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Abstract. In this paper we discuss the uniqueness property of
a summation method for multiple series with respect to Vilenkin
and generalized Haar systems. It is proved that if the multiple
series with respect to these systems is a.e. summable by that
method to an integrable function on [0, 1)¢ and satisfies an extra
condition, then it is the Fourier series of this function.
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Introduction

First we recall the definitions of Vilenkin and generalized Haar systems (see
). Let {pr}, pr > 2, k € N, be a sequence of natural numbers and
mo = 1, mp = my_1pg, k € N. Then every nonnegative integer n is uniquely
represented by the series

n= anmk_l, where mny € {0,1,...,pr — 1}, k€ N.
k=1

Every point x € [0,1) can be represented in the following form:

>z
mzzm_];’ where 3, € {0,1,...,px — 1}, k €N,
k=1

where we assume that for infinitely many k& € N, xp # pp — 1.
Let n be a natural number of the form n = my + r(ppr1 — 1) + s — 1,
where 0 <r <my —1,1<s < pgy1 — 1. Denote
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The system {x,(z)}22, is called the generalized Haar system generated by
the sequence {pi}, k € N. When p; = 2 for all k € N, the generalized Haar
system coincides with the classical Haar system.

The functions

are called generalized Rademacher functions.
The Vilenkin system {W,(x)}32, is defined as follows:

Up(z) =1 and W,(x):= H R*(x) = exp (ZM'Z nkxk) :

1 Pk

Note that in the case pr = 2, £ € N, Vilenkin system coincides with the
Walsh system. These systems were defined in 1947 by N. Vilenkin [I] and
since then are investigated by many mathematicians. When sup{p;} = 400,
Vilenkin and generalized Haar systems are essentially different from the
Walsh and Haar systems, correspondingly.

In the sequel, writing {f,}2°, we mean either the generalized Haar sys-
tem or Vilenkin system.

In [2] and [3] a new method of summation is defined for Vilenkin and
generalized Haar systems. We denote

.
jk::{{i j+ ): j:(),l,...,mk—l}, K=0,1,2,.... (2)

mk’ mi

For the interval J € Ji, k € N, we denote by J the interval from Ti-1,
which contains J. The intervals (J);, (I € Z) are defined in the following
way:

L (No=J (€T (IhcC,
2. the right endpoint of (J); coincides with the left endpoint of (J);41,
with the convention that the endpoints of J are identified, i.e. if the

—1
, then the left endpoint of (.J);41 is iy
mpg_—1 Mme—1

right endpoint of (J); is

For each interval J € J; and natural number ¢ < % we denote

()= U (s (3)
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my (|l

= 5 (mg) e m<a (@)
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It is clear that (J)" = (J)o = J and

1
A0 =mLio), [ Poi= [ GPad=1 forayg<,
0 (J)a—1t

(5)
where by I; we denote the characteristic function of J.
For each natural number k and for each x € [0,1) denote by I, the

interval from Jj, which contains the point x. Sometimes, when J = I} ,,

instead of gpf,q) we use the notation goé?i, ie. gp,(fi(t) = cpgz)z (t).

Taking into account the definition of the system {f,(x)}, it is clear that
for each gp,(gi we have

1
(fn,soé’fi) = / fn(t)@gi(t)dt =0, when n >m;.
0
Therefore, for each series

Z%zfn(x)’ (6)

are well-defined. Let S,,(x) be the partial sum of the series (6], i.e.

m

Sm(x) == Z ap fr ().

n=0

It is obvious that for any k € N and ¢ < py/2

1
orn (1) = S _1(2) and oy (x) = / S (D ()t > k. (7)
0
Denote

S*(x) :=sup | S ()], and  o"(x) = Sl?p lokq(2)]. (8)
m 7q
We will denote by mesy(E) the Lebesgue measure of E in R% In the case
when d = 1 we will write mes(F) instead of mes; (F).
The following two theorems were announced in [3] and proved in [4] and

[5].
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Theorem 1 There exists a constant C' > 0, independent both of coefficients
{a,} and the sequence {py}, such that

o*(x) < C-S*(x) for any x €10,1).
In addition, if the series @ converges to S(x) at a point x, then

klirn ok q(x) = S(x).

