Subnexuses Based on \mathcal{N} -structures

(In memory of Dr. Hossein Hedayati)

M. Norouzi, A. Asadi and Y. B. Jun

Abstract. The notion of a subnexus based on \mathcal{N} -function (briefly, \mathcal{N} -subnexus) is introduced, and related properties are investigated. Also, the notions of \mathcal{N} -subnexus of type (α, β) , where (α, β) is (\in, \in) , (\in, q) , $(\in, \in \lor q)$, (q, \in) , (q, q), $(q, \in \lor q)$, $(\overline{\in}, \overline{\in})$ and $(\overline{\in}, \overline{\in} \lor \overline{q})$, are introduced, and their basic properties are investigated. Conditions for an \mathcal{N} -structure to be an \mathcal{N} -subnexus of type $(q, \in \lor q)$ are given, and characterizations of \mathcal{N} -subnexus of type $(\in, \in \lor q)$ and $(\overline{\in}, \overline{\in} \lor \overline{q})$ are provided. Homomorphic image and preimage of \mathcal{N} -subnexus are discussed.

Key Words: Nexus, subnexus, \mathcal{N} -structure, q-support, $\in \forall q$ -support Mathematics Subject Classification 2010: 08A72, 03E20, 03G15

Introduction

M. Bolourian in [4] defined nexus and studied properties of this structure algebra such as subnexuses, cyclic nexuses and homomorphism of nexuses. D. Afkhami et al. [1] defined the notion of fraction over a nexus and studied its basic properties. Moreover D. Afkhami et al. [2] defined soft nexuses over a nexus and studied the prime and maximal soft subnexuses over a nexus.

"The generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point {1} into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [11] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI/BCH-algebras" (see [11], [12], [13], [14]).

The notion of $(\in, \in \lor q)$ -substructure, based on the concepts of belongingness and quasi-coincidence for a (fuzzy) point of a (fuzzy) subset, was defined and studied on many algebraic structures which some of them can be seen in [3], [5], [7], [8], [9] and [10]. Now, in this paper, we introduce the notion of a subnexus based on \mathcal{N} -function (briefly, \mathcal{N} -subnexus), and investigate related properties. We discuss characterization of \mathcal{N} -subnexus. We also introduce the notion of \mathcal{N} -subnexus of type (α, β) with

$$(\alpha,\beta) \in \{(\in,\in), (\in,q), (\in,\in \lor q), (q,\in), (q,q), (q,\in\lor q)\},\$$

and investigate their basic properties. We provide conditions for an \mathcal{N} structure to be an \mathcal{N} -subnexus of type $(q, \in \lor q)$. We give characterizations
of \mathcal{N} -subnexus of type $(\in, \in \lor q)$. We consider a condition for an \mathcal{N} -subnexus
of type $(\in, \in \lor q)$ to be an \mathcal{N} -subnexus of type (\in, \in) . We discuss homomorphic image and preimage of \mathcal{N} -subnexus. We also introduce the notions of \mathcal{N} -subnexus of types $(\overline{\in}, \overline{\in})$ and $(\overline{\in}, \overline{\in} \lor \overline{q})$, and establish characterizations
of \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$.

1 Preliminaries

In this section we give some definitions and results which we need to develop our paper. They have been brought of [2, 6, 16], in connection with nexuses, and [12, 14] in connection with \mathcal{N} -structures.

An address is a sequence of $N^* = \mathbb{N} \cup \{0\}$ such that $a_k = 0$ implies that $a_i = 0$ for all $i \geq k$. The sequence of zero is called the *empty address* and denoted by (). In other word, every nonempty address is of the form $(a_1, a_2, \ldots, a_n, 0, 0, \ldots)$ where $n \in \mathbb{N}$, and it is denoted by (a_1, a_2, \ldots, a_n) . A set X of addresses is called a *nexus* if

- (1) $(a_1, a_2, \dots, a_n) \in X$ implies that $(a_1, \dots, a_{n-1}, t) \in X$ for all $0 \le t \le a_n$.
- (2) $(a_i)_{i=1}^{\infty} \in X$ implies that $(a_1, a_2, \ldots, a_n) \in X$ for all $n \in \mathbb{N}$.

Example 1 A set $X = \{(), (1), (2), (3), (1, 1), (1, 2), (3, 1), (3, 2)\}$ is a nexus. But, $X' = \{(), (1), (2), (2, 2)\}$ is not a nexus since (2, 2) is an element of X' but (2, 1) is not in X'.

Let X be a nexus and $w \in X$. The *level* of w, denoted by l(w), is said to be: 0 if w = (), n if $w = (a_1, a_2, \ldots, a_n)$ for some $a_n \in \mathbb{N}$, and ∞ if w is an infinite sequence of \mathbb{N} .

Definition 1 Let $v = (a_i)$ and $w = (b_i)$ be addresses where $a_i, b_i \in \mathbb{N}$. Then $v \leq w$ if l(v) = 0 or one of the following cases is satisfied:

- (i) If l(v) = 1, i.e., $v = (a_1)$ for $a_1 \in \mathbb{N}$, then $l(w) \ge 1$ and $a_1 \le b_1$.
- (ii) If $1 < l(v) < \infty$, then $l(v) \leq l(w)$ and $a_{l(v)} \leq b_{l(v)}$ and for every $1 \leq i < l(v)$ we have, $a_i = b_i$.

(iii) If
$$l(v) = \infty$$
, then $v = w$.

Definition 2 A nonempty subset S of a nexus X is called a subnexus of X if S itself is a nexus. The set of all subnexuses of X is denoted by SUB(X).

