Lebesgue Integral Inequalities of Jensen Type for λ-Convex Functions

S. S. Dragomir

Abstract

Some Lebesgue integral inequalities of Jensen type for λ-convex functions defined on real intervals are given.

Key Words: Convex functions, Discrete inequalities, λ-Convex functions, Jensen's type inequalities
Mathematics Subject Classification 2010: 26D15; 25D10.

Introduction

$0.1 h$-Convex Functions

We recall here some concepts of convexity that are well known in the literature.

Let I be an interval in \mathbb{R}.

Definition 1 ([42]) We say that $f: I \rightarrow \mathbb{R}$ is a Godunova-Levin function or that f belongs to the class $Q(I)$ if f is non-negative and for all $x, y \in I$ and $t \in(0,1)$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t} f(x)+\frac{1}{1-t} f(y) . \tag{1}
\end{equation*}
$$

Some further properties of this class of functions can be found in [32], [33], [35], [48], 51] and [52]. Among others, its has been noted that nonnegative monotone and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions $f: C \subseteq X \rightarrow[0, \infty)$ where C is a convex subset of the real or complex linear space X and the inequality (11) is satisfied for any vectors $x, y \in C$ and $t \in(0,1)$. If the function $f: C \subseteq X \rightarrow \mathbb{R}$ is non-negative and convex, then it is of GodunovaLevin type.

Definition 2 ([35]) We say that a function $f: I \rightarrow \mathbb{R}$ belongs to the class $P(I)$ if it is nonnegative and for all $x, y \in I$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq f(x)+f(y) \tag{2}
\end{equation*}
$$

Obviously $Q(I)$ contains $P(I)$ and for applications it is important to note that also $P(I)$ contains all nonnegative monotone, convex and quasi convex functions, i. e. nonnegative functions satisfying

$$
\begin{equation*}
f(t x+(1-t) y) \leq \max \{f(x), f(y)\} \tag{3}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For some results on P-functions see [35] and [49], while for quasi convex functions the reader can consult [34].

If $f: C \subseteq X \rightarrow[0, \infty)$, where C is a convex subset of the real or complex linear space X, then we say that it is of P-type (or quasi-convex) if the inequality (2) (or (3)) holds true for $x, y \in C$ and $t \in[0,1]$.

Definition 3 ([7]) Let s be a real number, $s \in(0,1]$. A function $f:[0, \infty) \rightarrow$ $[0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and $t \in[0,1]$.
For some properties of this class of functions see [1], [2], [7, [8], 30, [31, [43], 45] and [54].

The concept of Breckner s-convexity can be similarly extended for functions defined on convex subsets of linear spaces.

It is well known that if $(X,\|\cdot\|)$ is a normed linear space, then the function $f(x)=\|x\|^{p}, p \geq 1$ is convex on X.

Utilising the elementary inequality $(a+b)^{s} \leq a^{s}+b^{s}$ that holds for any $a, b \geq 0$ and $s \in(0,1]$, we have for the function $g(x)=\|x\|^{s}$

$$
\begin{aligned}
g(t x+(1-t) y) & =\|t x+(1-t) y\|^{s} \leq(t\|x\|+(1-t)\|y\|)^{s} \\
& \leq(t\|x\|)^{s}+[(1-t)\|y\|]^{s} \\
& =t^{s} g(x)+(1-t)^{s} g(y)
\end{aligned}
$$

for any $x, y \in X$ and $t \in[0,1]$, which shows that g is Breckner s-convex on X.

In order to unify the above concepts for functions of real variable, S . Varošanec introduced the concept of h-convex function as follows.

Assume that I and J are intervals in $\mathbb{R},(0,1) \subseteq J$ and functions h and f are real non-negative functions defined in J and I, respectively.

Definition $4([58])$ Let $h: J \rightarrow[0, \infty)$ with h not identical to 0 . We say that $f: I \rightarrow[0, \infty)$ is an h-convex function if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) \tag{4}
\end{equation*}
$$

for all $t \in(0,1)$.
For some results concerning this class of functions see [58, 66, 46], [55], [53] and [57].

This concept can be extended for functions defined on convex subsets of linear spaces in the same way as above replacing the interval I be the corresponding convex subset C of the linear space X.