Theorem 2 If the sums oy 4(x) converge in measure to a function f(x), as
k — 00, and for some increasing sequence X\, — oo the condition

lim A\, -mes{z €[0,1): o"(z) >\, } =0 (9)

v—00

holds, then for every natural number n,

an = lm [ [f(2)]x, fn(x)dr,

V—00 0

where
_ Joglx), i |g(x)| <A,
L9l '_{ 0, if |g(x)]> A\

The next theorem is proved in [2], Theorems 2 and 3.

Theorem 3 If the series @ is the Fourier series of an integrable function
f, then

lim oy 4(x) = f(x) a.e. on [0,1)

k—o0
and
lim A-mes{z €[0,1): o"(x) > A\} =0.
A—00
Uniqueness theorems for classical series by Vilenkin and generalized Haar
systems, generated by a bounded sequence {p;}, when the majorant of par-
tial sums satisfies some condition, were considered in [6] and [7]. A similar
theorem for the multiple Haar system was proved in [§]. For the trigono-
metric system it is proved in [9] that if a multiple trigonometric series is
summable almost everywhere by the Riemann’s method to an integrable
function f and satisfies an additional condition similar to @, then it is the
Fourier series of f.
In this paper we consider analogous questions for multiple series by
Vilenkin and generalized Haar systems generated by an arbitrary sequence

{Pn}-

Let Ny be the set of non-negative integers. For any x = (z1,xa,...,24) €
[0,1)d, n — (nl,ng,...,nd) S Ng, k = (kfl,kg,...,kd) S Nd and q =
(qla q2, - - >qd) € Nd7 (2qz < Pk, L= 17 27 s 7d>7 denote

fn(x) = fm(xl)fm(xQ) T fnd('rd)v
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(far i) -—anl,sol(;fﬁxz H / For )% (t:)dt,
=1

and consider the following series
Z anfn(x) = Z anfm(xl)fm(x)"'fnd(xd)' (10)
neNg neNd

We denote

Oka(X) =Y anlfa, Pl).

neNd
In this paper, writing k — oo we mean min{k;} — oo.
The following theorem holds:

Theorem 4 If the sums oy q(x) of converge a.e. on the cube [0,1)%
an integrable function f(x) as k — oo, and

lim A - mesd{x c[0,1)%: sup|oyq(x)| > /\} =0,

A—00 k,q

then the series is the Fourier series of f with respect to the system
{fu}, ie.

an = f (%) fa(x)dx
[0,1)4
Theorem [ follows from the more general theorem [5] Before formulating it,
we introduce some notations. Suppose that

S aulr.s) fulx)

is a multiple series with respect to a system {f,,}, where coefficients a,(r, s)
depend onr € R C N™ and s € S C R!. We denote

Okq(T,S,X) = Z an(r,s)(fn,gofg})() and o0"(x):= sup |okq(r,s,x)|.

. k
,q,r,s
For any posilive number A\ we set

Ey:={xec[0,)%: o*(x) > A}

Theorem 5 If the sums oy 4(r,s,X) converge a.e. on the cube [0,1)¢ to an
integrable function f(x) as k — oo and v — oo, (i.e. min{ky, ko, ..., kq,
T1yeeo T} — 00), and

lim A - mesy(F)) =0,

A—00

then for any n € N,

lim ay,(r,s) = f(x) fa(x)dx

r—oo [071)d
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1 Auxiliary Results

The following lemma was proved in [5], Lemma 3.

Lemma 1 Letl € Js and E C I. If

1
20ps+1

mes(F) < mes(]),

then for any v > s the characteristic function of I can be represented in the
form

2 3" angli(t) Z Y Barl )+ D vapd (1), (1)
k=s+1 Aeql k=s+1 AeQ? AeQ?
where Qf. C Ty, 1 = 1,2, 3, with the following properties:
an >0, Ba>0, ya>0, (12)

1
(supp(go(AqA))ﬂE) > émes(supp(wgm))), if Ae Q,lc, k=s+1,...,v, (13)

—1

1
mes(supp(gp )ﬂE) > %mes(supp(gpg))), if A€ QY k=s+1,...,v
(14)

and if A € Q. for some k and i, then
1
mes(ANE) < §mes(A).

