
Armenian Journal of Mathematics

Volume 1, Number 1, 2008, 50-63

The Convergence Acceleration of Two-Dimensional
Fourier Interpolation

Anry Nersessian* and Arnak Poghosyan**

Institute of mathematics
of National Academy of Sciences of Armenia
Bagramian ave.24B, 0019 Yerevan, Armenia

*nerses@instmath.sci.am, ** arnak@instmath.sci.am

Abstract. Hereby, the convergence acceleration of two-dimensional trigonometric inter-
polation for a smooth functions on a uniform mesh is considered. Together with theoretical
estimates some numerical results are presented and discussed that reveal the potential of
this method for application in image processing. Experiments show that suggested al-
gorithm allows acceleration of conventional Fourier interpolation even for sparse meshes
that can lead to an efficient image compression/decompression algorithms and also to
applications in image zooming procedures.

Key words : Convergence Acceleration, Interpolation, Local Fourier Analysis, Image
Processing, Image Interpolation, Image Compression, Image Zooming

Mathematics Subject Classification 2000 : 41A60, 42-XX, 65Txx, 68U10, 94A08

1 Introduction

It is well known that Fourier series and Fourier interpolation are powerful tools for theo-
retical and applied investigations. The main drawback that diminishes their strength is
the Gibbs phenomenon near the points of singularities of the approximated function.

Let f be a piecewise smooth function on [−1, 1] with jump points {ak}, −1 = a0 <
a1 < · · · < al−1 < 1, 2 ≤ l < ∞. Suppose that f ∈ Cq+1, q ≥ 0 on each segment [ak, ak+1],
k = 1, · · · , l − 2 and also on the segments [−1, a1], [al−1, 1].

Denote by

Ask = f (k)(as + 0)− f (k)(as − 0), k = 0, · · · , q; s = 1, · · · , l − 1,

A0k = f (k)(−1)− f (k)(1), k = 0, · · · , q

the jumps of f and its derivatives at the points {as}. By {fn} we denote Fourier coeffi-
cients of f

fn =
1

2

∫ 1

−1

f(t)e−iπntdt, n = 0,±1, · · · . (1)

50

By means of integration by parts we get for n 6= 0

fn =
l−1∑
s=0

e−iπnas

q∑

k=0

Ask

2(iπn)k+1
+

1

2(iπn)q+1

∫ 1

−1

f (q+1)(t)e−iπntdt. (2)

Consider now Bernoulli polynomials {Bk}, k = 1, 2, · · · with Fourier coefficients {Bk,n}

Bk,n =





0, n = 0

(−1)n+1

2(iπn)k+1
, n = ±1,±2, . . .

On the real line Bernoulli polynomials are considered as 2-periodic piecewise-smooth
functions with ”jump points” ak = 2k + 1, k = 0,±1,±2, · · · .

Expansion (2) leads to the representation

f(x) =
∞∑

n=−∞
fne

i π n x = U(x) + V (x) (3)

where

U(x) = −
l−1∑
s=0

q∑

k=0

Ask

∞∑
n=−∞

ei π n (x−as+1)Bk,n

is a piecewise-polynomial function consisting of ”shifted” Bernoulli polynomials and V ∈
Cq(R). Hence, the sequence

fN(x) = U(x) + VN(x), VN(x) =
N∑

n=−N

Vne
iπnx (4)

converges to f by the rate o(N−q), N →∞ as coefficients {Vn} of V are tending to zero
by the order o(n−q−1), n →∞.

This idea of convergence acceleration was suggested by A. Krylov as far back as in
1905 [1] but it was widely known only since 1960 after publications of C. Lanczos [2].
Note, that this method is exact for a finite sum of piecewise-polynomials when q and N
are rather big and exact values of {Ask} are used. However, for a practical realization
of the corresponding method one should know not only (2N + 1) Fourier coefficients
{fn}, n = 0,±1, · · · ,±N , but also the location of singularities {as} and corresponding
jump values {Ask}.

The problem of jump reconstruction using only the finite number of Fourier coefficients
was solved by K. Eckhoff ([4]-[6]). Namely, if jump points {as} are known and N is rather
big, then approximate values Ãsk can be found from a linear system arising from (2) by
an appropriate choice of n = ns, s = 1, 2, · · · , lq, |ns| ≤ N

fn = −
l−1∑
s=0

e−iπn(as−1)

q∑

k=0

ÃskBk,n, n = n1, n2, · · · , nlq. (5)

51

It is natural (see [3]) to suppose that for some 0 < α ≤ 1

αN ≤ |ns| ≤ N, s = 1, . . . , q + 1. (6)

Approximate locations of singularity points can be found using only finite number of
Fourier coefficients {fn} by the method suggested, for example, in [8].

