) ≡ Fn(x)).

Proof. For f(x) ≡ 0 this is obvious. Suppose that f(x) 6≡ 0. Then f(x) =∑
k Pmk(x) exp(i π µk x), where each Pmk(x) 6≡ 0 and

∑
k(1 +mk) ≤ n.

Turning to the application of Algorithm A, we emphasize that we know
only the values {fs} for s ∈ Dn ∪ D̃n but do not know the values of the
parameters {µs}. The definition of these parameters is our main goal, but
first let’s analyze the situation using them.

It is not difficult to see that the Fourier coefficients {fs} of the function
f(x) have the form

fs =
(−1)sPm−1(s)∏
k∈Dm(s− µk)

, 1 ≤ m ≤ n, s = 0,±1,±2, . . . (30)

where Pm−1(s) is a polynomial of degree m− 1. Here we do not specify the
multiplicities of the parameters {µk}. Without loss of generality, we assume
that the fraction on the right hand of (30) is uncancellable.

First we consider the case m = n.
Note that this corresponds to the conditions

∑nj
k=1 |aj,k| 6= 0, j ∈ Dm,

in the representation (29). From the system (20), which corresponds (in-
stead of {λk}) to the parameters {µk}, we have (see Theorem 1) f(x) =∑

r∈Dn frTr(x), x ∈ [−1, 1]. In terms of Fourier coefficients, this means that
fs =

∑
r∈Dn

fr tr,s, s = 0,±1, . . . . In more detail

Pn−1(s)∏
k∈Dn(s− µk)

−
∑
r∈Dn

fr(−1)−r (
∏
p∈Dn
p 6=r

s− p
r − p

)
∏
q∈Dn

r − µq
s− µq

= 0. (31)

It is obvious that this equality is true for any s ∈ C, s /∈ {µk}. With this
in mind, Eq.(24) has the form (see (20))

A(s)
def
=

Pn−1(s)∏n
k=1(s− µk)

−∑
r∈Dn

fr(−1)−r (
∏
p∈Dn
p 6=r

s− p
r − p

)
∏
q∈Dn

r − λq
s− λq

= 0, s ∈ D̃n. (32)
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Comparing (31) with (30), we note that Eq.(32) has at least a solution
{λk} = {µk} (see Remark 4).

To show that this solution is unique, suppose that there is an another
solution {λk}. If s ∈ Dn, then the function A is equal to zero (see Lemma
1). On the other hand, A(s) = 0 for s ∈ D̃n. As we see from (31), the
numerator of the rational function A(s) is a polynomial of degree at most
2n− 1 which has 2n zeros. So A(s) ≡ 0, s ∈ C.

From (31) we now have

Pn−1(s) = Qn−1(s)
∏
p∈S

s− µp
s− λp

, s ∈ C,

where Qn−1(s) is a polynomial, S ⊂ Dn, S 6≡ ∅ and λp 6= µq for p 6=
q, p, q ∈ S. Then Pn−1(µp) = 0, p ∈ S. This contradicts the condition of
the irreducibility of the fraction in (30).

Now let m < n in (30).
Then choosing {λj} = {µj}, j ∈ Dm, regardless of the values of param-

eters {λj}, j ∈ Dn \ Dm, we get the same representation (29). Indeed, it
is not difficult to see that the values λj ∈ Dn \Dm correspond to the con-
ditions aj,k = 0, k = 1, . . . , nj, in the representation (29), which we use in
Algorithm A. Taking this into account and repeating the above arguments
when m = n, we conclude that the equation in Step 3 actually (with accu-
racy up to values of λj ∈ Dn \ Dm, that do not affect the expansion (29))
has a unique solution {λj} = {µj}, j ∈ Dm.

Thus, we obtain a constructive proof of the theorem. �

5 Numerical results

The results below are obtained using the symbolic and computational ca-
pabilities of Wolfram Mathematica computer system (see [19]). When cal-
culating the Fourier coefficients and the L2 -approximation errors in the
one-dimensional case, numerical integrations are performed with increased
accuracy. Uniform errors in our experiments were detected graphically.