Note that a subset S of a nexus X is a subnexus of X if and only if it satisfies:

$$(\forall v, w \in X)(v \le w, w \in S \implies v \in S).$$
(1)

Example 2 Consider a nexus

$$X = \{(), (1), (2), (3), (1, 1), (2, 1), (3, 1), (3, 1, 1), (3, 1, 2)\}$$

Then $X_1 = \{(), (1), (2), (3), (2, 1)\}, X_2 = \{(), (1), (2), (1, 1), (2, 1)\}$ and $X_3 = \{(), (1), (2), (3), (3, 1)\}$ are subnexuses of X.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Let F(X, [-1, 0]) be the set of all functions from the set X to [-1, 0](for briefly every element of F(X, [-1, 0]) is said to be \mathcal{N} -function on X). An \mathcal{N} -structure is a pair (X, f) of X and an \mathcal{N} -function f on X. For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the set $C(f; \alpha) = \{x \in X \mid f(x) \leq \alpha\}$ is called the *closed support* of (X, f) related to α , and the set $O(f; \alpha) = \{x \in X \mid f(x) < \alpha\}$ is said to be the *open support* of (X, f) related to α .

Let $\alpha \in [-1, 0)$ and (X, f) be an \mathcal{N} -structure in which f is given by

$$f(y) = \begin{cases} 0 & \text{if } y \neq x ,\\ \alpha & \text{if } y = x. \end{cases}$$

In this case, f is denoted by x_{α} , and (X, x_{α}) is said to be a *point* \mathcal{N} -structure with support x and value α . For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset (resp. \mathcal{N}_q -subset) of (X, g) if $g(x) \leq \alpha$ (resp. $g(x) + \alpha + 1 < 0$). If a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset or an \mathcal{N}_q -subset of (X, g), then we say (X, x_{α}) is an $\mathcal{N}_{\in \vee q}$ -subset of (X, g).

2 Subnexus based on N-function

In what follows, let X be a nexus unless otherwise specified.

Definition 3 By a subnexus of X based on \mathcal{N} -function f (briefly, \mathcal{N} -subnexus of X), we mean an \mathcal{N} -structure (X, f) in which $w \leq v$ implies that $f(w) \leq f(v)$, for all $v, w \in X$.

Example 3 Let (X, f) be an \mathcal{N} -structure in which f is defined as f(()) = -1 and $f(w_n) = \frac{-1}{l(w_n)}$ for any $w_n := (a_1, a_2, \ldots, a_n) \in X$ with $w_n \neq ()$. Then (X, f) is an \mathcal{N} -subnexus of X.

Example 4 Let (X, f) be an \mathcal{N} -structure in which

 $X = \{(), (1), (2), (2, 1), (2, 2)\},\$

is a nexus and f is defined by f(()) = -0.9, f((1)) = -0.7, f((2)) = -0.6, f((2,1)) = -0.4 and f((2,2)) = -0.2. Then (X, f) is an N-subnexus of X.

Proposition 1 If (X, f) is an \mathcal{N} -subnexus of X, then $f(()) \leq f(v)$ for all $v \in X$.

Proof. Since l(()) = 0, we have $() \le v$ for every $v \in X$. It follows that $f(()) \le f(v)$ for all $v \in X$. \Box

Theorem 1 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of X if and only if for ever $\alpha \in [-1, 0)$, the non-empty closed support of (X, f) related to α is a subnexus of X.

Proof. Assume that (X, f) is an \mathcal{N} -subnexus of X and $\alpha \in [-1, 0)$ be such that $C(f; \alpha) \neq \emptyset$. Let $w \in C(f; \alpha)$ and $v \leq w$. Then $f(w) \leq \alpha$ and $f(v) \leq f(w)$. Hence $f(v) \leq \alpha$ and so $v \in C(f; \alpha)$. Therefore $C(f; \alpha)$ is a subnexus of X. Conversely, let $C(f, \alpha)$ be a subnexus of X for any $\alpha \in [-1, 0)$ and $v \leq w$ for any $v, w \in X$. Taking $f(w) = \alpha$ implies that $w \in C(f; \alpha)$ and so $v \in C(f; \alpha)$. Thus $f(v) \leq \alpha = f(w)$ and so (X, f) is an \mathcal{N} -subnexus of X. \Box

Theorem 2 For any \mathcal{N} -structure (X, f), the following are equivalent:

- (1) (X, f) is an \mathcal{N} -subnexus of X.
- (2) For any $v, w \in X$ with $v \leq w$ and $\alpha \in [-1, 0)$, if the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f), then the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f).

Proof. Assume that (X, f) is an \mathcal{N} -subnexus of X. For any $v, w \in X$ with $v \leq w$, let $\alpha \in [-1, 0)$ be such that (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Then $f(w) \leq \alpha$, and so $f(v) \leq \alpha$. Hence (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Conversely suppose that (2) is valid and let $v, w \in X$ be such that $v \leq w$. Note that $(X, w_{f(w)})$ is an \mathcal{N}_{\in} -subset of (X, f). It follows from (2) that the point \mathcal{N} -structure $(X, v_{f(w)})$ is an \mathcal{N}_{\in} -subset of (X, f). Thus $f(v) \leq f(w)$, and consequently (X, f) is an \mathcal{N} -subnexus of X. \Box

Definition 4 An \mathcal{N} -structure (X, f) is said to be an \mathcal{N} -subnexus of type

- (i) (\in, \in) (resp., (\in, q) and $(\in, \in \lor q)$) if whenever the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f) then the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{\in} -subset (resp., \mathcal{N}_{q} -subset and $\mathcal{N}_{\in \lor q}$ -subset) of (X, f) for all $v, w \in X$ with $v \leq w$ and $\alpha \in [-1, 0)$.
- (ii) (q, ∈) (resp., (q,q) and (q, ∈ ∨q)) if whenever the point N-structure (X, w_α) is an N_q-subset of (X, f) then the point N-structure (X, v_α) is an N_∈-subset (resp., N_q-subset and N_{∈∨q}-subset) of (X, f) for all v, w ∈ X with v ≤ w and α ∈ [-1, 0).

It is easy to show that the notion of \mathcal{N} -subnexus of type (\in, \in) is equivalent to the notion of \mathcal{N} -subnexus.

Example 5 (1) It is easy to see that \mathcal{N} -structure (X, f) defined in Example 3, is an \mathcal{N} -subnexus of type (\in, \in) .