Similar method was developed for acceleration of conventional Fourier interpolation
(see [5]). The corresponding scheme for a smooth function f ∈ Cq+1[−1, 1] is the following

Iq,N(f) =

q∑

k=0

Ak(f)Bk(x) +
N∑

n=−N

V̌ne
iπnx, (7)

where
Ak(f) = f (k)(1)− f (k)(−1), k = 0, · · · , q − 1.

f̌n =
1

2N + 1

N∑

k=−N

f(xk)e
−iπnxk

and

V̌n = f̌n −
q∑

k=0

Ak(f)B̌k,n. (8)

Similar to (5), approximate values {Ãk} of the jumps {Ak} can be found from the
following system

f̌n =

q∑

k=0

ÃkB̌k,n, n = n1, n2, . . . , nq+1. (9)

Note that pseudoinverses can be used while solving the systems (5) or (9) for singular
matrices. In our experiments we do not use this way but recommend it for a safe approach.

A scheme for two-dimensional rectangles (when approximated function f(x, y) is rather
smooth) was suggested in [9] and [10]. Below we redescribe this approach with detailed
analysis of some numerical experiments as well as with justification of possible applications
in image processing problems.

2 Two-dimensional acceleration

2.1 Basic Notations

For f ∈ C2q[−1, 1]2 denote

f (k,s)(x, y) =
∂k+sf(x, y)

∂xk∂ys
, k, s = 0, · · · , q,

uk(y) = f (k,0)(1, y)− f (k,0)(−1, y), k = 0, · · · , q,

vk(x) = f (0,k)(x, 1)− f (0,k)(x,−1), k = 0, · · · , q,

52

∆k,s = f (k,s)(1, 1)− f (k,s)(−1, 1)− f (k,s)(1,−1) + f (k,s)(−1,−1), k, s = 0, · · · , q.

By fnm, uk,m and vs,n we denote the following Fourier coefficients

fnm =
1

4

∫ 1

−1

∫ 1

−1

f(x, y)e−iπ(nx+my)dxdy,

uk,m =
1

2

∫ 1

−1

uk(y)e−iπmy, vk,n =
1

2

∫ 1

−1

vk(x)e−iπnx, k = 0, · · · , q.

The next two lemmas can easily be proved by means of integration by parts (see [10]).
Lemma 1. For any f ∈ C2q+2[−1, 1]2, q ≥ 0 the following formula holds for n,m 6= 0

fnm =
(−1)n+1

2

q∑

k=0

uk,m

(iπn)k+1
+

(−1)m+1

2

q∑
s=0

vs,n

(iπm)s+1
−

−(−1)n+m

4

q∑
s=0

q∑

k=0

∆k,s

(iπn)k+1(iπm)s+1
+

+
1

4(iπn)q+1(iπm)q+1

∫ 1

−1

∫ 1

−1

f (q+1,q+1)(t, z)e−iπ(nt+mz)dzdt. (10)

Lemma 2. For any f ∈ C2q+2[−1, 1]2, q ≥ 0 the following formula holds for n,m 6= 0

fn0 =
(−1)n+1

2

q∑

k=0

uk,0

(iπn)k+1
+

1

4(iπn)q+1

∫ 1

−1

∫ 1

−1

f (q+1,0)(t, z)e−iπntdzdt, n 6= 0. (11)

f0m =
(−1)m+1

2

q∑

k=0

vs,0

(iπm)s+1
+

1

4(iπm)q+1

∫ 1

−1

∫ 1

−1

f (0,q+1)(t, z)e−iπmzdzdt, m 6= 0. (12)

Note that for every f ∈ L2(−1, 1)2

f(x, y) =
∞∑

n,m=−∞
fnmeiπ(nx+my) =

∞∑
nm=−∞

′

fnmeiπ(nx+my) +

+
∞∑

n=−∞

′

fn0e
iπnx +

∞∑
m=−∞

′

f0meiπmy + f00, (13)

where primes indicate that zero terms are omitted. Substitution of (10), (11) and (12)
into (13) leads to the following expansion of f

f(x, y) = U(x, y) + V (x, y), (14)

where 2-periodic function V ∈ C2q+2(R2) for f ∈ C2q+4[−1, 1]2 and

U(x, y) =

q∑

k=0

uk(y)Bk(x) +

q∑
s=0

vs(x)Bs(y)−
q∑

s=0

q∑

k=0

∆ksBk(x)Bs(y). (15)