Now we can introduce another class of functions.
Definition 5 We say that the function $f: C \subseteq X \rightarrow[0, \infty)$ is of s -Godunova-Levin type, with $s \in[0,1]$, if

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t^{s}} f(x)+\frac{1}{(1-t)^{s}} f(y) \tag{5}
\end{equation*}
$$

for all $t \in(0,1)$ and $x, y \in C$.
We observe that for $s=0$ we obtain the class of P-functions while for $s=1$ we obtain the class of Godunova-Levin. If we denote by $Q_{s}(C)$ the class of s-Godunova-Levin functions defined on C, then we obviously have

$$
P(C)=Q_{0}(C) \subseteq Q_{s_{1}}(C) \subseteq Q_{s_{2}}(C) \subseteq Q_{1}(C)=Q(C)
$$

for $0 \leq s_{1} \leq s_{2} \leq 1$.
For different inequalities related to these classes of functions, see [1]-4], [6], [9]-[41], [44]-[46] and [49]-[57].

A function $h: J \rightarrow \mathbb{R}$ is said to be supermultiplicative if

$$
\begin{equation*}
h(t s) \geq h(t) h(s) \text { for any } t, s \in J \tag{6}
\end{equation*}
$$

If the inequality (6) is reversed, then h is said to be submultiplicative. If the equality holds in (6) then h is said to be a multiplicative function on J.

In 58] it has been noted that if $h:[0, \infty) \rightarrow[0, \infty)$ with $h(t)=$ $(x+c)^{\frac{p-1}{1}}$, then for $c=0$ the function h is multiplicative. If $c \geq 1$, then for $p \in(0,1)$ the function h is supermultiplicative and for $p>1$ the function is submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, then their product is alike. In particular, if h is supermultiplicative then its product with a power function $\ell_{r}(t)=t^{r}$ is also supermultiplicative.

We recall the following Hermite-Hadamard type inequality for h-convex functions from [53]:

Theorem 1 Let $f: I \rightarrow[0, \infty)$ be an integrable h-convex function on I and $a, b \in I$ with $a<b$. Then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(t) d t \tag{7}
\end{equation*}
$$

provided $\int_{0}^{1} h(t) d t<\infty$.

0.2λ-Convex Functions

We start with the following definition (see also [26]):
Definition 6 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function with the property that $\lambda(t)>0$ for all $t>0$. A mapping $f: C \rightarrow \mathbb{R}$ defined on convex subset C of a linear space X is called λ-convex on C if

$$
\begin{equation*}
f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right) \leq \frac{\lambda(\alpha) f(x)+\lambda(\beta) f(y)}{\lambda(\alpha+\beta)} \tag{8}
\end{equation*}
$$

for all $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$.
We observe that if $f: C \rightarrow \mathbb{R}$ is λ-convex on C, then f is h-convex on C with $h(t)=\frac{\lambda(t)}{\lambda(1)}, t \in[0,1]$.

If $f: C \rightarrow[0, \infty)$ is h-convex function with h supermultiplicative on $[0, \infty)$, then f is λ-convex with $\lambda=h$.

Indeed, if $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$ then

$$
\begin{aligned}
f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right) & \leq h\left(\frac{\alpha}{\alpha+\beta}\right) f(x)+h\left(\frac{\beta}{\alpha+\beta}\right) f(y) \\
& \leq \frac{h(\alpha) f(x)+h(\beta) f(y)}{h(\alpha+\beta)}
\end{aligned}
$$

The following proposition contains some properties of λ-convex functions [26].

Proposition 1 Let $f: C \rightarrow \mathbb{R}$ be a λ-convex function on C.
(i) If $\lambda(0)>0$, then we have $f(x) \geq 0$ for all $x \in C$;
(ii) If there exists $x_{0} \in C$ so that $f\left(x_{0}\right)>0$, then

$$
\lambda(\alpha+\beta) \leq \lambda(\alpha)+\lambda(\beta)
$$

for all $\alpha, \beta>0$, i.e. the mapping λ is subadditive on $(0, \infty)$.
(iii) If there exist $x_{0}, y_{0} \in C$ with $f\left(x_{0}\right)>0$ and $f\left(y_{0}\right)<0$, then

$$
\lambda(\alpha+\beta)=\lambda(\alpha)+\lambda(\beta)
$$

for all $\alpha, \beta>0$, i.e. the mapping λ is additive on $(0, \infty)$.

We have the following result providing many examples of subadditive functions $\lambda:[0, \infty) \rightarrow[0, \infty)$.

