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Frequency detection using Padé approximation
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Abstract. The current paper describes an application of Padé approximation to obtain
a frequency detection method similar to (and, in a sense, more general than) linear predic-
tion. While generally not applicable for spectrum estimation, the described method is in
many cases more precise in finding the frequencies of a harmonic signal. A great number
of numerical tests were performed for comparing frequency detection performance of the
method under consideration and of linear prediction. Their methodology and results are
summarized in the article.
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1 Introduction

Frequency detection is one of the best known and the most studied topics in one-dimensional
signal processing. One of the possible approaches to that problem is using linear predic-
tion to estimate the spectrum of the signal and then finding the poles of the estimated
filter to find frequencies. Some authors have studied variations of this approach, see [1].

The current paper applies a somewhat different technique to arrive at what can be
viewed as a generalization of the above mentioned method of linear prediction. Tests
performed by the authors show this method favorably when compared to the basic linear-
prediction based one.

2 Theoretical motivation for the method

Let us first recall that the spectrum of a discrete signal x = (xn) is the 2π-periodic
function

S(eiω) =
∞∑

n=−∞
rne

−iωn, (1)

where

rn = rn(x) =
∞∑

k=−∞
xkx̄k−n (2)
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is the n-th autocorrelation of (xn). Setting z = eiω we can rewrite (1) as

S(z) =
∞∑

n=−∞
rnz

−n. (3)

The spectrum is thus a Laurent series in variable eiω and one can try to approximate
it by a rational function using the Padé approximation technique. If we approximate the
series by a rational function

S[L,M ](z) =

∑L
n=0 anz−n

∑M
n=0 bnz−n

then, under suitable conditions, the poles of S[L,M ] tend to the poles of S. As we are
approximating a Laurent series, we will instead try to approximate (3) by the function
z−aS[L,M ].

Thus, we are looking for a solution of the following approximate equation:

∞∑
n=−∞

rnz−n ≈ z−a

∑L
n=0 anz

−n

∑M
n=0 bnz−n

. (4)

For specificity, we assume b0 = 1. After suitable modifications, we obtain from (4) the
following approximate equation:

∞∑
n=−∞

(
M∑

m=0

bmra+n−m

)
z−n ≈

L∑
n=0

anz
−n. (5)

Following Padé [3], we will solve (5) by equating the first L+M +1 coefficients of powers
of z, thus obtaining the following system of linear equations:

M∑
m=1

bmra+n−m = −ra+n, n = L + 1, L + 2, . . . , L + M. (6)

an =
M∑

m=0

bmra+n−m, n = 0, 1, . . . , L. (7)

In matrix form, these equations are written as



ra+L ra+L−1 . . . ra+L−M+1

ra+L+1 ra+L . . . ra+L−M+2
...

...
. . .

...
ra+L+M−1 ra+L+M−2 . . . ra+L







b1

b2
...

bM


 = −




ra+L+1

ra+L+2
...

ra+L+M


 (8)




ra ra−1 . . . ra−M

ra+1 ra . . . ra−M+1
...

...
. . .

...
ra+L ra+L−1 . . . ra−M+L







1
b1
...

bM


 =




a0

a1
...

aL


 . (9)
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We are only interested in the poles of the right side of (4), thus the coefficients an are
not interesting. (Numerical tests show that the suggested method indeed is not usable
for general spectrum estimation.) The equation (8) depends only on a + L and, after
denoting p = a + L, it can be rewritten as




rp rp−1 . . . rp−M+1

rp+1 rp . . . rp−M+2
...

...
. . .

...
rp+M−1 rp+M−2 . . . rp







b1

b2
...

bM


 = −




rp+1

rp+2
...

rp+M


 . (10)

For a = −L (i. e. p = 0) the system of equations (6) is exactly the Yule-Walker system
for solving the autocorrelation method of the linear prediction model. Thus, the method
that we propose can be considered as a generalization of the linear prediction method.

By choosing different values of p in the equation (10), we get different estimates of the
location of frequencies in (xn). We have experimentally determined that the value giving
best frequency estimates is p = M .

We suppose that the measured signal (xn) is a sum of an “ideal” signal (x̃n) and an
error signal (en):

xn = x̃n + en.