(2) Let (X, f) be an \mathcal{N} -structure in which $X = \{(), (1), (2, 1), (2, 2)\}$ is a nexus and f is defined by $f = \begin{pmatrix} () & (1) & (2, 1) & (2, 2) \\ -1 & -1 & -1 & -0.93 \end{pmatrix}$. It is routine to verify that (X, f) is an \mathcal{N} -subnexus of type (\in, q) and (q, \in) .

Example 6 Let (X, g) be an \mathcal{N} -structure in which

$$X = \{(), (1), (2), (1, 1), (1, 2)\}$$

is a nexus and g is defined by $g = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) \\ -0.9 & -0.8 & -0.7 & -0.6 & -0.5 \end{pmatrix}$. Then (X,g) is an \mathcal{N} -subnexus of type (q, \in) , (q,q) and $(q, \in \lor q)$.

Example 7 Consider an \mathcal{N} -structure (X, h) in which

$$X = \{(), (1), (1, 1), (1, 2), (1, 3)\},\$$

is a nexus and h is defined by $h = \begin{pmatrix} () & (1) & (1,1) & (1,2) & (1,3) \\ -0.1 & -0.2 & -0.3 & -0.4 & -0.45 \end{pmatrix}$. Then (X,h) is not an \mathcal{N} -subnexus of type (q, \in) , (q,q) and $(q, \in \lor q)$. For example $() \leq (1)$ and the point \mathcal{N} -structure $(X, (1)_{-0.81})$ is an \mathcal{N}_q -subset of (X,h) since h((1)) - 0.81 + 1 = -0.2 - 0.81 + 1 = -0.01 < 0. But the point \mathcal{N} -structure $(X, ()_{-0.81})$ is neither an \mathcal{N}_q -subset nor an \mathcal{N}_{\in} -subset of (X,h), because of h(()) - 0.81 + 1 = -0.1 - 0.81 + 1 = 0.09 > 0 and h(()) = -0.1 > -0.81.

Example 8 Let (X, g) be an \mathcal{N} -structure in which

$$X = \{(), (1), (2), (2, 1), (2, 2)\},\$$

is a nexus and g is defined by $g = \begin{pmatrix} () & (1) & (2) & (2,1) & (2,2) \\ -0.63 & -0.67 & -0.65 & -0.83 & -0.72 \end{pmatrix}$. It is easy to see that (X,g) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. **Theorem 3** If (X, f) is an \mathcal{N} -subnexus of type (\in, \in) , (\in, q) or (q, \in) , then the open support of (X, f) related to 0 is a subnexus of X.

Proof. Let (X, f) be an \mathcal{N} -subnexus of type (\in, \in) . If f(x) = 0 for all $x \in X$, then $O(f; 0) = \emptyset$ which is a subnexus of X. Assume that f is nonzero and let $v, w \in X$ be such that $v \leq w$ and $w \in O(f; 0)$. Then $f(v) \leq f(w) < 0$, and so $v \in O(f; 0)$. Thus O(f; 0) is a subnexus of X. Secondly, assume that (X, f) is an \mathcal{N} -subnexus of type (\in, q) . Let $v, w \in X$ be such that $v \leq w$ and $w \in O(f; 0)$. Note that $(X, w_{f(w)})$ is an \mathcal{N}_{\in} -subset of (X, f). If f(v) = 0, then $f(v) + f(w) + 1 = f(w) + 1 \geq 0$. Thus $(X, v_{f(w)})$ is not an \mathcal{N}_q -subset of (X, f), a contradiction. Hence f(v) < 0, that is, $v \in O(f; 0)$. Hence O(f; 0) is a subnexus of X. Finally, suppose that (X, f) is an \mathcal{N} -subnexus of type (q, \in) . Let $v, w \in X$ be such that $v \leq w$ and $w \in O(f; 0)$. Then (X, w_{-1}) is not an \mathcal{N}_{\in} -subset of (X, f). If f(v) = 0, then (X, v_{-1}) is not an \mathcal{N}_{\in} -subset of (X, f). This is a contradiction, and so f(v) < 0, i.e., $v \in O(f; 0)$. Therefore O(f; 0) is a subnexus of X. \Box

We provide conditions for an \mathcal{N} -structure to be an \mathcal{N} -subnexus of type $(q, \in \lor q)$.

Theorem 4 Let S be a subnexus of X and let (X, f) be an \mathcal{N} -structure such that

- (1) $(\forall x \in X)(x \in S \Rightarrow f(x) \leq -0.5),$
- (2) $(\forall x \in X)(x \notin S \Rightarrow f(x) = 0).$

Then (X, f) is an \mathcal{N} -subnexus of type $(q, \in \lor q)$.

Proof. Let $v, w \in X$ with $v \leq w$ and $\alpha \in [-1, 0)$ be such that the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_q -subset of (X, f). Then $f(w) + \alpha + 1 < 0$. Thus $v \in S$ because if $v \notin S$, then $w \notin S$. Hence f(w) = 0 and so $f(w) + \alpha + 1 = \alpha + 1 < 0$, that is, $\alpha < -1$, this is a contradiction. Therefore $f(v) \leq -0.5$. If $\alpha < -0.5$, then $f(v) + \alpha + 1 < -0.5 - 0.5 + 1 = 0$ and thus the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_q -subset of (X, f). If $\alpha \geq -0.5$, then $f(v) \leq -0.5 \leq \alpha$ and so the point \mathcal{N} -structure (X, v_{α}) is an $\mathcal{N}_{\in \vee q}$ -subset of (X, f), and therefore (X, f) is an \mathcal{N} -subnexus of type $(q, \in \vee q)$. \Box

Theorem 5 Let (X, f) be an \mathcal{N} -subnexus of type $(q, \in \lor q)$. If f is not constant on the open support of (X, f) related to 0 and $f(()) \ge f(x)$ for all $x \in X$, then there exists $y \in X$ such that $f(y) \le -0.5$. In particular, $f(()) \le -0.5$.

