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Introduction

A quasi-metric d on a set X is a function d : X ×X → [0,∞] satisfying

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) There exists a constant A <∞ such that d(x, y) < A(d(y, z)+d(x, z))
for x, y, z ∈ X.

The space of homogeneous type (X, d, µ) in the sense of Coifman and Weiss
[4] is a topological space X defined by d with nonnegative measure µ which
is defined on the σ-algebra generated by quasi-metric balls and open sets
such that 0 < µ(B(x, r)) < ∞ for all x ∈ X and arbitrary r > 0, and so
that there exists a constant b > 0 such that

µ(B(x, 2r)) 6 bµ(B(x, r)) <∞, (1)

where B(x, r) is the ball centred at x with radius r. Iterating (1) we obtain
that there exists a positive constant Cµ such that for all x ∈ X, 0 < r < R
and y ∈ B(x,R),

µ(B(y, r))

µ(B(x,R))
> Cµ

( r
R

)log2 b

. (2)
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If b is the smallest constant for the measure µ satisfying (2), we call the
number Q = log2 b the doubling order of µ. Obviously, in the case of Rn

with the Lebesgue measure, Q = n. In addition, we say (X, d, µ) is a reverse
doubling spaces if there exists a constant γ, 0 < γ < 1 such that for every
x ∈ X and r > 0 such that B(x, r) ⊂ X,

µ(B(x, r/2)) 6 γµ(B(x, r)).

For any spaces of homogeneous type (X, d, µ), Maćıas and Segovia [8] prove
that there exists an equivalent quasi-metric ρ such that all balls with respect
to ρ are open in the topology induced by ρ. As in [12], the definition of the
reverse doubling condition would need to be changed slightly: there exist
constants C and γ, 0 < γ < 1 such that for any ball B(x, r) ⊂ X and any
i > 1

µ(B(x, 2−ir)) 6 Cγiµ(B(x, r)).

For more details on this perspective, see [5]. From [10], we know that any
doubling measure on any metric space which is connected is reverse doubling.
It is valid on any space of homogeneous type that satisfies a non-empty
annuli condition, the details to see [14]. The similar conclusions on space of
homogeneous type can be seen in [15] and [4].

Let p : X → [1,∞) be a measurable function. We suppose that

1 < p− 6 p(·) 6 p+ <∞, (3)

where p− = ess infx∈X p(x), p+ = ess supx∈X p(x). We let Lp(·)(X) be the set
of functions f such that

ρp(·)(f) =

∫
X

|f(x)|p(x)dx <∞.

It is a Banach space equipped with the norm

‖f‖Lp(·) = inf

{
λ > 0 : ρp(·)(f/λ) 6 1

}
.

We denote the conjugate exponent by p′(x) =
p(x)

p(x)− 1
for x ∈ X. The

Hölder inequality is valid in the form∫
X

|f(x)g(x)|dx 6

(
1

p−
+

1

p′−

)
‖f‖p(·)‖g‖p′(·).

The variable Morrey spaces over a bounded open set Ω ⊂ Rn were intro-
duced in [10]. In [11] the authors introduced the following variable Morrey
spaces on the space of homogeneous type with diam(X) <∞.
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Definition 1 Let 1 < q− 6 q(·) 6 p(·) 6 p+ < ∞. We say that a measur-

able locally integrable function f on X belongs to the class M
p(x)
q(x) if

‖f‖
M

p(x)
q(x)

(X)
= sup

B
(µ(B(x, r)))1/p(x)−1/q(x)‖f‖Lq(·)(B(x,r).

It is obvious that M
p(·)
q(·) = Lp(·) when p = q; when p, q are constants, the

space M
p(·)
q(·) coincides with the classical Morrey space Mp

q . The definition

and some properties of M
p(·)
q(·) we can see from [16, 1, 9] and so on.

As in the Euclidean case we know the log-Hölder continuity condition
has play an important role, for details see [17]. On unbounded spaces, it
was used in [3, 12] the similar condition to control the continuity of p(·)
locally and at infinity.

Definition 2 Given a function r(·) : X → [0,∞), we say that r(·) satisfies
the local log-Hölder condition, and denote this by r(·) ∈ LH0, if there exists
a constant C0 such that for all x, y ∈ X, d(x, y) < 1/2,

|r(x)− r(y)| 6 C0

− log d(x, y)
.