As an acceleration measure (acceleration rate) for given n, the ratio ef/eθ
is taken, where ef is the error (in L∞ or L2 ) when applying the partial sum
of Fourier series, and eθ is the corresponding error when applying formulas
(7), (10) or (21). It is clear that the value of ef/eθ > 1 corresponds to the
”acceleration” and ef/eθ < 1 to the ”deceleration”.

5.1 Comparable algorithms

Given the values of n = 4, 8 and 12 in the numerical experiments, we compare
the following algorithms (see below Tables 1 and 2).
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5.1.1

In the one-dimensional case:
a) Universal Algorithm A (see 3.3.1). Here we chose

λk =
2 arctan

(
n
9

+ 1
5

)
π

k, k = 0,±1, . . . ,±n. (33)

As we see, here the real parameters {λk} depend both on n and k, λ−k =
−λk, λk 6= λp for k 6= p, λn ↑ n, when n→ +∞. The approximation f(x) '
Fn(x) is made by a linear combination of functions {exp(i π λk x)}, k =
0,±1, . . . ,±n (see Theorem 1) .

b) Universal Algorithm B0. This is the algorithm B (see 3.3.2), provided
λr = 0, ∀r. For a given n, the approximation Fn(x) ' f(x) consists of
polynomials of degree at most 2n.

c) Adaptive Algorithm Am, for m = 2, 4, n/2, n. In this algorithm,
depending on the integer parameter m, 1 ≤ m ≤ n, the procedures from
4.3.2 must be changed as follows:

c1) To use the same (2n + 1) Fourier coefficients as in the algorithms
A and B0, it is assumed that Dm = {k}, k = n −m, . . . , n − 1, S = S1 =
{p}

⋃
{n}, p = −n,−n+ 1, . . . ,−n+m− 1 (see Remark 3).

c2) As the result, in Step 3 we solve Eq. (24) for additional s = n,
which consists of m + 1 equations for m unknown values {uk}. It is solved
by the least square method and in Step 4 we determine m parameters {λk}.

The above algorithms are implemented in Wolfram Mathematica system
with an accuracy of 10−38.

5.1.2

In the two-dimensional case (x, y) ∈ [−1, 1]× [−1, 1] we have used (see above
3.2) only the following universal algorithm (see below Table 2):

Algorithm AA: in definition (9) n1 = n2 = n, x1 = x, x2 = y and the
functions Θr1(x),Θr2(y) corresponds to parameters (32).

Because of too slow work, this algorithm is implemented in the Wolfram
Mathematica system with an accuracy of 10−7.

5.2 Test functions

In the one-dimensional case, numerical experiments are presented for the
function

g1(x) = (1− i) Iπ
4

(
(2− 4 i)x+

(
1

4
+

5 i

2

))
, x ∈ [−1, 1], (34)

where Iν(z) is the modified Bessel function of the first kind.
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In the two-dimensional case, we use the function

g2(x, y) =
i sin

(
−
(
5− i

5

)
x+ 3 y2 + 1− i)

)
x2 + i y + (1− 3 i)

(35)

Errors norm → L∞ L2

Values of n→ 4 8 12 4 8 12

Fourier Series 2 e+0 2 e+0 2 e+0 5.9 e-1 4.3 e-1 3.5 e-1

Algorithm A 3.8 e-2 2 e-3 2 e-4 7.8 e-3 2.7 e-4 2.2 e-5
Acceleration rate 5.4 e+1 1 e+3 9.6 e+3 7.6 e+1 1.6 e+3 1.6 e+4

Algorithm B0 3.6 e-2 8.4 e-3 3.9 e-3 6.5 e-3 1.1 e-3 3.7 e-4
Acceleration rate 5.6 e+1 2.3 e+2 5 e+2 9.2 e+1 4 e+2 9.4 e+2

Algorithm A2 1.7 e-2 7.7 e-4 4.1 e-5 3.3 e-3 1.1 e-4 4 e-6
Acceleration rate 1.2 e+2 2.6 e+3 4.8 e+4 1.8 e+2 4 e+3 8.7 e+4

Algorithm A4 1.1 e-2 3.5 e-4 2.7 e-5 2.7 e-3 4.4 e-5 2.8 e-6
Acceleration rate 1.8 e+2 5.6 e+3 7.2 e+4 2.2 e+2 9.7 e+3 1.2 e+5

Algorithm An/2 1.7 e-2 3.5 e-4 1.8 e-6 3.3 e-3 4.4 e-5 2.5 e-7
Acceleration rate 1.2 e+2 5.6 e+3 1.1 e+6 1.8 e+2 9.7 e+3 1.4 e+6

Algorithm An 1.1 e-2 2.8 e-5 3.8 e-8 3.9 e-3 5.6 e-6 1.9 e-8
Acceleration rate 1.8 e+2 7 e+4 5.3 e+7 1.5 e+2 7.6 e+4 1.8 e+7

Table 1. Errors and corresponding accelerations when the function g1(x) is

approximated.