The next lemma was proved in [9], Lemma 1.

Lemma 2 Let d be a natural number larger than 1 and let p(x) be a non-
negative function defined on some d-dimensional cube [a,b]?. If

liminf A - mesq{x = (21, 79,...,24) € [0,1]*: ©(x) > A} =0,

A—4o00

then

mesy_ { (2, ...,zq) € [0,1]*

liminf A - mes{z; € [0,1] : ¢(x) > A} = O} =(b—a)"

A—~00

Lemma 3 Suppose that the coefficients of the series @ depend on some
parameter r € R (i.e. a, = a,(r)),

Opq(T, 1) Zan fn,gpk a:) and  o*(x):= iup |ok (1, 7).
7q7r
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If for some positive number A and some k € N the inequality

mes{z € [0,1): o"(x) > A} < mik (15)

holds, then for any n < my and r € R the coefficients a,(r) satisfy

la,(r)] < A

Proof. Suppose for some A > 0 and k£ € N the inequality holds. Note
that for any fixed r the function oy 1(r,z) = Sp,—1(r,2) (see (7)) is con-

stant on each interval J € J; with length —. Therefore, according to the
my
inequality and

1
mes{x € [0,1) : op1(r,x) > A} <mes{z €[0,1): o"(x) > A} < o
k

we obtain that

mg—1

(1) f ()

n=0

loka(r,x)| = <A forallz€[0,1) and r € R.

Since f,(x) is an orthonormal system on [0,1), then in view of the last
inequality, we obtain that for any n < m; and r € R the following inequality
holds:

la,(r)] < A

O

In [2], for any integrable function f on [0, 1), the following function is defined:

1
* = _— t)|dt
M (f,x) = sup s (J)7 /(J)q £ (B)]dt,
0<q< B
and it is proved that
. 3

mes{z : M*(f,2) > A} < I £l (16)
lim A-mes{z: M*(f,z) > A} =0. (17)

A—00
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2 Proof of the main results

We prove Theorem [b| by mathematical induction. The induction is carried
out over the dimension d.
First let us separately state and prove the theorem in the case d = 1.
Suppose that

o0

> an(r.s) fulx)

n=0

is a series with respect to the system {f,,}, where coefficients a,(r,s) depend
onr € RCN"and s e S CR. Denote

Okq(T,s,7) Zan r,s) fn,ap ) and o*(z) = sup |og4(r,s, x)|.
k,q,r,s

Theorem 6 If the sums oy 4(r,s, x) converge a.e. on the interval [0, 1) to an

integrable function f(z) as k — 0o and r — oo, (i.e. min{k,ry,... ,r,} —
o0 ), and
/\hm A-mes{x € [0,1): o*(x) > A} =0, (18)
—00

then for any n € Ny,

lim a, (r, 5) = /f @)

r—o0

Proof. First consider the case when f(z) = 0.
Suppose the sums oy, ,(r, s, ) converge a.e. to f(z) = 0 and the condition

holds.

Let n be a non-negative integer and ¢ be the smallest natural number for
which n < m;. It is clear that f,(x) is constant on each interval I, € 7.
Denote by f,(1,) the value of f,, on the interval I,. Notice that

a,(r,s) :/01 Sm;—1(r,8, 1) fn t)dt = an u /1 mi—1(r, 8, t)dt,

where
(r,s,x) E an(r,s) fn(x

Therefore, in order to prove theorem |§] in the case f(x) = 0, it is sufficient
to prove that for any natural number ¢ and for each I € J;, we have

lim [ Sp,—1(r,s,t)dt =0. (19)

r—o0 I
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Let I € J; for some i € N and ¢ € (0, m) Denote
Ey:={xel: o'(x) > A} (20)
In view of , one can choose a number A\ > 1 such that

A-mes(E)) < e-mes(]). (21)

Since mes(FE)) <
. .20pl+1 . . . .
obtain the following representation for the characteristic function of 1