The constant C0 is called the LH0 constant of r(·).

Definition 3 Given a function r(·) : X → [0,∞), we say that r(·) satisfies
the log-Hölder condition with respect to a base point x0 ∈ X, and denote this
by r(·) ∈ LH∞, if there exist constants C∞, r∞ such that for all x ∈ X

|r(x)− r∞| 6
C∞

log(e+ d(x, x0))
.

The constant C∞ is called the LH∞ constant of r(·).

When p(·) ∈ LH = LH0 ∩ LH∞ we say p(·) satisfies the global log-Hölder
condition.

For η, 0 6 η < 1, the fractional maximal operator is given by

Mηf(x) = sup
x∈B

1

µ(B)1−η

∫
B

|f |dµ.

When η = 0 this reduces to the Hardy-Littlewood maximal operator, de-
noted by M . On the classical Morrey spaces over Rn, the weighted norm
inequalities for Mη were proved in [18]. For variable spaces over spaces of
homogeneous type, norm inequalities was proved in [12] extending the work
on the Hardy-Littlewood maximal operator. We state our result on Mη on
the variable exponent Morrey spaces defined over spaces of homegeneous
type as following.
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Theorem 1 Let (X, d, µ) be a space of homogeneous type. For η, 0 6 η < 1,
let p1(·) : X → [1,∞), q1(·) : X → [1,∞) be such that 1/p1(·), 1/q1(·) ∈ LH,
1 < q1− 6 p1(·) 6 p1+ < 1/η and q1(·) 6 p1(·). For each x ∈ X, define
1/p1(x)− 1/p2(x) = η and 1/q1(x)− 1/q2(x) = η. Then Mη is bounded from

M
p1(x)
q1(x) to M

p2(x)
q2(x) . Moreover, if µ(X) <∞, then we can replace the hypothesis

1/p1(·), 1/q1(·) ∈ LH with 1/p1(·), 1/q1(·) ∈ LH0.

The definition of the fractional integral operator is

Iηf(x) =

∫
X

f(y)

(µ(B(x, d(x, y))))1−η dµ(y).

The results about fractional integrals defined on quasi-metric measure space
but without doubling condition discussed in the monograph [24]. When
µ(X) <∞ these operators were considered in [19, 20] on spaces of homoge-
neous type. In [12] the boundedness of them were discussed when µ(X) =∞
on reverse doubling space of homogeneous type. We have the following result
on the variable exponent Morrey spaces defined over spaces of homogeneous
type.

Theorem 2 Let (X, d, µ) be a reverse doubling space of homogeneous type.
For η, 0 6 η < 1, let p1(·) : X → [1,∞), q1(·) : X → [1,∞) be such that
p1(·), q1(·) ∈ LH, 1 < p1− 6 p1(·) 6 p1+ < 1/η and q1(·) 6 p1(·). For each
x ∈ X, define 1/p1(x)− 1/p2(x) = η and 1/q1(x)− 1/q2(x) = η. Then Iη is

bounded from M
p1(x)
q1(x) to M

p2(x)
q2(x) . Moreover, if µ(X) <∞, then we can replace

the hypothesis 1/p1(·), 1/q1(·) ∈ LH with 1/p1(·), 1/q1(·) ∈ LH0.

We say (X, d, µ) is Ahlfors−Q regular if there exist constants C1, C2 such
that

C1r
Q 6 µ(B(x, r)) 6 C2r

Q

for x ∈ X and r > 0.
Next we introduce two classes of operators which were applied to study

the Sobolev and Poincaré inequalities over metric spaces, for details see
[21, 22]. Given 0 < α < Q, define the operators

I∗αf(x) =

∫
X

f(y)

d(x, y)Q−α
dµ(y),

I∗∗α f(x) =

∫
X

f(y)d(x, y)α

µ(B(x, d(x, y)))
dµ(y).