Proof. Assume that f(x) > -0.5 for all $x \in X$. Since f is not constant on O(f;0), there exists $y \in O(f;0)$ such that $\alpha_y = f(y) \neq f(()) = \alpha_0$. Then $\alpha_0 > \alpha_y$. Choose $\beta < -0.5$ such that $\alpha_0 + \beta + 1 > 0 > \alpha_y + \beta + 1$. Then the point \mathcal{N} -structure (X, y_β) is an \mathcal{N}_q -subset of (X, f). Since $() \leq y$, it follows that $(X, ()_\beta)$ is an $\mathcal{N}_{\in \vee q}$ -subset of (X, f). But $f(()) > -0.5 > \beta$ implies that the point \mathcal{N} -structure $(X, ()_\beta)$ is not an \mathcal{N}_{\in} -subset of (X, f). Also $f(()) + \beta + 1 = \alpha_0 + \beta + 1 > 0$ implies that $(X, ()_\beta)$ is not an \mathcal{N}_q -subset of (X, f). This is a contradiction, and thus $f(y) \leq -0.5$ for some $y \in X$. We now prove that $f(()) \leq -0.5$. Assume that $\alpha_0 := f(()) > -0.5$. Note that there exists $y \in X$ such that $\alpha_y := f(y) \leq -0.5$ and so $\alpha_y < \alpha_0$. Choose $\alpha_1 < \alpha_0$ such that $\alpha_y + \alpha_1 + 1 < 0 < \alpha_0 + \alpha_1 + 1$. Then $f(y) + \alpha_1 + 1 = \alpha_y + \alpha_1 + 1 < 0$, and thus the point \mathcal{N} -structure (X, y_{α_1}) is an \mathcal{N}_q -subset of (X, f). Since $() \leq y$, we know that $(X, ()_{\alpha_1})$ is an $\mathcal{N}_{\in \vee q}$ -subset of (X, f). But $f(()) + \alpha_1 + 1 = \alpha_0 + \alpha_1 + 1 > 0$ and also $f(()) = \alpha_0 > \alpha_1$ which is a contradiction. Therefore $f(()) \leq -0.5$. \Box

Theorem 6 If (X, f) is an \mathcal{N} -subnexus of type (q, q) such that $f(()) \ge f(x)$ for all $x \in X$, then f is constant on the open support of (X, f) related to 0.

Proof. Assume that f is not constant on the open support of (X, f) related to 0. Then there exists $x \in O(f; 0)$ such that $\alpha_x = f(x) \neq f(()) = \alpha_0$. Then $\alpha_0 > \alpha_x$. and so $f(x) + (-1 - \alpha_0) + 1 = \alpha_x - \alpha_0 < 0$. Hence $(X, x_{-1-\alpha_0})$ is an \mathcal{N}_q -subset of (X, f). Note that $() \leq x$ and $f(()) + (-1 - \alpha_0) + 1 = \alpha_0 - \alpha_0 = 0$, which implies that $(X, ()_{-1-\alpha_0})$ is not an \mathcal{N}_q -subset of (X, f). This is impossible, and therefore f is constant on the open support of (X, f) related to 0. \Box

In the following, we give some characterizations for an \mathcal{N} -subnexus of type $(\in, \in \lor q)$.

Theorem 7 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ if and only if the following assertion is valid.

$$(\forall v, w \in X) \left(v \le w \Rightarrow f(v) \le \bigvee \{f(w), -0.5\} \right).$$
(2)

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. For any $v, w \in X$ such that $v \leq w$, assume that f(w) > -0.5. If f(v) > f(w), then there exists $\beta \in [-1,0)$ such that $f(v) > \beta \geq f(w)$. Thus the point \mathcal{N} -structure (X, w_{β}) is an \mathcal{N}_{\in} -subset of (X, f), but the point \mathcal{N} -structure (X, v_{β}) is not an \mathcal{N}_{\in} -subset of (X, f). Also $f(v) + \beta + 1 > 2\beta + 1 \geq 2f(w) + 1 > 0$ and so (X, v_{β}) is not an \mathcal{N}_{q} -subset of (X, f). Therefore (X, v_{β}) is not an $\mathcal{N}_{\in \lor q}$ -subset of (X, f), which is a contradiction. Hence $f(v) \leq f(w)$ whenever f(w) > -0.5. Now, suppose that $f(w) \leq -0.5$. Then

the point \mathcal{N} -structure $(X, w_{-0.5})$ is an \mathcal{N}_{\in} -subset of (X, f) and so $(X, v_{-0.5})$ is an $\mathcal{N}_{\in \lor q}$ -subset of (X, f) by hypothesis. If $(X, v_{-0.5})$ is an \mathcal{N}_{\in} -subset of (X, f) then $f(v) \leq -0.5$ and so $f(v) \leq \bigvee \{f(w), -0.5\}$. If $(X, v_{-0.5})$ is an \mathcal{N}_q -subset of (X, f), then f(v) - 0.5 + 1 < 0, that is, f(v) < -0.5. Consequently $f(v) \leq \bigvee \{f(w), -0.5\}$. Conversely, assume that (2) is valid. Let $v, w \in X$ and $\beta \in [-1, 0)$ be such that $v \leq w$ and the point \mathcal{N} structure (X, w_β) is an \mathcal{N}_{\in} -subset of (X, f). If $f(v) \leq \beta$, then the point \mathcal{N} -structure (X, v_β) is an \mathcal{N}_{\in} -subset of (X, f). Suppose that $f(v) > \beta$. Then $f(w) \leq \beta < f(v) \leq \bigvee \{f(w), -0.5\}$, and therefore $\bigvee \{f(w), -0.5\} = -0.5$. It follows that

$$f(v) + \beta + 1 < 2f(v) + 1 \le 2\left(\bigvee\{f(w), -0.5\}\right) + 1 = 0.$$

Thus (X, v_{β}) is an \mathcal{N}_q -subset of (X, f). Consequently (X, v_{β}) is an $\mathcal{N}_{\in \vee q}$ -subset of (X, f) and thus (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \vee q)$. \Box

Theorem 8 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ if and only if for every $\alpha \in [-0.5, 0]$ the nonempty closed support of (X, f)related to α is a subnexus of X.