Theorem $2([26])$ Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ a power series with nonnegative coefficients $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and convergent on the open disk $D(0, R)$ with $R>0$ or $R=\infty$. If $r \in(0, R)$ then the function $\lambda_{r}:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\begin{equation*}
\lambda_{r}(t):=\ln \left[\frac{h(r)}{h(r \exp (-t))}\right] \tag{9}
\end{equation*}
$$

is nonnegative, increasing and subadditive on $[0, \infty)$.
We have the following fundamental examples of power series with positive coefficients

$$
\begin{align*}
& h(z)=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}, z \in D(0,1) \tag{10}\\
& h(z)=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}=\exp (z) \quad z \in \mathbb{C}, \\
& h(z)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} z^{2 n}=\cosh z, z \in \mathbb{C} ; \\
& h(z)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} z^{2 n+1}=\sinh z, z \in \mathbb{C} ; \\
& h(z)=\sum_{n=1}^{\infty} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}, z \in D(0,1) .
\end{align*}
$$

Other important examples of functions as power series representations with positive coefficients are:

$$
\begin{aligned}
h(z) & =\sum_{n=1}^{\infty} \frac{1}{2 n-1} z^{2 n-1}=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right), \quad z \in D(0,1) \\
h(z) & =\sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}(2 n+1) n!} z^{2 n+1}=\sin ^{-1}(z), \quad z \in D(0,1) \\
h(z) & =\sum_{n=1}^{\infty} \frac{1}{2 n-1} z^{2 n-1}=\tanh ^{-1}(z), \quad z \in D(0,1) \\
h(z) & ={ }_{2} F_{1}(\alpha, \beta, \gamma, z)=\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha) \Gamma(n+\beta) \Gamma(\gamma)}{n!\Gamma(\alpha) \Gamma(\beta) \Gamma(n+\gamma)} z^{n}, \alpha, \beta, \gamma>0 \\
z & \in D(0,1)
\end{aligned}
$$

where Γ is Gamma function.

Remark 1 Now, if we take $h(z)=\frac{1}{1-z}, z \in D(0,1)$, then

$$
\begin{equation*}
\lambda_{r}(t)=\ln \left[\frac{1-r \exp (-t)}{1-r}\right] \tag{12}
\end{equation*}
$$

is nonnegative, increasing and subadditive on $[0, \infty)$ for any $r \in(0,1)$.
If we take $h(z)=\exp (z), z \in \mathbb{C}$ then

$$
\begin{equation*}
\lambda_{r}(t)=r[1-\exp (-t)] \tag{13}
\end{equation*}
$$

is nonnegative, increasing and subadditive on $[0, \infty)$ for any $r>0$.
Corollary 1 ([26]) Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with nonnegative coefficients $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and convergent on the open disk $D(0, R)$ with $R>0$ or $R=\infty$ and $r \in(0, R)$. For a mapping $f: C \rightarrow \mathbb{R}$ defined on convex subset C of a linear space X, the following statements are equivalent:
(i) The function f is λ_{r}-convex with $\lambda_{r}:[0, \infty) \rightarrow[0, \infty)$,

$$
\lambda_{r}(t):=\ln \left[\frac{h(r)}{h(r \exp (-t))}\right] ;
$$

(ii) We have the inequality

$$
\begin{equation*}
\left[\frac{h(r)}{h(r \exp (-\alpha-\beta))}\right]^{f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right)} \leq\left[\frac{h(r)}{h(r \exp (-\alpha))}\right]^{f(x)}\left[\frac{h(r)}{h(r \exp (-\beta))}\right]^{f(y)} \tag{14}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$.
(iii) We have the inequality

$$
\begin{equation*}
\frac{[h(r \exp (-\alpha))]^{f(x)}[h(r \exp (-\beta))]^{f(y)}}{[h(r \exp (-\alpha-\beta))]^{f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right)}} \leq[h(r)]^{f(x)+f(y)-f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right)} \tag{15}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$.
Remark 2 We observe that, in the case when

$$
\lambda_{r}(t)=r[1-\exp (-t)], t \geq 0,
$$

the function f is λ_{r}-convex on convex subset C of a linear space X iff

$$
\begin{equation*}
f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right) \leq \frac{[1-\exp (-\alpha)] f(x)+[1-\exp (-\beta)] f(y)}{1-\exp (-\alpha-\beta)} \tag{16}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$.
We observe that this definition is independent on $r>0$.