It is immediate that these operators are pointwise equivalent to Iη with
η = α/Q, if (X, d, µ) be an Ahlfors regular space of homogeneous type.
Based on Theorem 1 and Theorem 2, we obtain the following conclusion at
once.
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Corollary 1 Let (X, d, µ) be an Ahlfors regular space of homogeneous type.
For α, 0 < α < Q, let p1(·) : X → [1,∞], q1(·) : X → [1,∞] be such that
p1(·), q1(·) ∈ LH, 1 < p1− 6 p1(·) 6 p1+ < Q/α and q1(·) 6 p1(·). For each
x ∈ X, define 1/p1(x)− 1/p2(x) = α/Q and 1/q1(x)− 1/q2(x) = α/Q. Then

I∗∗α is bounded from M
p1(x)
q1(x) to M

p2(x)
q2(x) , and I∗∗α is also bounded from M

p1(x)
q1(x)

to M
p2(x)
q2(x) .

1 Preliminaries

Lemma 1 [7] Assume µ(X) < ∞ and let p ∈ LH0. Then there exists a
positive constant C such that for all balls B ⊂ X the inequality

µ(B)p−(B)−p+(B) 6 C

holds.

There seems to require a stronger hypothesis in more general setting of
spaces of homogeneous type.

Lemma 2 [12] Given a space of homogeneous type (X, d, µ), let p(·) : X →
[1,∞) be such that 1/p(·) ∈ LH. Then there is a positive constant C such
that for any ball B

(i) µ(B)1/p−(B)−1/p+(B) 6 C;

(ii) for all x ∈ B, µ(B)1/p(x)−1/p−(B) 6 C and µ(B)1/p+(B)−1/p(x) 6 C.

If we assume diam(X) < ∞ and µ{x} = 0, we have the following sate-
ment.

Lemma 3 [11] Let β be a measurable function on X satisfying β(x) < −1
for all X. Suppose that r is a small positive number. Then there exists a
positive constant C independent of r and x such that

A(x, r) =

∫
X\B(x,r)

(µ(Bxy))
β(x)dµ(y) 6 C

β(x) + 1

β(x)
(µ(x, d(x, y))β(x)+1,

where

Bxy = µ(x, d(x, y)).

Lemma 4 [12] If (X, d, µ) is a reverse doubling spaces, then for all x ∈ X,
µ{x} = 0.

Comparing Lemmas 3 and 4 we have the following conclusion.
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Lemma 5 Assume (X, d, µ) is a reverse doubling spaces and µ(X) < ∞.
Let β be a measurable function on X satisfying β(x) < −1 for all X. Suppose
that r is a small positive number. Then there exists a positive constant C
independent of r and x such that

A(x, r) =

∫
X\B(x,r)

(µ(Bxy))
β(x)dµ(y) 6 C

β(x) + 1

β(x)
(µ(x, d(x, y))β(x)+1,

where

Bxy = µ(x, d(x, y)).

Lemma 6 Assume (X, d, µ) is a reverse doubling spaces. Let β be a measur-
able function on X satisfying β(x) < −1 for all X. Suppose that r is a small
positive number. Then there exists a positive constant C > Cµ independent
of r and x such that

A(x, r) =

∫
X\B(x,r)

(µ(Bxy))
β(x)dµ(y) 6

C−2β(x)−1

1− γ−β(x)−1
(µ(x, d(x, y))β(x)+1,

where

Bxy = µ(x, d(x, y)).

Proof: For i > 1 we define

Ri = {y ∈ X : 2i−1r 6 d(x, y) < 2ir}.

Since the measure µ is both doubling and reverse doubling, we get∫
X\B(x,r)

(µ(Bxy))
β(x)dµ(y)

6
∑
i>1

∫
Ri

(µ(Bxy))
β(x)dµ(y)

6
∑
i>1

µ(B(x, 2i−1r))β(x)µ(B(x, 2ir))

=
∑
i>1

( µ(B(x, 2ir))

µ(B(x, 2i−1r))

)−β(x)

µ(B(x, 2ir))β(x)+1

6
∑
i>1

C−β(x)
µ C−β(x)−1(γi)−β(x)−1µ(B(x, r))β(x)+1

6
C−2β(x)−1

1− γ−β(x)−1
µ(B(x, r))β(x)+1.
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Lemma 7 [13] Let f be a measurable function on X and let E be a mea-
surable subset of X. Then the following inequalities hold:

‖f‖p+(E)

Lp(·)(E)
6 ρp(fχE) 6 ‖f‖p−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) 6 1;

‖f‖p−(E)

Lp(·)(E)
6 ρp(fχE) 6 ‖f‖p+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) > 1.

