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Abstract. In this paper we discuss the uniqueness property of
a summation method for multiple series with respect to Vilenkin
and generalized Haar systems. It is proved that if the multiple
series with respect to these systems is a.e. summable by that
method to an integrable function on [0, 1)d and satisfies an extra
condition, then it is the Fourier series of this function.
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Introduction

First we recall the definitions of Vilenkin and generalized Haar systems (see
[1]). Let {pk}, pk ≥ 2, k ∈ N, be a sequence of natural numbers and
m0 = 1, mk = mk−1pk, k ∈ N. Then every nonnegative integer n is uniquely
represented by the series

n =
∞∑
k=1

nkmk−1, where nk ∈ {0, 1, . . . , pk − 1}, k ∈ N.

Every point x ∈ [0, 1) can be represented in the following form:

x =
∞∑
k=1

xk
mk

, where xk ∈ {0, 1, . . . , pk − 1}, k ∈ N,

where we assume that for infinitely many k ∈ N, xk 6= pk − 1.
Let n be a natural number of the form n = mk + r(pk+1 − 1) + s − 1,

where 0 ≤ r ≤ mk − 1, 1 ≤ s ≤ pk+1 − 1. Denote

χ0(x) ≡ 1,

1
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χn(x) := χ(k)
r,s (x) :=


√
mk exp

(
2πi

xk+1

pk+1

s

)
, if x ∈

[
r

mk

,
r + 1

mk

)
,

0 if x 6∈
[
r

mk

,
r + 1

mk

)
,

(1)

The system {χn(x)}∞n=0 is called the generalized Haar system generated by
the sequence {pk}, k ∈ N. When pk = 2 for all k ∈ N, the generalized Haar
system coincides with the classical Haar system.

The functions

Rk(x) := exp

(
2πixk
pk

)
, k ∈ N,

are called generalized Rademacher functions.
The Vilenkin system {Ψn(x)}∞n=0 is defined as follows:

Ψ0(x) ≡ 1 and Ψn(x) :=
∞∏
k=1

Rnk
k (x) = exp

(
2πi

∞∑
k=1

nkxk
pk

)
.

Note that in the case pk = 2, k ∈ N, Vilenkin system coincides with the
Walsh system. These systems were defined in 1947 by N. Vilenkin [1] and
since then are investigated by many mathematicians. When sup{pk} = +∞,
Vilenkin and generalized Haar systems are essentially different from the
Walsh and Haar systems, correspondingly.

In the sequel, writing {fn}∞n=0 we mean either the generalized Haar sys-
tem or Vilenkin system.

In [2] and [3] a new method of summation is defined for Vilenkin and
generalized Haar systems. We denote

Jk :=

{[
j

mk

,
j + 1

mk

)
: j = 0, 1, . . . ,mk − 1

}
, k = 0, 1, 2, . . . . (2)

For the interval J ∈ Jk, k ∈ N, we denote by J̃ the interval from Jk−1,
which contains J . The intervals (J)l, (l ∈ Z) are defined in the following
way:

1. (J)0 = J, (J)l ∈ Jk, (J)l ⊂ J̃ ,

2. the right endpoint of (J)l coincides with the left endpoint of (J)l+1,
with the convention that the endpoints of J̃ are identified, i.e. if the

right endpoint of (J)l is
j

mk−1

, then the left endpoint of (J)l+1 is
j − 1

mk−1

.

For each interval J ∈ Jk and natural number q ≤ pk
2

we denote

(J)q :=

q⋃
l=−q

(J)l, (3)



UNIQUENESS THEOREMS FOR MULTIPLE SERIES BY VILENKIN AND GENERALIZED ... 3

ϕ
(q)
J (t) :=


mk

q

(
1− |l|

q

)
, if t ∈ (J)l |l| < q,

0, if t 6∈ (J)q−1.
(4)

It is clear that (J)0 = (J)0 = J and

ϕ
(1)
J (t) = mkIJ(t),

∫ 1

0

ϕ
(q)
J (t)dt =

∫
(J)q−1

ϕ
(q)
J (t)dt = 1 for any q ≤ pk

2
,

(5)
where by IJ we denote the characteristic function of J .