Proof. Assume that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ and let $\alpha \in [-0.5, 0]$ such that $C(f; \alpha) \neq \emptyset$. Let $v \leq w$ and $w \in C(f; \alpha)$. Then $f(v) \leq \bigvee \{f(w), -0.5\}$ by Theorem 3.16. If $\bigvee \{f(w), -0.5\} = f(w)$, then $f(v) \leq f(w) \leq \alpha$ and thus $v \in C(f; \alpha)$. Also, if $\bigvee \{f(w), -0.5\} = -0.5$, then $f(v) \leq -0.5 \leq \alpha$, and thus $v \in C(f; \alpha)$. Hence $C(f; \alpha)$ is a subnexus of X. Conversely, let (X, f) be an \mathcal{N} -structure such that the nonempty closed support of (X, f) related to α is a subnexus of X for all $\alpha \in [-0.5, 0]$. If there exist $v, w \in X$ such that $v \leq w$ and $f(v) > \bigvee \{f(w), -0.5\}$, then we can take $\beta \in [-1, 0]$ such that $f(v) > \beta \geq \bigvee \{f(w), -0.5\}$. Thus $w \in C(f; \beta)$ and $\beta \geq -0.5$. Since $C(f; \beta)$ is a subnexus of X, we have $v \in C(f; \beta)$. Hence $f(v) \leq \beta$, a contradiction. Therefore $f(v) \leq \bigvee \{f(w), -0.5\}$ for all $v, w \in X$. It follows from Theorem 3.16 that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. \Box

Theorem 9 Let S be a subnexus of X. For any $\alpha \in (-0.5, 0)$, there exists an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ for which S is represented by the closed support of (X, f) related to α .

Proof. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f(x) = \begin{cases} \alpha & \text{if } x \in S \\ 0 & \text{if } x \notin S, \end{cases}$$

for all $x \in X$ where $\alpha \in (-0.5, 0)$. Assume that $f(v) > \bigvee \{f(w), -0.5\}$ for some $v, w \in X$ with $v \leq w$. Since the cardinality of the image of f is two,

we have f(v) = 0 and $\bigvee \{f(w), -0.5\} = \alpha$. Since $\alpha > -0.5$, it follows that $f(w) = \alpha$. So $w \in S$. Since S is a subnexus of X, we obtain $v \in S$ and so $f(v) = \alpha < 0$ which is a contradiction. Therefore $f(v) \leq \bigvee \{f(w), -0.5\}$ for all $v, w \in X$. Hence (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ by Theorem 3.16. Obviously, S is represented by the closed support of (X, f) related to α . \Box

Note that every \mathcal{N} -subnexus of type (\in, \in) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. But the converse is not true in general as seen in the following example.

Example 9 Let (X, f) be an \mathcal{N} -structure in which

$$X = \{(1), (1), (2), (1, 1), (1, 2), (1, 3), (1, 3, 1), (1, 3, 2)\}$$

is a nexus and f is defined as follows:

$$h = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) & (1,3) & (1,3,1) & (1,3,2) \\ -1 & -0.9 & -0.93 & -0.95 & -0.94 & -0.96 & -0.97 & -0.99 \end{pmatrix}$$

Then (X, h) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. But it is not an \mathcal{N} -subnexus of type (\in, \in) . In fact, set $\alpha = -0.92$. Note that $(1) \leq (2)$ and $h((2)) = -0.93 \leq \alpha$ but $h((1)) = -0.9 \nleq \alpha$.

Now, we give a condition for an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ to be an \mathcal{N} -subnexus of type (\in, \in) .

Theorem 10 Let (X, f) be an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ such that f(x) > -0.5 for all $x \in X$. Then (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Proof. Let $v, w \in X$ such that $v \leq w$ and (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f) for $\alpha \in [-1, 0)$. Then $f(w) \leq \alpha$. It follows from Theorem 3.16 and the hypothesis that $f(v) \leq \bigvee \{f(w), -0.5\} = f(w) \leq \alpha$. Thus (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type (\in, \in) . \Box

Lemma 1 If $\{(X, f_i) \mid i \in I\}$ is the class of \mathcal{N} -subnexuses, then its union $\left(X, \bigcup_{i \in I} f_i\right)$ and its intersection $\left(X, \bigcap_{i \in I} f_i\right)$ are also \mathcal{N} -subnexuses where $\bigcup_{i \in I} f_i$ and $\bigcap_{i \in I} f_i$ are given as follows:

$$\bigcup_{i \in I} f_i : X \to [-1,0], \ x \mapsto \bigvee_{i \in I} f_i(x), \ and \ \bigcap_{i \in I} f_i : X \to [-1,0], \ x \mapsto \bigwedge_{i \in I} f_i(x).$$
(3)

Proof. Straightforward. \Box

Theorem 11 If $\{(X, f_i) \mid i \in I\}$ is the class of \mathcal{N} -subnexuses of type $(\in, \in \lor q)$, then $\left(X, \bigcup_{i \in I} f_i\right)$ and $\left(X, \bigcap_{i \in I} f_i\right)$ are also \mathcal{N} -subnexuses of type $(\in, \in \lor q)$.

Proof. Let $v, w \in X$ be such that $v \leq w$ and let $\alpha \in [-1, 0)$. Assume that (X, f_i) is an \mathcal{N} -subnexuses of type $(\in, \in \lor q)$ for all $i \in I$. Then $\left(X, \bigcup_{i \in I} f_i\right)$ is an \mathcal{N} -subnexus by Lemma 3.21 and $f_i(v) \leq \bigvee \{f_i(w), -0.5\}$ for all $i \in I$ by Theorem 3.16. Hence

$$\begin{pmatrix} \bigcup_{i \in I} f_i \end{pmatrix} (v) = \bigvee_{i \in I} f_i(v) \le \bigvee_{i \in I} \left(\bigvee \{ f_i(w), -0.5 \} \right) = \bigvee \left\{ \bigvee_{i \in I} f_i(w), \bigvee_{i \in I} - 0.5 \right\}$$
$$= \bigvee \left\{ \left(\bigcup_{i \in I} f_i \right) (w), -0.5 \right\},$$

and therefore $\left(X, \bigcup_{i \in I} f_i\right)$ is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. Similarly, we can show that $\left(X, \bigcap_{i \in I} f_i\right)$ is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ since $([-1, 0], \lor, \land)$ is a distributive lattice. \Box

A mapping $\varphi : X \to Y$ of nexuses is called a *homomorphism* if $v \leq w$ implies $\varphi(v) \leq \varphi(w)$ for all $v, w \in X$.

