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Introduction

0.1 h-Convex Functions

We recall here some concepts of convexity that are well known in the liter-
ature.

Let I be an interval in R.

Definition 1 ([42]) We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I
and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) . (1)

Some further properties of this class of functions can be found in [32],
[33], [35], [48], [51] and [52]. Among others, its has been noted that non-
negative monotone and non-negative convex functions belong to this class
of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and the
inequality (1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1) . If the
function f : C ⊆ X → R is non-negative and convex, then it is of Godunova-
Levin type.

1

http://www.flib.sci.am/eng/journal/Math/


2 S. S. DRAGOMIR

Definition 2 ([35]) We say that a function f : I → R belongs to the class
P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) . (2)

Obviously Q (I) contains P (I) and for applications it is important to
note that also P (I) contains all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

f (tx+ (1− t) y) ≤ max {f (x) , f (y)} (3)

for all x, y ∈ I and t ∈ [0, 1] .
For some results on P -functions see [35] and [49], while for quasi convex

functions the reader can consult [34].
If f : C ⊆ X → [0,∞), where C is a convex subset of the real or

complex linear space X, then we say that it is of P -type (or quasi-convex)
if the inequality (2) (or (3)) holds true for x, y ∈ C and t ∈ [0, 1] .

Definition 3 ([7]) Let s be a real number, s ∈ (0, 1]. A function f : [0,∞)→
[0,∞) is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [7], [8], [30], [31],
[43], [45] and [54].

The concept of Breckner s-convexity can be similarly extended for func-
tions defined on convex subsets of linear spaces.

It is well known that if (X, ‖·‖) is a normed linear space, then the function
f (x) = ‖x‖p , p ≥ 1 is convex on X.

Utilising the elementary inequality (a+ b)s ≤ as + bs that holds for any
a, b ≥ 0 and s ∈ (0, 1], we have for the function g (x) = ‖x‖s

g (tx+ (1− t) y) = ‖tx+ (1− t) y‖s ≤ (t ‖x‖+ (1− t) ‖y‖)s

≤ (t ‖x‖)s + [(1− t) ‖y‖]s

= tsg (x) + (1− t)s g (y)

for any x, y ∈ X and t ∈ [0, 1] , which shows that g is Breckner s-convex on
X.

In order to unify the above concepts for functions of real variable, S.
Varošanec introduced the concept of h-convex function as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and
f are real non-negative functions defined in J and I, respectively.
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Definition 4 ([58]) Let h : J → [0,∞) with h not identical to 0. We say
that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (4)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [58], [6], [46], [55],
[53] and [57].

This concept can be extended for functions defined on convex subsets
of linear spaces in the same way as above replacing the interval I be the
corresponding convex subset C of the linear space X.

Now we can introduce another class of functions.

Definition 5 We say that the function f : C ⊆ X → [0,∞) is of s-
Godunova-Levin type, with s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) , (5)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C) the
class of s-Godunova-Levin functions defined on C, then we obviously have

P (C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
For different inequalities related to these classes of functions, see [1]-[4],

[6], [9]-[41], [44]-[46] and [49]-[57].
A function h : J → R is said to be supermultiplicative if

h (ts) ≥ h (t)h (s) for any t, s ∈ J. (6)

If the inequality (6) is reversed, then h is said to be submultiplicative. If the
equality holds in (6) then h is said to be a multiplicative function on J .

In [58] it has been noted that if h : [0,∞) → [0,∞) with h (t) =
(x+ c)p−1 , then for c = 0 the function h is multiplicative. If c ≥ 1, then for
p ∈ (0, 1) the function h is supermultiplicative and for p > 1 the function is
submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, then
their product is alike. In particular, if h is supermultiplicative then its
product with a power function `r (t) = tr is also supermultiplicative.

We recall the following Hermite-Hadamard type inequality for h-convex
functions from [53]:
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Theorem 1 Let f : I → [0,∞) be an integrable h-convex function on I and
a, b ∈ I with a < b. Then

1

2h
(

1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ [f (a) + f (b)]

∫ 1

0

h (t) dt, (7)

provided
∫ 1

0
h (t) dt <∞.