The inequality $\sqrt{16)}$ is equivalent to

$$
\begin{equation*}
f\left(\frac{\alpha x+\beta y}{\alpha+\beta}\right) \leq \frac{\exp (\beta)[\exp (\alpha)-1] f(x)+\exp (\alpha)[\exp (\beta)-1] f(y)}{\exp (\alpha+\beta)-1} \tag{17}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ with $\alpha+\beta>0$ and $x, y \in C$.

We have the following Jensen inequality for the Riemann integral [28]:

Theorem 3 Let $u:[a, b] \rightarrow[m, M]$ be a Riemann integrable function on $[a, b]$. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function with the property that $\lambda(t)>0$ for all $t>0$ and the function $f:[m, M] \rightarrow[0, \infty)$ is λ-convex and Riemann integrable on the interval $[m, M]$. If the following limit exists

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\lambda(t)}{t}=k \in(0, \infty) \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
f\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t\right) \leq \frac{k}{\lambda(b-a)} \int_{a}^{b} f(u(t)) d t \tag{19}
\end{equation*}
$$

The following weighted version of Jensen inequality for the Riemann integral [28] also holds.

Theorem 4 Let $u, w:[a, b] \rightarrow[m, M]$ be Riemann integrable functions on $[a, b]$ and $w(t) \geq 0$ for any $t \in[a, b]$ with $\int_{a}^{b} w(t) d t>0$. Let $\lambda:[0, \infty) \rightarrow$ $[0, \infty)$ be a function with the property that $\lambda(t)>0$ for all $t>0$ and the function $f:[m, M] \rightarrow[0, \infty)$ is λ-convex and Riemann integrable on the interval $[m, M]$. If the following limit exists, is finite and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t}{\lambda(t)}=\ell>0 \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
f\left(\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) u(t) d t\right) \leq \ell \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} \lambda(w(t)) f(u(t)) d t \tag{21}
\end{equation*}
$$

Motivated by the above results in this paper we establish some Jensen type inequalities for the general Lebesgue integral.

1 Some Results for Differentiable Functions

If we assume that the function $f: I \rightarrow[0, \infty)$ is differentiable on the interior of I, denoted by \check{I}, then we have the following "gradient inequality" that will play an essential role in the following.

Lemma 1 Let $\lambda:(0, \infty) \rightarrow(0, \infty)$ be a function such that the right limit

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\lambda(t)}{t}=k \in(0, \infty) \tag{22}
\end{equation*}
$$

exists and is finite, and the left derivative in 1 denoted by λ_{-}^{\prime} (1) exists and is finite.

If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ-convex, then

$$
\begin{equation*}
k f(x)-\lambda_{-}^{\prime}(1) f(y) \geq \lambda(1) f^{\prime}(y)(x-y) \tag{23}
\end{equation*}
$$

for any $x, y \in I$ with $x \neq y$.
Proof. Since f is λ-convex on I, then

$$
\frac{\lambda(t) f(x)+\lambda(1-t) f(y)}{\lambda(1)} \geq f(t x+(1-t) y)
$$

for any $t \in(0,1)$ and for any $x, y \in I$, which is equivalent to

$$
\lambda(t) f(x)+[\lambda(1-t)-\lambda(1)] f(y) \geq \lambda(1)[f(t x+(1-t) y)-f(y)]
$$

and by dividing by $t>0$ we get

$$
\begin{equation*}
\frac{\lambda(t)}{t} f(x)+\left[\frac{\lambda(1-t)-\lambda(1)}{t}\right] f(y) \geq \lambda(1) \frac{f(t x+(1-t) y)-f(y)}{t} \tag{24}
\end{equation*}
$$

for any $t \in(0,1)$.
Now, since f is differentiable on $y \in I$, then we have

$$
\begin{align*}
\lim _{t \rightarrow 0+} \frac{f(t x+(1-t) y)-f(y)}{t} & =\lim _{t \rightarrow 0+} \frac{f(y+t(x-y))-f(y)}{t} \tag{25}\\
& =(x-y) \lim _{t \rightarrow 0+} \frac{f(y+t(x-y))-f(y)}{t(x-y)} \\
& =(x-y) f^{\prime}(y)
\end{align*}
$$

for any $x \in \stackrel{\circ}{I}$ with $x \neq y$.
Also we have

$$
\begin{align*}
\lim _{t \rightarrow 0+} \frac{\lambda(1-t)-\lambda(1)}{t} & =\lim _{s \rightarrow 1-} \frac{\lambda(s)-\lambda(1)}{1-s} \tag{26}\\
& =-\lim _{s \rightarrow 1-} \frac{\lambda(s)-\lambda(1)}{s-1}=-\lambda_{-}^{\prime}
\end{align*}
$$

Taking the limit over $t \rightarrow 0+$ in (24) and utilizing (25) and (26) we get the desired result (23).