53

Expansion (14) leads to the following decomposition

Sq,N(f) = U(x, y) +
N∑

n,m=−N

(fnm − Unm)eiπ(nx+my) (16)

and interpolation

Iq,N(f) = U(x, y) +
N∑

n,m=−N

(f̌nm − Ǔnm)eiπ(nx+my), (17)

where

f̌nm =
1

(2N + 1)2

N∑

k,s=−N

f(xk, xs)e
−iπ(nxk+mxs), xk =

2k

2N + 1
.

In the next two theorems the asymptotic behavior of Sq,N and Iq,N is revealed.

Theorem 1 [10]. If f ∈ C2q+4([−1, 1]× [−1, 1]), q ≥ 0 then

lim
N→∞

(2N + 1)q+2||f − Sq,N(f)||2 =
22q+3

(2q + 3)π2q+4

∫ 1

−1

(
|ϕ̃q(x)|2 +

∣∣∣ψ̃q(x)
∣∣∣
2
)

dx,

where

ϕ̃q(y) =

∫ 1

−1

Bq(t)ϕq(y − t)dt, ψ̃q(x) =
1

2

∫ 1

−1

Bq(t)ψq(x− t)dt.

ϕq(y) = f (q+1,q+1)(1, y)− f (q+1,q+1)(−1, y),

ψq(x) = f (q+1,q+1)(x, 1)− f (q+1,q+1)(x,−1)

and

‖f‖ =

(∫ 1

−1

|f(x)|2dx

)1/2

.

Theorem 2 [10]. If f ∈ C2q+4([−1, 1]× [−1, 1]), q ≥ 0 then

lim
N→∞

(2N + 1)2q+3||f − Iq,N(f)||2 =

=
1

π2q+4


 22q+3

2q + 3
+

1

2

∫ 1/2

−1/2

∣∣∣∣∣
∑
s∈Z

′ (−1)s

(x + s)q+2

∣∣∣∣∣

2

dx




∫ 1

−1

(|ϕ̃q(x)|2 + |ψ̃q(x)|2)dx.

54

2.2 The function U(x, y)

In this section we describe the procedure of approximation of the function U . To this end
approximations of functions uk(x), vk(x) as well as of numbers ∆k,s must be realized.

From expansion (14) we derive

1

2N + 1

N∑
m=−N

f(xm, yn)e−iπxm` =

q∑

k=0

uk(yn)B̌k,` +

q∑
s=0

Bs(yn)

(
v̌s,` −

q∑

k=0

∆k,sB̌k,`

)
+

+
1

2N + 1

N∑
m=−N

V (xm, yn)e−iπxm`, |n| ≤ N, ` = `1, · · · , `q+1.

Taking into account that the last two terms on the right hand side can be discarded if
αN ≤ |`s| ≤ N, N →∞, s = 1, . . . , q+1 for some 0 < α ≤ 1 we get the following systems
of linear equations for determining unknown values uk(yn)

1

2N + 1

N∑
m=−N

f(xm, yn)e−iπxm` =

q∑

k=0

uk(yn)B̌k,`, |n| ≤ N, ` = `1, · · · , `q+1. (18)

Hence, for any fixed value of n, |n| ≤ N we need to solve a system of linear equations
with (q + 1) unknowns uk(yn). As it is well known this can be done by 2/3(q + 1)3

arithmetic operations using Gaussian elimination, but taking into account that in our
case we are solving Vandermonde linear system the number of operations can be reduced
to 5/2(q + 1)2 by the well known Bjorck - Pereyra algorithm (see [11]). Note also that
this algorithm is not only faster but it is often more accurate than standard methods.
As a result, the overall number of multiplications for calculation of numbers uk(yn) is
O(q2N), qN → ∞. It is worth to mention that in our algorithms we use the choice
`1 = N, `2 = −N, `3 = N − 1 and so on. Further we suppose that N > q/2.

Calculation of the values vs(xn) can be carried out similarly by solving the system

1

2N + 1

N∑
n=−N

f(xm, yn)e−iπyn` =

q∑
s=0

vs(xm)B̌s,`, |m| ≤ N, ` = `1, · · · , `q+1.