0.2 λ-Convex Functions

We start with the following definition (see also [26]):

Definition 6 Let λ : [0,∞) → [0,∞) be a function with the property that
λ (t) > 0 for all t > 0. A mapping f : C → R defined on convex subset C of
a linear space X is called λ-convex on C if

f

(
αx+ βy

α + β

)
≤ λ (α) f (x) + λ (β) f (y)

λ (α + β)
(8)

for all α, β ≥ 0 with α + β > 0 and x, y ∈ C.

We observe that if f : C → R is λ-convex on C, then f is h-convex on C
with h (t) = λ(t)

λ(1)
, t ∈ [0, 1] .

If f : C → [0,∞) is h-convex function with h supermultiplicative on
[0,∞) , then f is λ-convex with λ = h.

Indeed, if α, β ≥ 0 with α + β > 0 and x, y ∈ C then

f

(
αx+ βy

α + β

)
≤ h

(
α

α + β

)
f (x) + h

(
β

α + β

)
f (y)

≤ h (α) f (x) + h (β) f (y)

h (α + β)
.

The following proposition contains some properties of λ-convex functions
[26].

Proposition 1 Let f : C → R be a λ-convex function on C.
(i) If λ (0) > 0, then we have f (x) ≥ 0 for all x ∈ C;
(ii) If there exists x0 ∈ C so that f (x0) > 0, then

λ (α + β) ≤ λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is subadditive on (0,∞) .
(iii) If there exist x0, y0 ∈ C with f (x0) > 0 and f (y0) < 0, then

λ (α + β) = λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is additive on (0,∞) .
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We have the following result providing many examples of subadditive
functions λ : [0,∞)→ [0,∞) .

Theorem 2 ([26]) Let h (z) =
∑∞

n=0 anz
n a power series with nonnegative

coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R)
with R > 0 or R = ∞. If r ∈ (0, R) then the function λr : [0,∞) → [0,∞)
given by

λr (t) := ln

[
h (r)

h (r exp (−t))

]
(9)

is nonnegative, increasing and subadditive on [0,∞) .

We have the following fundamental examples of power series with positive
coefficients

h (z) =
∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) (10)

h (z) =
∞∑
n=0

1

n!
zn = exp (z) z ∈ C,

h (z) =
∞∑
n=0

1

(2n)!
z2n = cosh z, z ∈ C;

h (z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

h (z) =
∞∑
n=1

1

n
zn = ln

1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with
positive coefficients are:

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 =

1

2
ln

(
1 + z

1− z

)
, z ∈ D (0, 1) ; (11)

h (z) =
∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1 = sin−1 (z) , z ∈ D (0, 1) ;

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 = tanh−1 (z) , z ∈ D (0, 1) ;

h (z) =2 F1 (α, β, γ, z) =
∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is Gamma function.
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Remark 1 Now, if we take h (z) = 1
1−z , z ∈ D (0, 1) , then

λr (t) = ln

[
1− r exp (−t)

1− r

]
(12)

is nonnegative, increasing and subadditive on [0,∞) for any r ∈ (0, 1) .
If we take h (z) = exp (z) , z ∈ C then

λr (t) = r [1− exp (−t)] (13)

is nonnegative, increasing and subadditive on [0,∞) for any r > 0.

Corollary 1 ([26]) Let h (z) =
∑∞

n=0 anz
n be a power series with nonneg-

ative coefficients an ≥ 0 for all n ∈ N and convergent on the open disk
D (0, R) with R > 0 or R = ∞ and r ∈ (0, R) . For a mapping f : C → R
defined on convex subset C of a linear space X, the following statements are
equivalent:

(i) The function f is λr-convex with λr : [0,∞)→ [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
;

(ii) We have the inequality[
h (r)

h (r exp (−α− β))

]f(αx+βyα+β )
≤
[

h (r)

h (r exp (−α))

]f(x) [
h (r)

h (r exp (−β))

]f(y)

(14)
for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.

(iii) We have the inequality

[h (r exp (−α))]f(x) [h (r exp (−β))]f(y)

[h (r exp (−α− β))]f(
αx+βy
α+β )

≤ [h (r)]f(x)+f(y)−f(αx+βyα+β ) (15)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.