Lemma 8 [12] Let (X, d, µ) be a space of homogeneous type. For η, 0 6
η < 1, let p(·) : X → [1,∞) be such that 1/p(·) ∈ LH, 1 < p− 6 p+ < 1/η.
For each x ∈ X, define 1/p(x) − 1/q(x) = η. Then Mη is bounded from
Lp(x)(X) to Lq(x)(X).

Lemma 9 [12] Let (X, d, µ) be a space of homogeneous type. For η, 0 6
η < 1, let p(·) : X → [1,∞) be such that p(·) ∈ LH, 1 < p− 6 p+ < 1/η. For
each x ∈ X, define 1/p(x)− 1/q(x) = η. Then Iη is bounded from Lp(x)(X)
to Lq(x)(X).

2 Proof of the Main Results

Proof of Theorem 1 : Let r be a small positive number. Decompose f as
follows:f = f1 + f2, where f1 = fχB(x,A(2A+1)r), f2 = f − f1. We get

(µ(B(x, r)))1/p2(x)−1/q2(x)‖Mηf‖Lq2(x)(B(x,r))

6 (µ(B(x, r)))1/p2(x)−1/q2(x)‖Mηf1‖Lq2(x)(B(x,r))

+(µ(B(x, r)))1/p2(x)−1/q2(x)‖Mηf2‖Lq2(x)(B(x,r))

= I1 + I2.

By Lemma 8 and doubling condition we have

I1 6 C(µ(B(x, r)))1/p2(x)−1/q2(x)‖f1‖Lq1(x)(B(x,r))

6 C‖f‖
M

p1(x)

q1(x)
(X)
.

Since B(x, r) ⊂ B(y, 2Ar) ⊂ B(x,A(2A+ 1)r), we have

Mηf2(y) 6 sup
B⊃B(x,r)

1

(µ(B))1−η

∫
B

|f |dµ

for y ∈ B(x, r).
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Hence by Lemma 2, the Hölder inequality, Lemma 7 we obtain

I2 6 C(B(x, r))
1

p2(x)
− 1

q2(x)

[
sup

B⊃B(x,r)

1

(µ(B))1−η

∫
B

|f |dµ
]
‖χB(x,r)(·)‖Lq2(·)(X)

6 C(µ(B(x, r))1/p2(·) sup
B⊃B(x,r)

1

(µ(B))1−η ‖f‖Lq1(·)(B)‖χB‖Lq
′
1(·)(B)

6 C(µ(B(x, r))1/p2(·) sup
B⊃B(x,r)

1

(µ(B))1−η ‖f‖Lq1(·)(B)(µ(B))1/q
′
1−(B)

= C(µ(B(x, r))1/p2(·) sup
B⊃B(x,r)

(µ(B))
1

p1(x)
− 1

p2(x)‖f‖Lq1(·)(B)(µ(B))−1/q1−(B)

6 C sup
B⊃B(x,r)

(µ(B))
1

p1(x)
− 1

q1(x)‖f‖Lq1(·)(B)

6 C‖f‖
M

p1(x)

q1(x)
(X)
.

Proof of Theorem 2 : Let r be a small positive number. Decompose f as
follows:f = f1 + f2, where f1 = fχB(x,2Ar), f2 = f − f1. For y ∈ B(x, r) and
z ∈ X \B(x, 2Ar), we have

d(x, z) 6 A(d(x, y) + d(y, z)) 6 Ar + Ad(y, z) 6 d(x, z)/2 + Ad(y, z).

So we obtain

µ(B(x, d(x, z))) 6 Cµ(B(x, d(y, z))).

In addition, for t ∈ B(x, d(y, z)), we get

d(y, t) 6 A(d(y, z)) + Ad(z, t)

6 Ad(y, z) + Ad(z, x) + Ad(x, t)

6 Ad(y, z) + 2A2d(y, z) + Ad(y, z)

= 2A(1 + A)d(y, z).

Hence, µ(B(x, d(y, z))) 6 Cµ(B(y, d(y, z))). Finally, we obtain

µ(B(x, d(x, z))) 6 Cµ(B(x, d(y, z))) 6 Cµ(B(y, d(y, z))).