Finally, for determination of ∆k,s we derive from (14)

f̌nm =

q∑

k=0

ǔk,mB̌k,n +

q∑
s=0

v̌s,nB̌s,m −
q∑

k=0

q∑
s=0

∆k,sB̌k,nB̌s,m,

n = n1, · · · , nq+1, m = m1, · · · ,mq+1.

Now the functions uk(x) and vk(x) can be reconstructed according to (7).
As a result, the complexity of construction of the function U is similar to the com-

plexity of one-dimensional interpolation and can be discarded while calculating the overall
complexity of two-dimensional acceleration. Hence, the overall complexity of accelerated
interpolation for fixed q is O(N2 log N), N →∞ as for Fourier interpolation.

55

2.3 Two examples

In this section a comparison of an accelerated interpolation with the classical Fourier
interpolation is considered on the base of two synthetic examples. Experiments are carried
out by Wolfram Mathematica 6 package. In Tables below the value a× 10−b is indicated
as a,−b.

First, we consider the following analytic function with high oscillations and big edge
values (see Figure 1)

f1(x, y) =

(
x sin(2y) +

1

2

)
sin

(
5x2 + 3y2 − y

)
. (19)

It is a complicated example for an interpolation on a sparse grid.
In Table 1 absolute errors of a corresponding interpolation are presented for different

values of q and N . The column q = −1 corresponds to the classical Fourier interpolation.
We see that even for small values of N the accelerated interpolation gives more precise
results.

q=-1 q=0 q=1 q=2 q=3 q=4
N=2 4,-1; 4,-1 3,-1; 3,-1 2,-1; 2,-1 2,-1; 2,-1 1.5,-1; 1.5,-1 —
N=4 4,-1; 2,-1 1.5,-1; 4,-2 1,-1; 3,-2 1,-1; 1.5,-2 1,-1; 1.5,-2 1,-1; 1,-2
N=8 4,-1; 8,-2 4,-2; 3,-3 2,-2; 5,-4 8,-3; 1,-4 4,-3; 8,-5 3,-3; 2,-5
N=16 3,-1; 2,-2 2,-2; 3,-4 4,-3; 4,-5 6,-4; 4,-5 2,-4; 3,-6 8,-5; 4,-5
N=32 3,-1; 2,-2 1,-2; 6,-5 1,-3; 4,-5 1,-4; 6,-5 1.5,-3; 4,-5 2,-3; 4,-5

Table 1. Absolute errors of an interpolation on the square [−1 + 1/N, 1− 1/N]2 (after the
semicolon - on the square [−1/2, 1/2]2) for f1(x, y) using (2N + 1)2 grid points. The column
q = −1 corresponds to the Fourier classical interpolation. The value a× 10−b is indicated as

a,−b

In Figure 1 the graph of f1(x, y) and graphs of the edge jump functions are presented,
and in Figure 2 we have presented the U and V functions for this example when N = 4,
q = 0. From Figure 3 we see that corresponding edge jumps are reduced compared with
Figure 1 (right).

The next test function is not smooth. It has jumps in its first derivatives on some
lines.

f2(x, y) = xy

∣∣∣∣x2 − 2y2 − 1

16

∣∣∣∣−
∣∣∣∣ sin

(
−x3 + 2y +

1

2

)∣∣∣∣ (20)

The graph of this test function is presented in Figure 4 together with the edge jumps.
Note, that here Theorem 2 is not valid (as ∂2f2(x, y)/∂x∂y does not exist on mentioned
lines) but from Table 2 we see that the algorithm works in this case also.

On the rectangle [−.4, 0]×[−.75,−.35] this function is smooth (f ∈ C∞) and in Table 2
we have information about interpolation on this smoothness area also.