Remark 2 We observe that, in the case when

λr (t) = r [1− exp (−t)] , t ≥ 0,

the function f is λr-convex on convex subset C of a linear space X iff

f

(
αx+ βy

α + β

)
≤ [1− exp (−α)] f (x) + [1− exp (−β)] f (y)

1− exp (−α− β)
(16)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
We observe that this definition is independent on r > 0.
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The inequality (16) is equivalent to

f

(
αx+ βy

α + β

)
≤ exp (β) [exp (α)− 1] f (x) + exp (α) [exp (β)− 1] f (y)

exp (α + β)− 1
(17)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.

We have the following Jensen inequality for the Riemann integral [28]:

Theorem 3 Let u : [a, b] → [m,M ] be a Riemann integrable function on
[a, b]. Let λ : [0,∞) → [0,∞) be a function with the property that λ (t) > 0
for all t > 0 and the function f : [m,M ]→ [0,∞) is λ-convex and Riemann
integrable on the interval [m,M ] . If the following limit exists

lim
t→0+

λ (t)

t
= k ∈ (0,∞) (18)

then

f

(
1

b− a

∫ b

a

u (t) dt

)
≤ k

λ (b− a)

∫ b

a

f (u (t)) dt. (19)

The following weighted version of Jensen inequality for the Riemann
integral [28] also holds.

Theorem 4 Let u,w : [a, b] → [m,M ] be Riemann integrable functions on

[a, b] and w (t) ≥ 0 for any t ∈ [a, b] with
∫ b
a
w (t) dt > 0. Let λ : [0,∞) →

[0,∞) be a function with the property that λ (t) > 0 for all t > 0 and the
function f : [m,M ] → [0,∞) is λ-convex and Riemann integrable on the
interval [m,M ] . If the following limit exists, is finite and

lim
t→∞

t

λ (t)
= ` > 0, (20)

then

f

(
1∫ b

a
w (t) dt

∫ b

a

w (t)u (t) dt

)
≤ `

1∫ b
a
w (t) dt

∫ b

a

λ (w (t)) f (u (t)) dt.

(21)

Motivated by the above results in this paper we establish some Jensen
type inequalities for the general Lebesgue integral.
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1 Some Results for Differentiable Functions

If we assume that the function f : I → [0,∞) is differentiable on the interior
of I, denoted by I̊ , then we have the following ”gradient inequality” that will
play an essential role in the following.

Lemma 1 Let λ : (0,∞)→ (0,∞) be a function such that the right limit

lim
t→0+

λ (t)

t
= k ∈ (0,∞) (22)

exists and is finite, and the left derivative in 1 denoted by λ′− (1) exists and
is finite.

If the function f : I → [0,∞) is differentiable on I̊ and λ-convex, then

kf (x)− λ′− (1) f (y) ≥ λ (1) f ′ (y) (x− y) (23)

for any x, y ∈ I̊ with x 6= y.

Proof. Since f is λ-convex on I, then

λ (t) f (x) + λ (1− t) f (y)

λ (1)
≥ f (tx+ (1− t) y)

for any t ∈ (0, 1) and for any x, y ∈ I̊ , which is equivalent to

λ (t) f (x) + [λ (1− t)− λ (1)] f (y) ≥ λ (1) [f (tx+ (1− t) y)− f (y)]

and by dividing by t > 0 we get

λ (t)

t
f (x) +

[
λ (1− t)− λ (1)

t

]
f (y) ≥ λ (1)

f (tx+ (1− t) y)− f (y)

t
(24)

for any t ∈ (0, 1) .
Now, since f is differentiable on y ∈ I̊ , then we have

lim
t→0+

f (tx+ (1− t) y)− f (y)

t
= lim

t→0+

f (y + t (x− y))− f (y)

t
(25)

= (x− y) lim
t→0+

f (y + t (x− y))− f (y)

t (x− y)

= (x− y) f ′ (y)

for any x ∈ I̊ with x 6= y.
Also we have

lim
t→0+

λ (1− t)− λ (1)

t
= lim

s→1−

λ (s)− λ (1)

1− s
(26)

= − lim
s→1−

λ (s)− λ (1)

s− 1
= −λ′− (1)

Taking the limit over t→ 0+ in (24) and utilizing (25) and (26) we get the
desired result (23). �
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Remark 3 If we assume that

k ≥ λ′− (1) , (27)

then the inequality (23) also holds for x = y.