Definition 5 Let $\varphi : X \to Y$ be a mapping of nexuses. Given an \mathcal{N} -subnexus (X, f), its image under φ is defined to be an \mathcal{N} -subnexus $(Y, \varphi(f))$ for which $\varphi(f)$ is defined by

$$\varphi(f): Y \to [-1,0], \ y \mapsto \begin{cases} \bigvee_{x \in \varphi^{-1}(y)} f(x) & \text{if } \varphi^{-1}(y) \neq \emptyset, \\ 0 & \text{if } \varphi^{-1}(y) = \emptyset. \end{cases}$$
(4)

Also the preimage of an \mathcal{N} -subnexus (Y,g) under φ is defined to be an \mathcal{N} -subnexus $(X, \varphi^{-1}(g))$ where $\varphi^{-1}(g) : X \to [-1,0]$, by $x \mapsto g(\varphi(x))$.

Theorem 12 Let $\varphi : X \to Y$ be an onto homomorphism of nexuses. If (X, f) is an \mathcal{N} -subnexus, then so is its image $(Y, \varphi(f))$ under φ .

Proof. Let $v', w' \in Y$ be such that $v' \leq w'$. Then there exist $v, w \in X$ such that $v' = \varphi(v)$ and $w' = \varphi(w)$, that is, $v \in \varphi^{-1}(v')$ and $w \in \varphi^{-1}(w')$. Since φ is a homomorphism, we have $v \leq w$ and so $f(v) \leq f(w)$. It follows that $\varphi(f)(v') = \bigvee_{v \in \varphi^{-1}(v')} f(v) \leq \bigvee_{w \in \varphi^{-1}(w')} f(w) = \varphi(f)(w')$. Therefore $(Y, \varphi(f))$ is an \mathcal{N} -subnexus. \Box

Theorem 13 Let $\varphi : X \to Y$ be a homomorphism of nexuses. If (Y,g) is an \mathcal{N} -subnexus, then so is its preimage $(X, \varphi^{-1}(g))$ under φ .

Proof. Let $v, w \in X$ such that $v \leq w$. Since φ is a homomorphism, we have $\varphi(v) \leq \varphi(w)$. It follows that $g(\varphi(v)) \leq g(\varphi(w))$ because (Y,g) is \mathcal{N} -subnexus. Thus $\varphi^{-1}(g)(v) \leq \varphi^{-1}(g)(w)$, and therefore $(X, \varphi^{-1}(g))$ is an \mathcal{N} -subnexus. \Box

For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the *q*-support and the $\in \lor q$ -support of (X, f) related to α are defined as follows:

 $\mathcal{N}_q(f;\alpha) = \{x \in X \mid (X, x_\alpha) \text{ is an } \mathcal{N}_q\text{-subset of } (X, f)\}, \text{ and} \\ \mathcal{N}_{\in \lor q}(f;\alpha) = \{x \in X \mid (X, x_\alpha) \text{ is an } \mathcal{N}_{\in \lor q}\text{-subset of } (X, f)\}.$

Note that the $\in \lor q$ -support is the union of the closed support and the q-support, that is, $\mathcal{N}_{\in \lor q}(f; \alpha) = C(f; \alpha) \cup \mathcal{N}_q(f; \alpha)$.

Theorem 14 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ if and only if the $\in \lor q$ -support of (X, f) related to α is a subnexus of X for all $\alpha \in [-1, 0)$.

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. Let $v, w \in$ X such that $v \leq w$ and $w \in \mathcal{N}_{\in \forall q}(f; \alpha)$ for $\alpha \in [-1, 0)$. Then (X, w_{α}) is an $\mathcal{N}_{\in \lor q}$ -subset of (X, f). Thus $f(w) \leq \alpha$ or $f(w) + \alpha + 1 < 0$. If $f(w) \leq \alpha$, then (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f) and so (X, v_{α}) is an $\mathcal{N}_{\in \lor q}$ -subset of (X, f) by hypothesis. Hence $v \in \mathcal{N}_{\in \lor q}(f; \alpha)$. Suppose that $f(w) + \alpha + 1 < 0$. If $\alpha \ge -0.5$, then f(w) < -0.5 which implies from (2) that $f(v) \leq \bigvee \{f(w), -0.5\} = -0.5 \leq \alpha$. Thus $v \in C(f; \alpha) \subseteq \mathcal{N}_{\in \lor q}(f; \alpha)$. If $\alpha < -0.5$, then $f(v) + \alpha + 1 < f(v) + 0.5 \le \bigvee \{f(w), -0.5\} + 0.5 = 0$ whenever $\bigvee \{f(w), -0.5\} = -0.5$, and $f(v) + \alpha + 1 \leq \bigvee \{f(w), -0.5\} +$ $\alpha + 1 = f(w) + \alpha + 1 < 0$ whenever $\bigvee \{f(w), -0.5\} = f(w)$. Hence $v \in$ $\mathcal{N}_q(f;\alpha) \subseteq \mathcal{N}_{\in \lor q}(f;\alpha)$. Therefore $\mathcal{N}_{\in \lor q}(f;\alpha)$ is a subnexus of X for all $\alpha \in [-1,0)$. Conversely, let (X,f) be an \mathcal{N} -structure for which $\in \forall q$ support of (X, f) related to α is a subnexus of X for all $\alpha \in [-1, 0)$. Assume that there exist $v, w \in X$ such that $v \leq w$ and $f(v) > \bigvee \{f(w), -0.5\}$. Then $f(v) > \beta \ge \bigvee \{f(w), -0.5\}$ for some $\beta \in [-0.5, 0)$. It follows that $w \in C(f;\beta) \subseteq \mathcal{N}_{\in \lor q}(f;\beta)$ but $v \notin C(f;\beta)$. Also $f(v) + \beta + 1 > 2\beta + 1 \ge 0$, that is, $v \notin \mathcal{N}_q(f;\beta)$. Thus $v \notin C(f;\beta) \cup \mathcal{N}_q(f;\beta) = \mathcal{N}_{\in \lor q}(f;\beta)$ which is a contradiction. Therefore $f(v) \leq \bigvee \{f(w), -0.5\}$ for all $v, w \in X$ with $v \leq w$. It follows from Theorem 3.16 that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. \Box