56

f1Hx,yL

-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5

0.0

0.5

1.0

-1

0

1
-1.0 -0.5 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Edge jumps

Figure 1: Graph of the function f1(x, y) values (left) as well as (right) values of f1(x, 1) − f1(x,−1)
(blue) and f1(1, y)− f1(−1, y) (red-dashing),−1 ≤ x, y ≤ 1

U-correction

-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5

0.0
0.5

1.0

-3
-2
-1

0
1

V-reminder

-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5

0.0
0.5

1.0

-1
0
1

Figure 2: The graphs of U (left) and V (right) for the function f1(x, y) when N = 4,

q=-1 q=0 q=1 q=2
N=2 3,-1; 2,-1 2,-1; 1.5,-1 4,-1; 2,-1 3,-1; 2,-1
N=4 4,-1; 2,-1 1.5,-1; 3,-2 1.5,-1; 1,-1 1.5,-1; 1,-1
N=8 4,-1; 1,-1 1.5,-1; 8,-2 1,-1; 3,-2 2,-1; 4,-2
N=16 4,-1; 6,-2 4,-2; 6,-3 3,-1; 1,-2 1,0; 1.5,-2
N=32 6,-1; 3,-2 2,-2; 3,-3 1.5,-1; 3,-3 6,0; 4,-3
N=64 6,-1; 1.5,-2 1,-2; 1,-3 1.5,0; 1,-3 8,1; 1.5,-3

Table 2. Absolute errors of interpolation on the square [−1 + 1/N, 1− 1/N]2 (after the
semicolon - on the rectangle [−.4, 0]× [−.75,−.35]) for f2(x, y) using (2N + 1)2 grid points.

q = −1 corresponds to Fourier interpolation. The value a× 10−b is indicated as a,−b

In Figure 3 the graphs of absolute values of edge jumps for the last example are
presented (compare with Figure 4).

57

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8
Edge jumps error

Figure 3: Graphs for absolute values of edge jumps for the function f1(s, y)− U(x, y) if N = 4, q = 0.
Colors are the same as in Figure 1.

f2Hx,yL

-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5

0.0

0.5

1.0

-2

-1

0

-1.0 -0.5 0.5 1.0

-2

-1

1

2

Edge jumps

Figure 4: Graph of the function f2(x, y) values (left) as well as (right) values of f2(x, 1) − f2(x,−1)
(blue) and f2(1, y)− f2(−1, y) (red-dashing)

3 An Application in Image Analysis and Synthesis

3.1 The problem

It is well known that Fourier series expansion (or interpolation) is rather efficient for
analysis and synthesis of smooth and periodic signals or images. In this case the rate of
the decay of Fourier coefficients is rather big, that leads to very sparse representations in
frequency array. Particularly, it allows making high order compression of an image with
a low loss of the information as well as realizing approximation/interpolation with high
precision.

This is not the case for non-periodic signals/images (see Introduction). It is obvious
that real signals/images are usually non-periodic. Even if the original signal/image is
periodic, its local segments (which are used for local analysis and synthesis) are non-
periodic. Hence, an application of the accelerated interpolation is in place.

Note that a similar method of division of a smooth image f(x, y), (x, y) ∈ [0, 1]2 into
two components f = u + v (artificial u and residual v) was used in the interesting series
of papers of Naoki Saito with co-authors ([12] - [15]) in the case when u(x, y) is a solution
of a discrete analogue of polyharmonic equation ∆m u = 0, m ≥ 1, with boundary values

58

derived from corresponding values of f . For numerical implementation of this approach
an algorithm suggested by Averbuch, Braverman, Israeli, and Vozovoi (ABIV method
[16]) was used. Actually this algorithm is based on well known method of separation of
variables. For the translation to the frequency array discrete Fourier transform (DFT) as
well as discrete Cos/Sin (DCT/DST) transforms were applied. One can find descriptions
of these algorithms and several applications to real images, as well as detail analysis of
related works in [15].

Our method can be viewed as an alternative to the mentioned approach. We think that
the acceleration on the base of DFT is the most preferable since (see [12]) it represents
the image orientation patterns better than DCF and DST.

3.2 Numerical results

Possibilities of our algorithm, in general, were investigated above. Here we examine the
accelerated interpolation for applications in image processing. We are interested in loss-
less/lossy compression/decompression possibilities as well as in the memory consumption.

Our experiments show that usually both for small and big N the accelerated interpo-
lation is more precise compared with the Fourier classical interpolation. Moreover, when
value of |m× n| relatively big then coefficients {Vmn} of V usually are smaller compared
with DFT coefficients {fmn} of f (see Table 3). Hence, after a quantization procedure
more coefficients of V can be discarded compared with DFT of f ones. (see Figure 6, 7
also). This will lead to a serious memory consumption economy. An additional memory
will be required only for saving the function U . For example, when q = 0, N = 2 and
f = f1, then U has the following simplified form

U(x, y) = −0.128 x + 0.167 y − 1.04 x y + 0.615 y cos(πx)− 0.367 y cos(2πx) +

0.55 x cos(πy)− 0.429 x cos(2πy) + 0.356 y sin(πx)− 0.376 x sin(πy).

and hence only 9 coefficients are necessary for describing this function in the memory.