Remark 4 If λ : [0,∞) → [0,∞) with λ (0) = 0 then the condition (22) is
equivalent to the fact that the right derivative

λ′+ (0) = lim
t→0+

λ (t)

t

exists, is finite and λ′+ (0) = k.

In this situation the inequality (23) becomes for λ′+ (0) > 0

λ′+ (0) f (x)− λ′− (1) f (y) ≥ λ (1) f ′ (y) (x− y) (28)

for any x, y ∈ I̊ with x 6= y.

If the function λ is subadditive on [0,∞) and has finite lateral derivatives
with λ′+ (0) > 0, then

λ (t) + λ (1− t) ≥ λ (1) , t ∈ (0, 1) ,

i.e.
λ (t)

t
≥ λ (1)− λ (1− t)

t
, t ∈ (0, 1) . (29)

Taking the limit over t→ 0+ in (29) we get

λ′+ (0) ≥ λ′− (1) ,

therefore the inequality (28) also holds for x = y.

We have the following result.

Corollary 2 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) =
0 and having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞).

If the function f : I → [0,∞) is differentiable on I̊ and λ-convex, then

λ′+ (0) f (x)− λ′− (1) f (y) ≥ λ (1) f ′ (y) (x− y) (30)

for any x, y ∈ I̊ .

As examples of such functions we have:
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Proposition 2 Let h (z) =
∑∞

n=0 anz
n a power series with nonnegative co-

efficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R)
with R > 0 or R = ∞ and r ∈ (0, R) . If the function f : I → [0,∞) is
differentiable on I̊ and λr-convex with λr : [0,∞)→ [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
,

then

rh′ (r)

h (r)
f (x)− re−1h′ (re−1)

h (re−1)
f (y) ≥ ln

[
h (r)

h (re−1)

]
f ′ (y) (x− y) , (31)

for any x, y ∈ I̊ .

Proof. We know that λr is differentiable on (0,∞) and

λ′r (t) :=
r exp (−t)h′ (r exp (−t))

h (r exp (−t))

for t ∈ (0,∞) , where

h′ (z) =
∞∑
n=1

nanz
n−1.

Since λr (0) = 0, then

k = lim
s→0+

λ (s)

s
= λ′+ (0) =

rh′ (r)

h (r)
> 0 for r ∈ (0, R) .

Also

λ′r (1) =
re−1h′ (re−1)

h (re−1)

and

λr (1) = ln

[
h (r)

h (re−1)

]
.

Applying Corollary 2 we deduce the desired result (31). �

Corollary 3 If the function f : I → [0,∞) is differentiable on I̊ and λ-
convex with λ : [0,∞)→ [0,∞) , λ (t) = 1− exp (−t) , then we have

ef (x)− f (y) ≥ (e− 1) f ′ (y) (x− y) (32)

for any x, y ∈ I̊ .

It follows by Proposition 2 observing that λ′ (t) = exp (−t) , t > 0.
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2 Jensen Type Inequalities

Let (Ω,A, µ) be a measure space consisting of a set Ω, a σ –algebra A of
parts of Ω and a countably additive positive measure µ on A with values in
R ∪ {∞} . For a µ−measurable function w : Ω→ R, with w (x) ≥ 0 for µ –
a.e.(almost every) x ∈ Ω, consider the Lebesgue space

Lw (Ω, µ) := {f : Ω→ R, f is µ-measurable and

∫
Ω

w (x) |f (x)| dµ (x) <∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ω
wdµ instead

of
∫

Ω
w (x) dµ (x) .

Theorem 5 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) = 0
and having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function

f : I → [0,∞) is differentiable on I̊ and λ-convex, then for any u : Ω →
[m,M ] ⊂ I̊ so that f ◦ u, u ∈ Lw (Ω, µ) , where w ≥ 0 µ-a.e. (µ-almost
everywhere) on Ω with

∫
Ω
wdµ = 1 we have∫

Ω

w · (f ◦ u) dµ ≥
λ′− (1)

λ′+ (0)
f

(∫
Ω

wudµ

)
. (33)

Proof. Observe that, since u : Ω → [m,M ] and u ∈ Lw (Ω, µ) , then∫
Ω
wudµ ∈ [m,M ] . Applying Corollary 2 we have

λ′+ (0) f (u (t))− λ′− (1) f

(∫
Ω

wudµ

)
(34)

≥ λ (1) f ′
(∫

Ω

wudµ

)(
u (t)−

∫
Ω

wudµ

)
for any t ∈ Ω.