L= 3 3 axd® B+ 3 Y @)+ 3 ael0), (22)

k=i+1 AeQ} k=i+1 AeQ? AeQ3

-mes(7), then, applying Lemmaﬂfor any v > i, we

where Qf C Ji, i = 1,2,3, with the following properties:

QA Z Oa BA Z 07 7N Z 07 (23)

1
mes(supp(go(A‘M)) NEy) > émes(supp(go(A“))), if AeQp, k=i+1,...,v,

(
1
mes(supp(gog))ﬂE,\) > %mes(supp(gog))), if AeQf, k=i+1,...,v—
(

and if A € O} for some k and i, then
1
mes(ANE)) < §meS(A). (26)

According to , and we get that

AeQd
For any v > i, we denote
v v—1
F, = U U supp (goqu)> U U U supp ((p(Al)) . (28)
k=i+1 AeQl k=i+1 A2

In view of and we have that
1
M (g, ,x) > 20 for any = € F,,

which means (see also ((16))) that

mes(F,) < 60mes(E)). (29)
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Combining the last inequality with , and , we obtain that

> D oat i D Bat D> m=D. >, aA/Iap(AqA)(t)dtJr

k=i+1 Aeql k=i+1 AeQ? AEQ3,ACF, k=i+1 AeQ},
v—1
1 1
DI NI SEENY (SO
k=i+1 AeQ? I AEQ3,ACF, I

/ 1dt < 60mes(Ey). (30)

v

According to , and the definition of functions f,,, we get that for any
v >,

/Smil(r,s,t)dt = /Smyl(r,s,t)dt =
I

1

S Y aa / Sy (1,5, )08 ()t +
I

k=i+1 Acql
v—1

#30 Y A [ Swates el e
k=i+1 Agﬂi I

D SN R RO
AeQ3 ACF, 1

Y St e -

AEQ3 ACI\F,
: Al/,l + Au,2 =+ Al/,3 + AI/A' (31)

Since for any fixed (admissible) k > i, ¢,r, s the function oy 4(r,s, x) is con-

stant on the interval A € 7, and (see and (7))
1
Tafr5,0) = [ Sualros 0 Ot = [ S 00t s e,
0 I
then according to and , we obtain that for any natural k& > ¢

/Smkl(r,s,t)gog’“(t)dt‘ <A\ if Aeql

I

‘/Smkl(r,s,t)gog)(t)dt‘ <A if AeQorAeQ (32)
I

Therefore, using , and we obtain
|Aua] 4+ [Ava| + [Ays| < 60X - mes(E)) < 60c - mes(!). (33)
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Denote

B, :=B,(r,s,q) :={x € I\ F,: |o,4(r,s,2)] >¢e}, B, :=I1\(F,UB,).

Since o, 4(r, s, z) converges a.e. to f(x) = 0, then there exists Ny such that
mes(B,) < mes(E)) for any v, r with min{v,r,... 7} > No. (34)

Note that both B, and B/, are unions of intervals of .7, because 0, 4(r, s, z)
is constant on each interval A € 7,. Hence, A, 4 in (31)) can be represented
as follows

u4 = Z IYA/Sm,,—l I',S,t ()dt+

ACBy

Z 'VA/Smu—l r,s,t)p ( )dt = Af,A +AZ’4.

ACB;,,

According to , , , , and we obtain that
4|< Z’)’A A= )\Z’YA/

ACB, ACB,

)\/]IBV(t)dt < A-mes(Ey) < e-mes(]),
I

ALyl <e D ya<e-mes(D),
ACB,,

as min{v,ry,...,r,} > Ny. Therefore, |A, 4| < 2¢-mes(I). The last inequal-
ity with and completes the proof of theorem |§| in the case when
flz) =0.