For each natural number k and for each x ∈ [0, 1) denote by Ik,x the
interval from Jk, which contains the point x. Sometimes, when J = Ik,x,

instead of ϕ
(q)
J we use the notation ϕ

(q)
k,x, i.e. ϕ

(q)
k,x(t) := ϕ

(q)
Ik,x

(t).

Taking into account the definition of the system {fn(x)}, it is clear that

for each ϕ
(q)
k,x we have

(fn, ϕ
(q)
k,x) :=

∫ 1

0

fn(t)ϕ
(q)
k,x(t)dt = 0, when n ≥ mk.

Therefore, for each series
∞∑
n=0

anfn(x), (6)

for any x ∈ [0, 1) and any pair of natural numbers k, q, 2q < pk, the sums

σk,q(x) :=
∞∑
n=0

an(fn, ϕ
(q)
k,x)

are well-defined. Let Sm(x) be the partial sum of the series (6), i.e.

Sm(x) :=
m∑
n=0

anfn(x).

It is obvious that for any k ∈ N and q < pk/2

σk,1(x) = Smk−1(x) and σk,q(x) =

∫ 1

0

Smr−1(t)ϕ
(q)
k,x(t)dt ∀r ≥ k. (7)

Denote

S∗(x) := sup
m
|Sm(x)|, and σ∗(x) := sup

k,q
|σk,q(x)|. (8)

We will denote by mesd(E) the Lebesgue measure of E in Rd. In the case
when d = 1 we will write mes(E) instead of mes1(E).

The following two theorems were announced in [3] and proved in [4] and
[5].
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Theorem 1 There exists a constant C > 0, independent both of coefficients
{an} and the sequence {pk}, such that

σ∗(x) < C · S∗(x) for any x ∈ [0, 1).

In addition, if the series (6) converges to S(x) at a point x, then

lim
k→∞

σk,q(x) = S(x).

Theorem 2 If the sums σk,q(x) converge in measure to a function f(x), as
k →∞, and for some increasing sequence λν →∞ the condition

lim
ν→∞

λν ·mes{x ∈ [0, 1) : σ∗(x) > λν} = 0 (9)

holds, then for every natural number n,

an = lim
ν→∞

∫ 1

0

[f(x)]λνfn(x)dx,

where

[g(x)]λ :=

{
g(x), if |g(x)| ≤ λ,
0, if |g(x)| > λ.

The next theorem is proved in [2], Theorems 2 and 3.

Theorem 3 If the series (6) is the Fourier series of an integrable function
f , then

lim
k→∞

σk,q(x) = f(x) a.e. on [0, 1)

and
lim
λ→∞

λ ·mes{x ∈ [0, 1) : σ∗(x) > λ} = 0.

Uniqueness theorems for classical series by Vilenkin and generalized Haar
systems, generated by a bounded sequence {pk}, when the majorant of par-
tial sums satisfies some condition, were considered in [6] and [7]. A similar
theorem for the multiple Haar system was proved in [8]. For the trigono-
metric system it is proved in [9] that if a multiple trigonometric series is
summable almost everywhere by the Riemann’s method to an integrable
function f and satisfies an additional condition similar to (9), then it is the
Fourier series of f .

In this paper we consider analogous questions for multiple series by
Vilenkin and generalized Haar systems generated by an arbitrary sequence
{pn}.

Let N0 be the set of non-negative integers. For any x = (x1, x2, . . . , xd) ∈
[0, 1)d, n = (n1, n2, . . . , nd) ∈ Nd

0, k = (k1, k2, . . . , kd) ∈ Nd and q =
(q1, q2, . . . , qd) ∈ Nd, (2qi < pki , i = 1, 2, . . . , d), denote

fn(x) := fn1(x1)fn2(x2) · · · fnd(xd),
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(fn, ϕ
(q)
k,x) :=

d∏
i=1

(fni , ϕ
(qi)
ki,xi

) =
d∏
i=1

∫ 1

0

fni(ti)ϕ
(qi)
ki,xi

(ti)dti

and consider the following series∑
n∈Nd0

anfn(x) =
∑
n∈Nd0

anfn1(x1)fn2(x) · · · fnd(xd). (10)

We denote
σk,q(x) :=

∑
n∈Nd0

an(fn, ϕ
(q)
k,x).