Remark 3 If we assume that

$$
\begin{equation*}
k \geq \lambda_{-}^{\prime}(1) \tag{27}
\end{equation*}
$$

then the inequality (23) also holds for $x=y$.
Remark 4 If $\lambda:[0, \infty) \rightarrow[0, \infty)$ with $\lambda(0)=0$ then the condition (22) is equivalent to the fact that the right derivative

$$
\lambda_{+}^{\prime}(0)=\lim _{t \rightarrow 0+} \frac{\lambda(t)}{t}
$$

exists, is finite and $\lambda_{+}^{\prime}(0)=k$.
In this situation the inequality (23) becomes for $\lambda_{+}^{\prime}(0)>0$

$$
\begin{equation*}
\lambda_{+}^{\prime}(0) f(x)-\lambda_{-}^{\prime}(1) f(y) \geq \lambda(1) f^{\prime}(y)(x-y) \tag{28}
\end{equation*}
$$

for any $x, y \in \stackrel{\circ}{I}$ with $x \neq y$.
If the function λ is subadditive on $[0, \infty)$ and has finite lateral derivatives with $\lambda_{+}^{\prime}(0)>0$, then

$$
\lambda(t)+\lambda(1-t) \geq \lambda(1), t \in(0,1)
$$

i.e.

$$
\begin{equation*}
\frac{\lambda(t)}{t} \geq \frac{\lambda(1)-\lambda(1-t)}{t}, t \in(0,1) \tag{29}
\end{equation*}
$$

Taking the limit over $t \rightarrow 0+$ in (29) we get

$$
\lambda_{+}^{\prime}(0) \geq \lambda_{-}^{\prime}(1)
$$

therefore the inequality (28) also holds for $x=y$.
We have the following result.

Corollary 2 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=$ 0 and having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$.

If the function $f: I \rightarrow[0, \infty)$ is differentiable on I and λ-convex, then

$$
\begin{equation*}
\lambda_{+}^{\prime}(0) f(x)-\lambda_{-}^{\prime}(1) f(y) \geq \lambda(1) f^{\prime}(y)(x-y) \tag{30}
\end{equation*}
$$

for any $x, y \in \stackrel{\circ}{I}$.
As examples of such functions we have:

Proposition 2 Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ a power series with nonnegative coefficients $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and convergent on the open disk $D(0, R)$ with $R>0$ or $R=\infty$ and $r \in(0, R)$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ_{r}-convex with $\lambda_{r}:[0, \infty) \rightarrow[0, \infty)$,

$$
\lambda_{r}(t):=\ln \left[\frac{h(r)}{h(r \exp (-t))}\right]
$$

then

$$
\begin{equation*}
\frac{r h^{\prime}(r)}{h(r)} f(x)-\frac{r e^{-1} h^{\prime}\left(r e^{-1}\right)}{h\left(r e^{-1}\right)} f(y) \geq \ln \left[\frac{h(r)}{h\left(r e^{-1}\right)}\right] f^{\prime}(y)(x-y) \tag{31}
\end{equation*}
$$

for any $x, y \in \stackrel{I}{I}$.
Proof. We know that λ_{r} is differentiable on $(0, \infty)$ and

$$
\lambda_{r}^{\prime}(t):=\frac{r \exp (-t) h^{\prime}(r \exp (-t))}{h(r \exp (-t))}
$$

for $t \in(0, \infty)$, where

$$
h^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1} .
$$

Since $\lambda_{r}(0)=0$, then

$$
k=\lim _{s \rightarrow 0+} \frac{\lambda(s)}{s}=\lambda_{+}^{\prime}(0)=\frac{r h^{\prime}(r)}{h(r)}>0 \text { for } r \in(0, R) .
$$

Also

$$
\lambda_{r}^{\prime}(1)=\frac{r e^{-1} h^{\prime}\left(r e^{-1}\right)}{h\left(r e^{-1}\right)}
$$

and

$$
\lambda_{r}(1)=\ln \left[\frac{h(r)}{h\left(r e^{-1}\right)}\right] .
$$

Applying Corollary 2 we deduce the desired result (31).
Corollary 3 If the function $f: I \rightarrow[0, \infty)$ is differentiable on I and λ convex with $\lambda:[0, \infty) \rightarrow[0, \infty), \lambda(t)=1-\exp (-t)$, then we have

$$
\begin{equation*}
e f(x)-f(y) \geq(e-1) f^{\prime}(y)(x-y) \tag{32}
\end{equation*}
$$

for any $x, y \in \stackrel{\circ}{I}$.
It follows by Proposition 2 observing that $\lambda^{\prime}(t)=\exp (-t), t>0$.