Multiplying (34) by w (t) ≥ 0 for µ-almost every t ∈ Ω we get

λ′+ (0)w (t) f (u (t))− λ′− (1) f

(∫
Ω

wudµ

)
w (t) (35)

≥ λ (1) f ′
(∫

Ω

wudµ

)(
w (t)u (t)−

(∫
Ω

wudµ

)
w (t)

)
for µ-almost every t ∈ Ω.

Integrating (35) over t on Ω we get

λ′+ (0)

∫
Ω

w (t) f (u (t)) dµ (t)− λ′− (1) f

(∫
Ω

wudµ

)∫
Ω

w (t) dµ (t) (36)

≥ λ (1) f ′
(∫

Ω

wudµ

)
×
(∫

Ω

w (t)u (t) dµ (t)−
(∫

Ω

wudµ

)∫
Ω

w (t) dµ (t)

)
and since

∫
Ω
w (t) dµ (t) = 1, we deduce the desired result (33). �
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The following inequality of Hermite-Hadamard type holds:

Corollary 4 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) =
0 and having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function

f : I → [0,∞) is differentiable on I̊ and λ-convex, then for any [a, b] ⊂ I̊
we have

1

b− a

∫ b

a

f (t) dt ≥
λ′− (1)

λ′+ (0)
f

(
a+ b

2

)
. (37)

It follows from Theorem 5 by taking Ω = [a, b] , u : [a, b]→ [a, b], u (t) =
t, w (t) = 1

b−a and dµ = dt being the Lebesgue measure on the interval [a, b] .
The inequality (37) provides other lower bound for the integral mean

than the first inequality in (7). Since for h-convexity, h (0) may not be
defined, the lower bounds from (37) and (7) cannot be compared in general.

If we consider the discrete measure, then we have:

Corollary 5 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) =
0 and having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function

f : I → [0,∞) is differentiable on I̊ and λ-convex, then for any xi ∈ I̊ and
pi ≥ 0, i ∈ {1, ..., n} with

∑n
i=1 pi = 1 we have

n∑
i=1

pif (xi) ≥
λ′− (1)

λ′+ (0)
f

(
n∑
i=1

pixi

)
.

Remark 5 Let h (z) =
∑∞

n=0 anz
n be a power series with nonnegative coef-

ficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R) with
R > 0 or R = ∞ and r ∈ (0, R) . Assume that the function f : I → [0,∞)
is differentiable on I̊ and λr-convex with λr : [0,∞)→ [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
.

If f : I → [0,∞) is differentiable on I̊ and λr-convex, then for any u : Ω→
[m,M ] ⊂ I̊ so that f ◦ u, u ∈ Lw (Ω, µ) , where w ≥ 0 µ-a.e. (µ-almost
everywhere) on Ω with

∫
Ω
wdµ = 1 we have∫

Ω

w · (f ◦ u) dµ ≥ e−1h′ (re−1)h (r)

h (re−1)h′ (r)
f

(∫
Ω

wudµ

)
. (38)

Remark 6 If the function f : I → [0,∞) is differentiable on I̊ and λ-convex
with λ : [0,∞) → [0,∞) , λ (t) = 1 − exp (−t) , then for any [a, b] ⊂ I̊ we
have

1

b− a

∫ b

a

f (t) dt ≥ 1

e
f

(
a+ b

2

)
. (39)
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Also, for any xi ∈ I̊ and pi ≥ 0, i ∈ {1, ..., n} with
∑n

i=1 pi = 1 we have

n∑
i=1

pif (xi) ≥
1

e
f

(
n∑
i=1

pixi

)
. (40)

Recall Slater’s inequality for differentiable convex functions [56]:

Lemma 2 Let f : I → R be a nondecreasing (nonincreasing) differ-
entiable convex function on I, xi ∈ I , pi ≥ 0 with Pn =

∑n
i=1 pi >

0 and assume that
∑n

i=1 pif
′ (xi) 6= 0. Then one has the inequality

f

(∑n
i=1 pixif

′ (xi)∑n
i=1 pif

′ (xi)

)
≥ 1

Pn

n∑
i=1

pif (xi) . (41)

As shown in [22, pp. 129-130], the monotonicity condition in Lemma 2
can be weakened by assuming that∑n

i=1 pixif
′ (xi)∑n

i=1 pif
′ (xi)

∈ I.

We can state the following result that is similar to Slater’s inequality:

Theorem 6 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) = 0
and having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function

f : I → [0,∞) is differentiable on I̊ and λ-convex, then for any u : Ω →
[m,M ] ⊂ I̊ so that f ◦ u, u · (f ′ ◦ u) , f ′ ◦ u ∈ Lw (Ω, µ) , where w ≥ 0 µ-a.e.
(µ-almost everywhere) on Ω with

∫
Ω
wdµ = 1 and∫

Ω
wu · (f ′ ◦ u) dµ∫

Ω
w · (f ′ ◦ u) dµ

∈ [m,M ] ,

we have
λ′+ (0)

λ′− (1)
f

(∫
Ω
wu · (f ′ ◦ u) dµ∫

Ω
w · (f ′ ◦ u) dµ

)
≥
∫

Ω

w · (f ◦ u) dµ. (42)

Proof. Since the function f : I → [0,∞) is differentiable on I̊ and λ-convex,
then by (30) we have

λ′+ (0) f (x)− λ′− (1) f (u (t)) ≥ λ (1) f ′ (u (t)) (x− u (t)) (43)

for any x ∈ I̊ and t ∈ Ω.
If we multiply by w (t) ≥ 0 and integrate we get

λ′+ (0) f (x)− λ′− (1)

∫
Ω

w (t) f (u (t)) dµ (t) (44)

≥ λ (1)x

∫
Ω

w (t) f ′ (u (t)) dµ (t)−
∫

Ω

w (t) f ′ (u (t))u (t) dµ (t) ,



14 S. S. DRAGOMIR

for any x ∈ I̊.
Since

∫
Ω
w (t) f ′ (u (t)) dµ (t) 6= 0 and

x0 :=

∫
Ω
w (t) f ′ (u (t))u (t) dµ (t)∫
Ω
w (t) f ′ (u (t)) dµ (t)

∈ [m,M ] ,

then by taking x = x0 in (44) we get the desired result (42). �

The following Hermite-Hadamard type inequality holds:

Corollary 6 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) =
0 having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function f :

I → [0,∞) is differentiable on I̊ and λ-convex, and for [a, b] ⊂ I̊ we have∫ b
a
tf ′ (t) dt

f (b)− f (a)
=
bf (b)− af (a)−

∫ b
a
f (t) dt

f (b)− f (a)
∈ [a, b] , (45)

then we have

λ′+ (0)

λ′− (1)
f

(
bf (b)− af (a)−

∫ b
a
f (t) dt

f (b)− f (a)

)
≥ 1

b− a

∫ b

a

f (t) dt. (46)

The following discrete inequality also holds:

Corollary 7 Let λ : [0,∞)→ [0,∞) be a subadditive function with λ (0) =
0 having the lateral derivative λ′+ (0) , λ′− (1) ∈ (0,∞). If the function f :

I → [0,∞) is differentiable on I̊ and λ-convex, then for any xi ∈ I̊ and
pi ≥ 0, i ∈ {1, ..., n} with

∑n
i=1 pi = 1 and∑n
i=1 pixif

′ (xi)∑n
i=1 pif

′ (xi)
∈ I̊ ,

we have
λ′+ (0)

λ′− (1)
f

(∑n
i=1 pixif

′ (xi)∑n
i=1 pif

′ (xi)

)
≥

n∑
i=1

pif (xi) . (47)

Remark 7 The interested reader can obtain some particular inequalities of
interest by taking λr-convex functions with λr : [0,∞)→ [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
,

and h is as in Theorem 2. The details are omitted.
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