Since the reverse doubling condition, we can take integer m and < θ < 1
so that θm (if diam(X) <∞, we take θmdiam(X)) is sufficiently small. For
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y ∈ B(x, r) we have

|Iηf2(y)|

6
∫
X\B(x,2Ar)

|f(z)|
µ(B(x, d(x, z)))1−η dµ(z)

6
∫
X\B(x,2Ar)

∫
B(x,θm−2d(x,z))\B(x,θm−1d(x,z))

|f(z)|
µ(B(x, d(x, t)))2−η dµ(t)dµ(z)

6
∫
X\B(x,2Ar)

∫
B(x,θm−2d(x,z))\B(x,θm−1d(x,z))

|f(z)|
µ(B(x, d(x, t)))2−η dµ(t)dµ(z)

6
∫
X\B(x,2θm−1Ar)

1

µ(B(x, d(x, t)))2−η

∫
B(x,θ1−md(x,z))

|f(z)|dµ(z)dµ(t)

6
∫
X\B(x,2θm−1Ar)

f̄(x, t)

µ(B(x, d(x, t)))
dµ(t),

where

f̄(x, t) =
1

(µ(B(x, θ1−md(x, t)))1−η

∫
B(x,θ1−md(x,t))

|f(z)|dµ(z).

By Lemma 2 and doubling condition, we get

f̄(x, t) 6
‖f‖Lq1(·)(B(x,θ1−md(x,t)))‖χB(x,θ1−md(x,t))‖

Lq
′
1(·)

(µ(B(x, θ1−md(x, t)))1−η

6 ‖f‖
M

p1(x)

q1(x)
(X)

(µ(B(x, θ1−md(x, t)))−1/q
′
1(x)−1/p1(x)+1/q

′
1(x)+η

6 C‖f‖
M

p1(x)

q1(x)
(X)

(µ(B(x, d(x, t)))−1/p2(x).

Since 1 + p2(x) > 1, by Lemma 6 we have

|Iηf2(y)| 6 C‖f‖
M

p1(x)

q1(x)
(X)

∫
X\B(x,2Aθ1−mr)

1

(µ(B(x, d(x, t)))1+1/p2(x)
dµ(t)

6 C‖f‖
M

p1(x)

q1(x)
(X)

(µ(B(x, r))−1/p2(x).

Then by Lemma 2 and Lemma 9, we get

(µ(B(x, r)))1/p2(x)−1/q2(x)‖Iηf‖Lq2(x)(B(x,r))

6 (µ(B(x, r)))1/p2(x)−1/q2(x)‖Iηf1‖Lq2(x)(B(x,r))

+(µ(B(x, r)))1/p2(x)−1/q2(x)‖Iηf2‖Lq2(x)(B(x,r))

6 C(µ(B(x, r)))1/p2(x)−1/q2(x)‖f1‖Lq1(x)(B(x,2Ar))

+(µ(B(x, r)))1/p2(x)−1/q2(x)‖Iηf2‖Lq2(x)(B(x,r))

6 C‖f‖
M

p1(x)

q1(x)
(X)

+ C(µB(x, r))−1/q2(x)‖χB(x,r)‖Lq2(·)(X)‖f‖
M

p1(x)

q1(x)
(X)

6 C‖f‖
M

p1(x)

q1(x)
(X)
.
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3 Application

Let Γ = {t ∈ C : t = t(s), 0 6 s 6 ` 6 ∞} be a connected rectifiable curve
and and let ν be an arc-length measure on Γ, that is ν(t) = s. We denote

Γ(t, r) = Γ ∩B(t, r), t ∈ Γ, r > 0,

where B(t, r) = {z ∈ C : |z − t| < r} is a disc in C with center t and radius
r. Γ is called a Carleson curve (regular curve), if there exists a constant C
not depending on t and r, such that

ν(Γ(t, r)) 6 Cr.

If we equip Γ with the measure ν and the Euclidean metric, the regular
curve becomes a space of homogeneous type.

The maximal operator is

MΓf(t) = sup
r>0

1

ν(Γ(t, r))

∫
Γ(t,r)

f(τ)dν(τ)

and the potential type operator is

Iαf(t) =

∫
Γ

f(τ)

|t− τ |1−α
dν(τ)

for 0 < α < 1.
The Cauchy integral is

SΓf(t) =

∫
Γ

f(τ)

t− τ
dν(τ).

The associated kernel is

k(z, ω) =
1

z − ω

and it is a Calderón-Zygmund kernel in the case of regular curves.