0.103 0.167 0.088 0.088 0.031 0.015 0.053 0.084 0.053 0.015
0.091 0.031 0.158 0.034 0.061 0.07 0.264 0.172 0.09 0.07
0.038 0.051 0.074 0.051 0.038 0.015 0.053 0.074 0.052 0.015
0.061 0.034 0.158 0.031 0.091 0.07 0.09 0.172 0.264 0.07
0.031 0.088 0.088 0.167 0.103 0.015 0.052 0.084 0.053 0.015

Table 3. The matrix of absolute values of DFT (q = 0, N = 2) using the Fourier interpolation
for f2 (left) and the corresponding remainder matrix of absolute values of coefficients for

V (x, y) (right)

In applications the cases N = 4 and N = 8 are important and correspond to JPEG
algorithm, which scans the image with 8 × 8 grids, and to JPEG2000 algorithm, which
scans the image with 16 × 16 grids (see [17], [18]). For these cases the economy can be
much more as discrete coefficients of V tend to zero more rapid compared with DFT of f
ones.

59

DFT Residual

Figure 5: Data for compression when f = f1(x, t), N = 8, q = 0. Quantization is applied to DFT and
the residual using 101 steps. Pixel values: Red = 0; 1 ≤ Magenta ≤ 3, 4 ≤ Cyan ≤ 6, others ≥ 7.

DFT Residual

Figure 6: Data for compression when f = f2(x, t), N = 8, q = 0. Quantization is applied to DFT and
the residual using 201 steps. Pixel values: Red = 0, 1 ≤ Magenta ≤ 6, 7 ≤ Cyan ≤ 12, others ≥ 13

Figure 6 shows a situation connected with f1 when N = 8 and q = 0. In this case
we must keep for function U(x, y) (with correspondingly discarded coefficients) 26 cor-
respondingly discarded coefficients during compression using discarded Red pixels, 20
coefficients using Magenta + Red pixels and only 15 coefficients using Magenta +Red
+ Cyan pixels. We can compress DFT file by discarding only two red pixels while we
have 229 red pixels in the residual file (right). Thus total amount of requested memory
using our method is 204 pixels instead of 289 and it is about lossless compression. Similar
situation is observed for Magenta + Red and Magenta +Red + Cyan pixels although here
DFT file can be only a bit compressed.

The function f2(x, y) is more acceptable as a test function for image applications (see
Figure 7). In this case we must keep 31 coefficients for function U(x, y) while discarding
using Red pixels, 20 coefficients using Magenta + Red pixels and only 13 coefficients
using Magenta +Red + Cyan pixels. Here we can compress DFT file by discarding 45

60

Red pixels so total amount of requested memory is 244 pixels instead of 289. At the same
time in the residual file we have 204 red pixels. Thus total amount of requested memory
for our method is 116 pixels. In that way we have discarded only .5% of the energy so it is
practically lossless compression. One can easily make comparisons for other color pixels.

Note that for simplicity sake we are not use the procedure of multiplication by quan-
tization matrix (see [17]) but it does not change the general situation.

In our other experiments with different synthetic images without jumps the situa-
tion was similar. Moreover the ratio of compression memory amounts (using DFT) :
(using our method) was stable grow with growing of N.

4 Conclusion

Described algorithm is a natural generalization of a method developed earlier for one-
dimensional case (see [1]-[7]). The transformation of this method to more general N1×N2

grid is obvious. Generalization of this acceleration for Sin/Cos (DST/DCT) - based
interpolations is also possible without great efforts.

The precision of approximation by accelerated interpolation is directly connected with
the smoothness of approximated function. For smooth functions the theoretical estimates
are highly confirmed with the results of numerical experiments. For these functions the
parameter q can be chosen as q ≤ 4 without suffering from essential round-off errors on
conventional computers. Note that U(x, y) can usually be saved (before compression) by
means of about 8(q + 1)N coefficients.

In image processing applications we have to deal with non-smooth and noisy examples,
so the main recommendation is an application of this approaches only if q = 0. In this
case when f(x, y) ∈ C1 we can provide an interpolation with a high precision (acceptable
in applications) and also a high level compression with a relatively low memory consump-
tion. In the future this approach can be strengthened for piecewise smooth in the square
functions with a preliminary singularity detection procedure.