2 Jensen Type Inequalities

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for $\mu-$ a.e.(almost every) $x \in \Omega$, consider the Lebesgue space
$L_{w}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f\right.$ is μ-measurable and $\left.\int_{\Omega} w(x)|f(x)| d \mu(x)<\infty\right\}$.
For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(x) d \mu(x)$.
Theorem 5 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=0$ and having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on I and λ-convex, then for any $u: \Omega \rightarrow$ $[m, M] \subset I$ so that $f \circ u, u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. (μ-almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$ we have

$$
\begin{equation*}
\int_{\Omega} w \cdot(f \circ u) d \mu \geq \frac{\lambda_{-}^{\prime}(1)}{\lambda_{+}^{\prime}(0)} f\left(\int_{\Omega} w u d \mu\right) . \tag{33}
\end{equation*}
$$

Proof. Observe that, since $u: \Omega \rightarrow[m, M]$ and $u \in L_{w}(\Omega, \mu)$, then $\int_{\Omega} w u d \mu \in[m, M]$. Applying Corollary 2 we have

$$
\begin{align*}
& \lambda_{+}^{\prime}(0) f(u(t))-\lambda_{-}^{\prime}(1) f\left(\int_{\Omega} w u d \mu\right) \tag{34}\\
& \geq \lambda(1) f^{\prime}\left(\int_{\Omega} w u d \mu\right)\left(u(t)-\int_{\Omega} w u d \mu\right)
\end{align*}
$$

for any $t \in \Omega$.
Multiplying (34) by $w(t) \geq 0$ for μ-almost every $t \in \Omega$ we get

$$
\begin{align*}
& \lambda_{+}^{\prime}(0) w(t) f(u(t))-\lambda_{-}^{\prime}(1) f\left(\int_{\Omega} w u d \mu\right) w(t) \tag{35}\\
& \geq \lambda(1) f^{\prime}\left(\int_{\Omega} w u d \mu\right)\left(w(t) u(t)-\left(\int_{\Omega} w u d \mu\right) w(t)\right)
\end{align*}
$$

for μ-almost every $t \in \Omega$.
Integrating (35) over t on Ω we get

$$
\begin{align*}
& \lambda_{+}^{\prime}(0) \int_{\Omega} w(t) f(u(t)) d \mu(t)-\lambda_{-}^{\prime}(1) f\left(\int_{\Omega} w u d \mu\right) \int_{\Omega} w(t) d \mu(t) \tag{36}\\
& \geq \lambda(1) f^{\prime}\left(\int_{\Omega} w u d \mu\right) \\
& \times\left(\int_{\Omega} w(t) u(t) d \mu(t)-\left(\int_{\Omega} w u d \mu\right) \int_{\Omega} w(t) d \mu(t)\right)
\end{align*}
$$

and since $\int_{\Omega} w(t) d \mu(t)=1$, we deduce the desired result (33).

The following inequality of Hermite-Hadamard type holds:
Corollary 4 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=$ 0 and having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{+}{I}$ and λ-convex, then for any $[a, b] \subset \stackrel{\circ}{I}$ we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq \frac{\lambda_{-}^{\prime}(1)}{\lambda_{+}^{\prime}(0)} f\left(\frac{a+b}{2}\right) . \tag{37}
\end{equation*}
$$

It follows from Theorem 5 by taking $\Omega=[a, b], u:[a, b] \rightarrow[a, b], u(t)=$ $t, w(t)=\frac{1}{b-a}$ and $d \mu=d t$ being the Lebesgue measure on the interval $[a, b]$.

The inequality (37) provides other lower bound for the integral mean than the first inequality in (7). Since for h-convexity, $h(0)$ may not be defined, the lower bounds from (37) and (7) cannot be compared in general.