Errors norm → L∞ L2

Values of n→ 4 8 12 4 8 12

Fourier Series 2 e-1 2 e-1 2 e-1 7.5 e-2 5.1 e-2 4.1 e-2

Algorithm AA 6 e-3 3 e-5 8 e-6 1.7 e-3 5.2 e-6 8.2 e-7
Acceleration rate 3.3 e+1 6.7 e+3 2.4 e+5 4.4 e+1 9.8 e+3 5 e+4

Table 2. Errors and corresponding accelerations when the function g2(x, y) is

approximated.

5.3 Discussion of numerical results

The results presented here are typical for our numerical experiments. Let
us dwell on their main features.

First of all, we note (see Table 1) the absolute advantage of adaptive
algorithms over universal ones. This advantage is manifested even when
using only two symbolic parameters λ1 and λ2 for the cases n = 8 and 12
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(see Algorithm A2). The adaptive approximation of a sufficiently smooth
function f retains a high accuracy of differentiation. We also note that in
practice the case with several roots in Stage 4 is extremely rare due to the
inevitable accumulation of errors.

As for universal algorithms, they can also be considered (in contrast to
the traditional partial sums of the Fourier series) to be practically effective.
We emphasize that the choice of parameters in Algorithm A by formula (33)
was artificial and can not be considered optimal in any sense. In the same
time Algorithm A has a noticeable advantage over Algorithm B0.

In the two-dimensional case (see Table 2), Algorithm AA is also quite
effective. According to our experiments, the use of algorithms of the type
B0 in multi-dimensional cases seems to be impractical due to the high level
of error accumulation at relatively small values of (n,m) (see 3.2).

6 Conclusion

The above results show that the formulas (3) and (20) underlying the ex-
plicit construction of the biorthogonal system {Θr(x), 1/2 exp(i π r x)} (see
above 3.1 and 4.1), opens new possibilities in the problem of acceleration
of convergence of partial sums of Fourier series.

At the same time, we note that the obtained and verified algorithms do
not relate to the case of the dependence of the parameters {λr,p} on both
r and p (see (3)). The phenomenon of over-convergence is still undetected
either in this or in the multidimensional case due to the lack of an analog of
step 3 in the implementation 4.3.2.

We do not touch upon the questions of asymptotic convergence (if n→
∞) for universal algorithms. In the one-dimensional case, the corresponding
estimates in terms of the derivatives of the function f in some cases can be
obtained by methods used, for example, in [13, 16].

In the multidimensional case, the derivation of asymptotic estimates for
universal algorithms (see 3.2 and 5.1.2) looks problematic. Even more
problematic is this question for the above-mentioned adaptive algorithms
(e.g. for Algorithm A). It is not yet clear how to estimate their errors. The
only information is given by the formula (see above 4.3.1 and 4.3.2)

||Rn||2 =
∑

s 6∈Dn∪D̃n

||fs −
∑
r∈Dn

frtr,s||2,

instead of the representation (22) in the case of the corresponding univer-
sal algorithm. However, this does not reflect their real enormous practi-
cal advantages associated with approximation of function f by the infinite-

dimensional set
0

Qn.
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We note also the special efficiency of the algorithms Am (see 5.1.1) in
the problem of detecting hidden periodicities of a function f , using only a
finite set of its Fourier coefficients (for example, when f is an almost periodic
function).

As for the phenomenon of the over-convergence itself, Theorem 4 can be
considered as a basis for the further construction of corresponding adaptive
algorithms for ”accelerating the convergence” of the classical Fourier appa-
ratus in the broad sense (sine and cosine series and interpolations, signal
and image processing tools etc.).
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