3 *N*-subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$

For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an $\mathcal{N}_{\overline{\epsilon}}$ -subset (resp., $\mathcal{N}_{\overline{q}}$ -subset) of (X, g) if $g(x) > \alpha$ (resp., $g(x) + \alpha + 1 \ge 0$). If a point \mathcal{N} -structure (X, x_{α}) is an $\mathcal{N}_{\overline{\epsilon}}$ -subset or an $\mathcal{N}_{\overline{q}}$ -subset of (X, g), we say (X, x_{α}) is an $\mathcal{N}_{\overline{\epsilon} \lor \overline{q}}$ -subset of (X, g).

Definition 6 An \mathcal{N} -structure (X, f) is called an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \vee \overline{q})$ (resp., $(\overline{\in}, \overline{\in})$) if whenever (X, v_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f) then (X, w_{α}) is an $\mathcal{N}_{\overline{\in} \vee \overline{q}}$ -subset (resp., $\mathcal{N}_{\overline{\in}}$ -subset) of (X, f) for all $v, w \in X$ with $v \leq w$ and $\alpha \in [-1, 0)$.

Example 10 Let (X, f) be an \mathcal{N} -structure in which

$$X = \{(), (1), (2), (2, 1), (2, 2)\},\$$

is a nexus and f is given as $f = \begin{pmatrix} () & (1) & (2) & (2,1) & (2,2) \\ -0.32 & -0.41 & -0.43 & -0.5 & -0.48 \end{pmatrix}$. It is easy to see that (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$.

Theorem 15 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$ if and only if it is an \mathcal{N} -subnexus of type (\in, \in) .

Proof. Let (X, f) be an \mathcal{N} -subnexus of type (\in, \in) and $v, w \in X$ with $v \leq w$ such that (X, v_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f) for $\alpha \in [-1, 0)$. Then $f(v) > \alpha$. If $f(w) \leq \alpha$, then (X, w_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Hence (X, v_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f), and so $f(v) \leq \alpha$ which is a contradiction. Thus $f(w) > \alpha$, that is, (X, w_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$. Conversely, we can prove it by the similar way. \Box

Theorem 16 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ if and only if the following condition is valid:

$$(\forall v, w \in X)(v \le w \Rightarrow \bigwedge \{f(v), -0.5\} \le f(w)).$$
(5)

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \vee \overline{q})$. If there exist $v, w \in X$ such that $v \leq w$ and $\bigwedge \{f(v), -0.5\} > f(w) = \alpha$, then $\alpha \in [-1, -0.5)$. It follows that (X, w_{α}) is an $\mathcal{N}_{\overline{e}}$ -subset of (X, f) and (X, v_{α}) is an $\mathcal{N}_{\overline{e}}$ -subset of (X, f). Therefore $f(w) + \alpha + 1 \geq 0$, which implies that $2\alpha + 1 \geq 0$, that is, $\alpha \geq -0.5$. This is contradiction, and so $\bigwedge \{f(v), -0.5\} \leq f(w)$ for all $v, w \in X$ with $v \leq w$. Conversely, assume that an \mathcal{N} -structure (X, f) satisfies the condition (5). Let $v \leq w$ for $v, w \in X$ and $\alpha \in [-1, 0)$ such that a point \mathcal{N} -structure (X, v_{α}) is an $\mathcal{N}_{\overline{e}}$ -subset of (X, f). Then $f(v) > \alpha$. If $f(v) \leq f(w)$, then

 $\alpha < f(w)$. Thus (X, w_{α}) is an $\mathcal{N}_{\overline{\in}\vee\overline{q}}$ -subset of (X, f). If f(v) > f(w), then $\bigwedge \{f(v), -0.5\} = -0.5$ by (5). Hence $-0.5 \leq f(w)$. Suppose that (X, w_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Then $\alpha \geq f(w) \geq -0.5$. It follows that $f(w) + \alpha + 1 \geq 2f(w) + 1 \geq 0$ and so that (X, w_{α}) is an $\mathcal{N}_{\overline{q}}$ -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \vee \overline{q})$. \Box

Proposition 2 If (X, f) is an \mathcal{N} -structure of type $(\overline{\in}, \overline{\in} \lor \overline{q})$, then $f(w) \ge f(())$ or $f(w) \ge -0.5$ for all $w \in X$.

Proof. It is straightforward by (5). \Box

Theorem 17 An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ if and only if the nonempty closed support of (X, f) related to α is a subnexus of X for every $\alpha \in [-1, -0.5)$.