Definition 4 Let 1 < q− 6 q(·) 6 p(·) 6 p+ < ∞. We say that a measur-

able locally integrable function f on Γ belongs to the class M
p(·)
q(·) (Γ) if

‖f‖
M

p(·)
q(·) (Γ)

= sup
t∈Γ,r

(ν(Γ(t, r)))1/p(t)−1/q(t)‖f‖Lq(·)(B(t,r)).

Theorem 1 implies the following statement.

Theorem 3 Let 1 < q− 6 q(·) 6 p(·) 6 p+ < ∞. Suppose that p, q ∈ HL.

Then MΓ is bounded in M
p(x)
q(x) (Γ).
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Theorem 2 implies the following statement.

Proposition 1 Let Γ be a regular curve. Suppose 1 < q− 6 q(t) 6 p(t) 6
p+ < ∞ for all t ∈ Γ. such that 1/p1(·), 1/q1(·) ∈ LH, 1 < q1− 6 p1(·) 6
p1+ < 1/α and q1(·) 6 p1(·). For each x ∈ X, define 1/p1(x)− 1/p2(x) = α

and 1/q1(x)−1/q2(x) = α. Then Iα is bounded from M
p1(x)
q1(x) (Γ) to M

p2(x)
q2(x) (Γ).

Let K : X ×X \ {(x, x) : x ∈ X} → R be a measurable function satisfying
the condition:

(i) K(x, y) 6
C

µ(B(x, d(x, y)))
, x, y ∈ X, x 6= y;

(ii) |K(x1, y)−K(x2, y)|+ |K(y, x1)−K(y, x2)| 6
Cω
(d(x1,x2)
d(x2,y)

)
µ(B(x2, d(x2, y)))

for all x1, x2 and y with d(x2, y) > d(x, y), where ω is a positive, non-
decreasing function on (0,∞) satisfying ω(2t) < ω(t) for t > 0 and the Dini

condition
∫ 1

0
ω(t)/t dt < ∞. The definition of Calderrón-Zygmund operator

T is

Tf(x) = lim
ε→0

∫
X\B(x,ε)

K(x, y)f(y)dµ(y)

and for some p0, 1 < p0 < ∞ and all f ∈ Lp0(X) the limit exists almost
everywhere on X and T is bounded at f ∈ Lp0(X).

If we assume diam(X) <∞ and µ{x} = 0, we know the following state-
ment from [11].

Theorem 4 [11] Let 1 < q− 6 q(·) 6 p(·) 6 p+ < ∞. Suppose that p, q ∈
HL0. Then T is bounded in M

p(x)
q(x) (X).

Assume (X, d, µ) is a reverse doubling spaces and µ(X) <∞, by lemma
4 and theorem 4 we have

Theorem 5 Let 1 < q− 6 q(·) 6 p(·) 6 p+ <∞. Suppose that p, q ∈ HL0.

Then T is bounded in M
p(x)
q(x) (X).

By theorem 1 we have

Theorem 6 Let 1 < q− 6 q(·) 6 p(·) 6 p+ <∞. Suppose that p, q ∈ HL0.

Then MΓ is bounded in M
p(x)
q(x) (Γ).

Let Γ be a subset of Rn which is an s-set (0 6 s 6 n) in the sense that there
is a Borel measure µ in Rn such that

(i) supp µ = Γ;
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(ii) there are positive constants C1 and C2 such that for all z ∈ Γ and all
r ∈ (0, 1),

C1r
s 6 µ(B(x, r) ∩ Γ) 6 C2r

s.

More detailed properties of s-sets one can see in [23]. By Theorem 2 we have

Proposition 2 Suppose Iα is the fractional operator on an s-set Γ. Suppose
1 < q− 6 q(t) 6 p(t) 6 p+ < ∞ for all t ∈ Γ, such that 1/p1(·), 1/q1(·) ∈
LH, 1 < q1− 6 p1(·) 6 p1+ < 1/α and q1(·) 6 p1(·). For each x ∈ X, define
1/p1(x)− 1/p2(x) = α and 1/q1(x)− 1/q2(x) = α. Then Iα is bounded from

M
p1(x)
q1(x) (Γ) to M

p2(x)
q2(x) (Γ).
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[22] T. Mäkäläinen, Aams inequalities on metric measure spaces, Rev. Mat.
Iberoam., 25(2), 533-558, 2009.

[23] H. Triebel, Fractals and spectra related to Fourier analysis and function
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