Now suppose the sums oy, ,(r, s, z) converge a.e. to an integrable function
(o]

f and the condition holds. Let ch fn(z) be the Fourier series of f

n=0
and oy 4(x) == Z cn(fns go,(f)w) By theorem , we have
n=0
lim 6y 4(x) = f(x) ae. on [0,1)
k—o0
and
lim A -mes{z € [0,1): sup|og,(z)] > A} =0.
A—00 k,q
Denote

Cn(r,s) == an(r,s) —c¢, and Gy,(r,s, ) ch r,s) fn,go )
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It can be easily seen that
Okq(r,8,2) = 0 4(r,8,2) — 0pq(z) - 0 a.e. as k — oo, r — 00,
and

lim A -mes{z € [0,1) : sup|dg,(z)] > A} <
A—00 k,q

A
lim ) - mes {x €[0,1) : sup|ogq(z)| > —} +
A—00 k,q 2

A
lim A\ - mes {a: €[0,1) : sup|fyq(z)| > —} =0.

A—00 k,q 2
Therefore, for any n € Ny,

lim ¢,(r,s) = lim a,(r,s) — ¢, =0,
r—oo r—o0

which proves the theorem [6]
O]

Proof of Theorem [5. Theorem [ has already been proved in the case
d = 1 (see the previous theorem). Suppose that its statement is true for
dimension d = v — 1 and let us prove it for d = v.
Suppose that
S an(r,8)falx)
neNg
is a v-dimensional series with respect to the system {f,}, where coefficients
an(r,s) depend on r € R € N® and s € S ¢ R'. Also suppose that the

sums
Ora(r.5,%) = Y an(r,5)(fa, $ic%)
neNy
converge almost everywhere on [0, 1)” to an integrable function f as k — oo
and r — oo, and

lim A-mes,{x€[0,1)": o*(x) >} =0. (35)

A—00

For any r = (rq,7r9,...,7m) € R, k = (k1,ko,..., k) € N, s =
(s1,82,--.,8) €S, q = (1,92, --.,q,) and x = (x1,29,...,2,) € [0,1)”
denote

~

ri= (11,79, Py Koy ooy k), S = (81,82, -+, 81,42y« - - Quy T2y ooy Ty).

If for each n; € Ny we denote

Anl (fr\;s\) = Z an(r, S) (fnﬂ SOEC??%)’ (n = (nh na, ... 7nl/>)7

n;ENp,1=2,...v =2

(36)
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then oy 4(r,s,x) can be written as follows:

Okq(T, S, X) Z A, (T,8) (fnl,gogiliJ =: 0, 0 (T, 8, 21). (37)

n1=0
Also note that
0" (x) = sup |okgq(r,s,X)| = sup |Gk, 4 (TS, 21)| (38)
k,q,r,s k1,q1,T,8

According to and Lemma , we get that for almost all (zs,...,x,) €
[07 1)1/—1,

)\hm A-mes{z; € 0,1): o"(x) >A} =0, wherex = (21,29,...,1,).
—00
(39)
Denote by H the set of all points (za,...,z,) € [0,1)*~! for which
[ za,...,x,) € LY0,1),

mes{x : lim Okq(r,8,x) = f(x) ae}=1

r— o0

and holds. It is clear that
mes,_1(H) = mes, 1[0,1)" 1 = 1.

Now, for any (xs,...,x,) € H, applying Theorem |§| we obtain that

lim A, (r / f(t 2o, ... x,) fo, ()dt  for all ny € Ny. (40)

T—o0

Let ny be a natural number and let ¢ be the smallest number for which
ny < m;. Suppose that k' = (ko, ..., k), d = (¢2,...,¢ ) and

Ay (xg,...,2,) == sup |An, (T,8)]
k/.q',r,s

In view of Lemma , and , we obtain, that if for some (za,...,,)
and A € R the inequality

1
mes{z; : o*(x) > \} < —
holds, then
Ay (2, 1) <A

Therefore, if
Ay (m9,...,1) > A,
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then '
Dot (x) > A > —
mes{z; : 0*(x) > —

which means that
mes,_1{(®2,...,2,) 1 A}, (2,...,2,) > A} <
mymes, {x € [0,1)": o%(x) > A}
Therefore, using also (35]), we get that for any n; € Ny
lim \-mes,_1{(z2,...,7,): Ay (22,...,2,) > A} =0. (41)

A—00

Now according to , , and the inductive assumption ford = v—1,
we obtain that

lim ay(r,s) = f(x) fa(x)dx.

r—00 [071),,

Theorem [f] is proved.
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