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$. Let $v, w \in X$ with $v \leq w$ and $w \in C(f; \alpha)$ for $\alpha \in [-1, -0.5)$. Then $f(w) \leq \alpha$. It follows from (5) that $\bigwedge \{f(v), -0.5\} \leq f(w) \leq \alpha$. Since $\alpha < -0.5$, we have $f(v) \leq \alpha$ and so $v \in C(f; \alpha)$. Therefore $C(f; \alpha)$ is a subnexus of X. Conversely, let (X, f) be an \mathcal{N} -structure such that the nonempty closed support of (X, f) related to α is a subnexus of X for all $\alpha \in [-1, -0.5)$. Assume that there exist $v, w \in X$ such that $v \leq w$ and $\bigwedge \{f(v), -0.5\} > f(w)$. If we take $\beta := \frac{1}{2} (\bigwedge \{f(v), -0.5\}) + f(w)$, then $\beta \in [-1, -0.5)$ and $\bigwedge \{f(v), -0.5\}) > \beta \geq f(w)$. Thus $w \in C(f; \beta)$ but $v \notin C(f; \beta)$ which is a contradiction. Therefore $\bigwedge \{f(v), -0.5\}) \leq f(w)$ for all $v, w \in X$ with $v \leq w$. Using Theorem 4.4, we conclude that (X, f) is an \mathcal{N} -subnexus of type $(\overline{e}, \overline{e} \lor \overline{q})$. \Box

Obviously, every \mathcal{N} -subnexus of type (\in, \in) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$, but the converse is not true in general as seen in the following example.

Example 11 Let $X = \{(), (1), (2), (1, 1), (1, 2), (1, 2, 1)\}$ be a nexus. Consider an \mathcal{N} -structure (X, h) in which h is defined by

$$h = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) & (1,2,1) \\ -0.4 & -0.45 & -0.33 & -0.3 & -0.34 & -0.2 \end{pmatrix}$$

It is routine to verify that (X, h) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$. But it is not an \mathcal{N} -subnexus of type (\in, \in) since $() \leq (1)$ and $(X, (1)_{-0.42})$ is an \mathcal{N}_{\in} -subset of (X, h), but $(X, ()_{-0.42})$ is not an \mathcal{N}_{\in} -subset of (X, h).

We provide conditions for an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ to be an \mathcal{N} -subnexus of type (\in, \in) .

Theorem 18 Let (X, f) be an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ such that $f(x) \leq -0.5$ for all $x \in X$. Then (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Proof. Let $v, w \in X$ and $\alpha \in [-1,0)$ be such that $v \leq w$ and (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Then $f(w) \leq \alpha$. Since $f(x) \leq -0.5$ for all $x \in X$, it follows from (5), $f(v) = \bigwedge \{f(v), -0.5\} \leq f(w) \leq \alpha$. Thus (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type (\in, \in) . \Box

References

- D. Afkhami, N. Ahmadkhah and A. Hasankhani, A fraction of nexuses, Int. J. Algebra, 18(2011) no. 5, pp. 883-896. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.407.8169
- [2] D. Afkhami Taba, A. Hasankhani and M. Bolurian, Soft nexuses, Comput. Math. Appl., 64(2012) pp. 1812-1821. https://www.sciencedirect.com/science/article/pii/S0898122112001733.
- [3] S.K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, **8**0(1996) pp. 359-368.
- [4] M. Bolourian, *Theory of plenices*, Ph. D. Thesis, University of Surrey, 2009.
- [5] B. Davvaz, $(\in, \in \lor q)$ -fuzzy subnearrings and ideals, Soft Comput., 10(2006) pp. 206-211. https://link.springer.com/article/10.1007/s00500-005-0472-1.
- [6] H. Hedayati and A. Asadi, Normal, maximal and product fuzzy subnexuses of nexuses, J. Intell. Fuzzy Syst., 26(2014) no. 3, pp. 1341-1348. https://content.iospress.com/articles/journal-of-intelligent-and-fuzzysystems/ifs820.
- [7] Y. B. Jun, On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc., 42(2005) no. 4, pp. 703-711. http://bkms.kms.or.kr/
- [8] Y. B. Jun, Generalizations of (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCIalgebras, Comput. Math. Appl., 58(2009) pp. 1383-1390. https://www.sciencedirect.com/science/article/pii/S0898122109004866.
- [9] Y. B. Jun, Fuzzy subalgebras of type (α, β) in BCK/BCI-algebras, KYUNGPOOK Math. J., 47(2007) pp. 403-410. http://kmj.knu.ac.kr/

- [10] Y. B. Jun, S. Song and E. H. Roh, BCK-filters based on fuzzy points with thresholds, KYUNGPOOK Math. J., 51(2011) pp. 11-28. http://kmj.knu.ac.kr/
- [11] Y. B. Jun, K. J. Lee and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc., 22(2009) pp. 417-437.
- [12] Y. B. Jun, M. S. Kang and C. H. Park, *N*-subalgebras in BCK/BCIalgebras based on point *N*-structures, Int. J. Math. Math. Sci., Volume 2010, Article ID 303412, 9 pages. https://www.hindawi.com/journals/ijmms/contents/
- [13] Y. B. Jun, M. A. Ozturk and E. H. Roh, N-structures applied to closed ideals in BCH-algebras, Int. J. Math. Math. Sci., vol. 2010, Article ID 943565, 9 pages, 2010. https://www.hindawi.com/journals/ijmms/contents/
- [14] K. J. Lee, Y. B. Jun and X. Zhang, *N*-subalgebras of type (∈, ∈ ∨q) based on point *N*-structures in BCK/BCI-algebras, Commun. Korean Math. Soc., 27(2012) no. 3, pp. 431-439. http://ckms.kms.or.kr/
- H. Nooshin and P. Disney, Formex configuration processin I, Int. J. Space Structures, 15(2000) no. 1, pp. 1-52. http://journals.sagepub.com/doi/pdf/10.1260/0266351001494955
- [16] L. Torkzadeh and A. Hasankhani, Some results on prime and maximal subnexuses of a nexus, Proceeding of 20th Seminar on Algebra, Tarbiat Moallem University, Iran, 22-23 Apr. 2009, 222-224.

Morteza Norouzi Department of Mathematics, Faculty of Basic Sciences, University of Bojnord P. O. Box 1339, Bojnord 94531, Iran. m.norouzi65@yahoo.com, m.norouzi@ub.ac.ir

Ameneh Asadi Department of Mathematics, Payame Noor University Tehran, Iran. asadi8232@yahoo.com

Young Bae Jun Department of Mathematics Education, Gyeongsang National University Jinju 52828, Korea. skywine@gmail.com

Please, cite to this paper as published in Armen. J. Math., V. 10, N. 10(2018), pp. 1–15