If we consider the discrete measure, then we have:
Corollary 5 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=$ 0 and having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on I I and λ-convex, then for any $x_{i} \in I$ ind $p_{i} \geq 0, i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$ we have

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \frac{\lambda_{-}^{\prime}(1)}{\lambda_{+}^{\prime}(0)} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)
$$

Remark 5 Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with nonnegative coefficients $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and convergent on the open disk $D(0, R)$ with $R>0$ or $R=\infty$ and $r \in(0, R)$. Assume that the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ_{r}-convex with $\lambda_{r}:[0, \infty) \rightarrow[0, \infty)$,

$$
\lambda_{r}(t):=\ln \left[\frac{h(r)}{h(r \exp (-t))}\right] .
$$

If $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ_{r}-convex, then for any $u: \Omega \rightarrow$ $[m, M] \subset I$ so that $f \circ u, u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. (μ-almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$ we have

$$
\begin{equation*}
\int_{\Omega} w \cdot(f \circ u) d \mu \geq \frac{e^{-1} h^{\prime}\left(r e^{-1}\right) h(r)}{h\left(r e^{-1}\right) h^{\prime}(r)} f\left(\int_{\Omega} w u d \mu\right) . \tag{38}
\end{equation*}
$$

Remark 6 If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ-convex with $\lambda:[0, \infty) \rightarrow[0, \infty), \lambda(t)=1-\exp (-t)$, then for any $[a, b] \subset \stackrel{I}{I}$ we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq \frac{1}{e} f\left(\frac{a+b}{2}\right) . \tag{39}
\end{equation*}
$$

Also, for any $x_{i} \in \stackrel{\circ}{I}$ and $p_{i} \geq 0, i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$ we have

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \frac{1}{e} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) . \tag{40}
\end{equation*}
$$

Recall Slater's inequality for differentiable convex functions [56]:
Lemma 2 Let $f: I \rightarrow \mathbb{R}$ be a nondecreasing (nonincreasing) differentiable convex function on $I, x_{i} \in I, p_{i} \geq 0$ with $P_{n}=\sum_{i=1}^{n} p_{i}>$ 0 and assume that $\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \neq 0$. Then one has the inequality

$$
\begin{equation*}
f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)}\right) \geq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) . \tag{41}
\end{equation*}
$$

As shown in [22, pp. 129-130], the monotonicity condition in Lemma 2 can be weakened by assuming that

$$
\frac{\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)} \in I .
$$

We can state the following result that is similar to Slater's inequality:
Theorem 6 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=0$ and having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ-convex, then for any $u: \Omega \rightarrow$ $[m, M] \subset I$ so that $f \circ u, u \cdot\left(f^{\prime} \circ u\right), f^{\prime} \circ u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. (μ-almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$ and

$$
\frac{\int_{\Omega} w u \cdot\left(f^{\prime} \circ u\right) d \mu}{\int_{\Omega} w \cdot\left(f^{\prime} \circ u\right) d \mu} \in[m, M],
$$

we have

$$
\begin{equation*}
\frac{\lambda_{+}^{\prime}(0)}{\lambda_{-}^{\prime}(1)} f\left(\frac{\int_{\Omega} w u \cdot\left(f^{\prime} \circ u\right) d \mu}{\int_{\Omega} w \cdot\left(f^{\prime} \circ u\right) d \mu}\right) \geq \int_{\Omega} w \cdot(f \circ u) d \mu \tag{42}
\end{equation*}
$$

Proof. Since the function $f: I \rightarrow[0, \infty)$ is differentiable on I and λ-convex, then by (30) we have

$$
\begin{equation*}
\lambda_{+}^{\prime}(0) f(x)-\lambda_{-}^{\prime}(1) f(u(t)) \geq \lambda(1) f^{\prime}(u(t))(x-u(t)) \tag{43}
\end{equation*}
$$

for any $x \in I$ and $t \in \Omega$.
If we multiply by $w(t) \geq 0$ and integrate we get

$$
\begin{align*}
& \lambda_{+}^{\prime}(0) f(x)-\lambda_{-}^{\prime}(1) \int_{\Omega} w(t) f(u(t)) d \mu(t) \tag{44}\\
& \geq \lambda(1) x \int_{\Omega} w(t) f^{\prime}(u(t)) d \mu(t)-\int_{\Omega} w(t) f^{\prime}(u(t)) u(t) d \mu(t),
\end{align*}
$$

for any $x \in \stackrel{I}{I}$.
Since $\int_{\Omega} w(t) f^{\prime}(u(t)) d \mu(t) \neq 0$ and

$$
x_{0}:=\frac{\int_{\Omega} w(t) f^{\prime}(u(t)) u(t) d \mu(t)}{\int_{\Omega} w(t) f^{\prime}(u(t)) d \mu(t)} \in[m, M],
$$