There are many differences in our approach compared with the schemes suggested in
[12] − [15]. First of all, we do not use an approximate calculation of normal derivatives
on the boundary by any scheme of finite differences on the interpolation grid. We find
this values by solving corresponding system of linear equations (see section 2.2) and as
a result we can deal with sparse grids for relatively low smooth images. But the energy
of our residual function V is usually not so small as in the algorithm PHLST5 [15], and
this energy sharply increases together with q. Moreover, in this paper we consider the
compressing and zooming possibilities of our algorithm while in [12]−[15] image processing
results are demonstrated on real images without any information about memory saving
or zooming possibilities.

In our future investigations we will continue comparison of these two methods, par-
ticularly we will compare them for RAW files of real images taking into consideration the
analysis carried out in [12] - [15]. According to our present experiments we recommend
to use our approach in relatively smooth parts of real images for lossless/lossy compres-
sion/decompression as well as for zooming using virtual pixels restored from accelerated
interpolation.

61

References

[1] A. Krylov, On approximate calculations, Lectures delivered in 1906 (in Russian),
St. Petersburg 1907, Tipolitography of Birkenfeld.

[2] C. Lanczos, Discourse of Fourier series, Oliver and Boyd, Edinburgh, 1966.

[3] Barkhudaryan A., Barkhudaryan R., and Poghosyan A., Asymptotic behavior of
Eckhoff’s method for Fourier Series Convergence Acceleration. Analysis in Theory
and Applications, Volume 23, Number 3 (2007), 228-242.

[4] K. S. Eckhoff, Accurate and efficient reconstruction of discontinuous functions from
truncated series expansions, Math. Comp. 61 (1993), 745-763.

[5] K. S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated
Fourier series expansions, Math. Comp. 64 (1995), 671-690.

[6] K. S. Eckhoff, On a high order numerical method for functions with singularities,
Math. Comp. 67 (1998), 1063-1087.

[7] K. S. Eckhoff and C. E. Wasberg, On the numerical approximation of derivatives by a
modified Fourier collocation method, Technical Report No 99, Dept. of Mathematics,
University of Bergen, Norway, 1995

[8] Anne Gelb and Eitan Tadmor.: Detection of edges in spectral data II. Nonlinear
enhansment. SIAM j. Numer. Anal., 38, no.4, 1389-1408 (2000)

[9] A. Nersessian and A. Poghosyan, Bernoulli method in multidimensional case,
Preprint No 20 Ar-00 (in Russian), Deposited in ArmNIINTI 09.03.00 (2000), 1-
40.

[10] A. Nersessian and A. Poghosyan, Asymptotic errors of accelerated two-dimensional
trigonometric approximations, Proceedings of the ISAAC fourth Conference on Anal-
ysis, Yerevan, Armenia (G. A. Barsegian, H. G. W. Begehr, H. G. Ghazaryan,
A. Nersessian eds), Yerevan, 2004, 70-78.

[11] A.Bjorck and V.Pereyra, Solution of Vandermonde Systems of Equations, Math.
Comp., 24 (1970), 893-903.

[12] Saito, N., Remy, J.-F.: A new local sine transform without overlaps: A combination
of computational harmonic analysis and PDE. In: M.A. Unser, A. Aldroubi, A.F.
Laine (eds.) Wavelets: Applications in Signal and Image Processing X. Proc. SPIE,
vol. 5207, pp. 495506 (2003)

[13] Saito, N., Remy, J.-F.: The polyharmonic local sine transform: A new tool for local
image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal.
20(1), 4173 (2006)

62

[14] Yamatani, K., Saito, N.: Improvement of DCT-based compression algorithms using
Poissons equation. IEEE Trans. Image Process. 15(12), 36723689 (2006)

[15] Jucheng Zhao, Naoki Saito and Yi Wang.: PHLST5: A practical and Improved
version of Polyharmonic Local Sine Transform. J. Math. Imaging Vis., 30, 23-41
(2008)

[16] Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accu-
racy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933-952 (1998)

[17] G. K. Wallace, The JPEG Still Picture Compression Standard. IEEE Transactions
on Consumer Electronics, Vol. 38, No 1 (1992).

[18] M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, An Overview of JPEG-2000.
Proc. of IEEE Data Compression Conference, pp. 523-541 (2000).

63