Then the autocorrelations rn(x) are expressed as follows:

rn(x) = rn(x̃) + rn(x̃, e) + rn(e, x̃) + rn(e),

where rn(x, y) =
∞∑

k=−∞
xkȳk−n. If (en) is white noise, then its autocorrelations are all 0

except for r0(e). One can also assume that noise has little correlation with the signal (x̃n),
thus the autocorrelation rn(x) is a good approximation for rn(x̃) except for n = 0. Thus,
it seems reasonable to avoid r0(x) for frequency detection — and the above empirically
optimal value p = M is just large enough to avoid r0(x) in (10).

We will call the described method with p = M the Padé method for frequency de-
tection. In the following section, the Padé method is compared to the linear prediction
method in a large number of numerical tests.

3 Numerical tests and results

The authors have conducted a large number of automated tests using simulated signals
which are compositions of harmonic oscillations of different frequencies, amplitudes and
phases, as well as Gaussian white noise. More precisely, for given values of the sample
count N , number of significant frequencies Mf and signal-to-noise ratio SNR, a large
number of signals with randomly chosen frequencies, amplitudes, phases and white noise
were generated and tested using the Padé method, as well as using the linear prediction
model (equivalently, using the same algorithm with p = 0 instead of p = M).
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The poles of the approximating functions were then computed. When the order M
of the denominator of (4) is significantly greater than the number Mf of frequencies in
the signal, we will find more poles than it is necessary. Here, the Padé method has a
drawback when it is compared to linear prediction — under the linear prediction model,
the excessive poles are further from the unit circle. The Padé method can give wrong
poles which are closer to the unit circle than the “real” ones. To discriminate between
the poles, we then use Görtzel’s algorithm (see [2]) to find and compare the values

∣∣∣
∑

xne−iωkn
∣∣∣
2

,

where ωk is the argument of the k-th pole of (4). The ωk’s where the values are bigger
are declared to be the frequencies found.

In our tests, a frequency is proclaimed to be successfully detected if it is found with an
error of less than 0.01. Table 1 shows root mean square errors of the detected frequencies
and percentages of frequencies successfully found using linear prediction and the described
method. 1000 tests were performed for each (N, SNR) combination. In these tests, M = 4
and each signal consists of 2 harmonic oscillations and a specified amount of white noise.

N SNR RMS (LP) RMS (Padé) % found (LP) % found (Padé)
100 40 9.4883e-006 1.5201e-006 90.5 97.25
500 40 2.6949e-006 5.0914e-007 97.25 98.65
900 40 2.1684e-006 3.6917e-007 98.9 99.15
100 20 1.1522e-005 4.9392e-006 85.75 89.8
500 20 5.2589e-006 2.552e-006 90.85 95.95
900 20 5.5216e-006 2.2685e-006 88.75 94.2
100 0 2.8288e-005 2.9601e-005 33.6 38.75
500 0 2.5441e-005 1.9471e-005 32.9 49.1
900 0 2.4932e-005 1.6779e-005 32.15 53.65

Table 1: Performance of LP and Padé frequency detection methods of order 4 on signals composed of
2 exponents

The figures below show the ratio of the root mean square detection error of the Padé
method to that of the LP method. Again, 1000 tests were performed for each test point.
As it can be seen from Table 1 and Figures 1, 2, 3, in all of the presented cases the Padé
method gives slightly to significantly better results than linear prediction.

The tests were programed and performed in MATLAB.

4 Conclusion

As it can be seen from the table and graphs above, the proposed Padé method of fre-
quency detection is in many real-life cases more precise than the linear prediction method.
Computationally the Padé method is slightly more demanding than linear prediction. It
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requires computation of 2M autocorrelation coefficients, whereas the Toeplitz matrix of
the Yule-Walker equation is Hermitian and hence computation of M + 1 coefficients is
sufficient. The equation (10) can be solved efficiently in both cases.

It should also be mentioned that the proposed method is not suitable for spectrum
estimation in general. If a signal is generated by passing white noise through a zero-pole
filter, then, if the filter has poles far from the unit circle, the Padé method gives quite
unpredictable and unusable results.
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Figure 1: RMS error ratios of Padé and LP frequency estimation methods, 2 frequencies, M = 4
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Figure 2: RMS error ratios of Padé and LP frequency estimation methods, 2 frequencies, M = 10
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Figure 3: RMS error ratios of Padé and LP frequency estimation methods, 5 frequencies, M = 10
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