then by taking $x=x_{0}$ in (44) we get the desired result (42).
The following Hermite-Hadamard type inequality holds:
Corollary 6 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=$ 0 having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function f : $I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ-convex, and for $[a, b] \subset \stackrel{\circ}{I}$ we have

$$
\begin{equation*}
\frac{\int_{a}^{b} t f^{\prime}(t) d t}{f(b)-f(a)}=\frac{b f(b)-a f(a)-\int_{a}^{b} f(t) d t}{f(b)-f(a)} \in[a, b] \tag{45}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\frac{\lambda_{+}^{\prime}(0)}{\lambda_{-}^{\prime}(1)} f\left(\frac{b f(b)-a f(a)-\int_{a}^{b} f(t) d t}{f(b)-f(a)}\right) \geq \frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{46}
\end{equation*}
$$

The following discrete inequality also holds:
Corollary 7 Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a subadditive function with $\lambda(0)=$ 0 having the lateral derivative $\lambda_{+}^{\prime}(0), \lambda_{-}^{\prime}(1) \in(0, \infty)$. If the function f : $I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and λ-convex, then for any $x_{i} \in \stackrel{\circ}{I}$ and $p_{i} \geq 0, i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$ and

$$
\frac{\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)} \in \check{I}
$$

we have

$$
\begin{equation*}
\frac{\lambda_{+}^{\prime}(0)}{\lambda_{-}^{\prime}(1)} f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)}{\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)}\right) \geq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{47}
\end{equation*}
$$

Remark 7 The interested reader can obtain some particular inequalities of interest by taking λ_{r}-convex functions with $\lambda_{r}:[0, \infty) \rightarrow[0, \infty)$,

$$
\lambda_{r}(t):=\ln \left[\frac{h(r)}{h(r \exp (-t))}\right]
$$

and h is as in Theorem 园. The details are omitted.
Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro,and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[6] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869-1877.
[7] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[8] W. W. Breckner and G. Orbán, Continuity properties of rationally sconvex mappings with values in an ordered topological linear space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii +92 pp.
[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of AnalyticComputational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32 (2) (1999), 697-712.
[12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3 (1) (1999), 127-135.
[14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. \& Appl., 4 (1) (2001), 33-40.
[17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5 (1) (2001), 35-45.
[18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure \& Appl. Math., 3(5) (2002), Art. 68.
[19] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[22] S. S. Dragomir, A survey on Cauchy-Buniakowski-Schwarz's type discrete inequality, J. Ineq. Pure \& Appl. Math., 4 (2003), Issue 3, Article 63, [Online: http://jipam.vu.edu.au/article.php?sid=301].
[23] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16 (2) (2003), 373-382.
[24] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[25] S. S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (2006), pp. 471-478.
[26] S. S. Dragomir, Inequalities of Hermite-Hadamard type for λ-convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 13, 18 pp. [Online https://rgmia.org/papers/v17/v17a13.pdf].
[27] S. S. Dragomir, Discrete inequalities of Jensen type for λ-convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014). Art. 15. 20 pp . [Online https://rgmia.org/papers/v17/v17a15.pdf].
[28] S. S. Dragomir, Integral inequalities of Jensen type for λ-convex functions, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 18, 17 pp. [Online https://rgmia.org/papers/v17/v17a18.pdf].
[29] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[30] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[31] S. S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[32] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), no. 1, $1-9$.
[33] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[34] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[35] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[36] S. S. Dragomir, J. Pečarić and L. Persson, Properties of some functionals related to Jensen's inequality, Acta Math. Hungarica, 70 (1996), 129143.
[37] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[38] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[39] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[40] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40(3) (1998), 245-304.
[41] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365-369.
[42] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[43] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[44] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13 (2010), no. 1, 1-32.
[45] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[46] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473-1482.
[47] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[48] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
[49] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[50] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
[51] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[52] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[53] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2 (2008), no. 3, 335-341.
[54] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.
[55] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.
[56] M. S. Slater, A companion inequality to Jensen's inequality, J. Approx. Theory, 32 (1984), 160-166.
[57] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
[58] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
Silvestru Sever Dragomir
Mathematics, College of Engineering 83 Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
School of Computer Science ξ^{G} Applied Mathematics,
University of the Witwatersrand, Private Bag 3
Johannesburg 2050, South Africa.
sever.dragomir@vu.edu.au

Please, cite to this paper as published in
Armen. J. Math., V. 10, N. 8(2018), pp. 119