In this paper, writing k→∞ we mean min{ki} → ∞.
The following theorem holds:

Theorem 4 If the sums σk,q(x) of (10) converge a.e. on the cube [0, 1)d to
an integrable function f(x) as k→∞, and

lim
λ→∞

λ ·mesd

{
x ∈ [0, 1)d : sup

k,q
|σk,q(x)| > λ

}
= 0,

then the series (10) is the Fourier series of f with respect to the system
{fn}, i.e.

an =

∫
[0,1)d

f(x)fn(x)dx.

Theorem 4 follows from the more general theorem 5. Before formulating it,
we introduce some notations. Suppose that∑

n∈Nd0

an(r, s)fn(x)

is a multiple series with respect to a system {fn}, where coefficients an(r, s)
depend on r ∈ R ⊂ Nm and s ∈ S ⊂ Rl. We denote

σk,q(r, s,x) :=
∑
n∈Nd0

an(r, s)(fn, ϕ
(q)
k,x) and σ∗(x) := sup

k,q,r,s
|σk,q(r, s,x)|.

For any positive number λ we set

Eλ := {x ∈ [0, 1)d : σ∗(x) > λ}.

Theorem 5 If the sums σk,q(r, s,x) converge a.e. on the cube [0, 1)d to an
integrable function f(x) as k → ∞ and r → ∞, (i.e. min{k1, k2, . . . , kd,
r1, . . . , rm} → ∞), and

lim
λ→∞

λ ·mesd(Eλ) = 0,

then for any n ∈ Nd
0,

lim
r→∞

an(r, s) =

∫
[0,1)d

f(x)fn(x)dx.
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1 Auxiliary Results

The following lemma was proved in [5], Lemma 3.

Lemma 1 Let I ∈ Js and E ⊂ I. If

mes(E) <
1

20ps+1

mes(I),

then for any ν > s the characteristic function of I can be represented in the
form

II(t) =
ν∑

k=s+1

∑
∆∈Ω1

k

α∆ϕ
(q∆)
∆ (t) +

ν−1∑
k=s+1

∑
∆∈Ω2

k

β∆ϕ
(1)
∆ (t) +

∑
∆∈Ω3

ν

γ∆ϕ
(1)
∆ (t), (11)

where Ωi
k ⊂ Jk, i = 1, 2, 3, with the following properties:

α∆ ≥ 0, β∆ ≥ 0, γ∆ ≥ 0, (12)

(supp(ϕ
(q∆)
∆ )∩E) >

1

6
mes(supp(ϕ

(q∆)
∆ )), if ∆ ∈ Ω1

k, k = s+1, . . . , ν, (13)

mes(supp(ϕ
(1)
∆ )∩E) >

1

20
mes(supp(ϕ

(1)
∆ )), if ∆ ∈ Ω2

k, k = s+1, . . . , ν−1

(14)
and if ∆ ∈ Ωi

k for some k and i, then

mes(∆ ∩ E) ≤ 1

2
mes(∆).

The next lemma was proved in [9], Lemma 1.

Lemma 2 Let d be a natural number larger than 1 and let ϕ(x) be a non-
negative function defined on some d-dimensional cube [a, b]d. If

lim inf
λ→+∞

λ ·mesd{x = (x1, x2, . . . , xd) ∈ [0, 1]d : ϕ(x) > λ} = 0,

then

mesd−1

{
(x2, . . . , xd) ∈ [0, 1]d−1 :

lim inf
λ→+∞

λ ·mes{x1 ∈ [0, 1] : ϕ(x) > λ} = 0

}
= (b− a)d−1.

Lemma 3 Suppose that the coefficients of the series (6) depend on some
parameter r ∈ R (i.e. an = an(r)),

σk,q(r, x) :=
∞∑
n=0

an(r)(fn, ϕ
(q)
k,x) and σ∗(x) := sup

k,q,r
|σk,q(r, x)|.
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If for some positive number λ and some k ∈ N the inequality

mes{x ∈ [0, 1) : σ∗(x) > λ} < 1

mk

(15)

holds, then for any n < mk and r ∈ R the coefficients an(r) satisfy

|an(r)| ≤ λ.

Proof. Suppose for some λ > 0 and k ∈ N the inequality (15) holds. Note
that for any fixed r the function σk,1(r, x) = Smk−1(r, x) (see (7)) is con-

stant on each interval J ∈ Jk with length
1

mk

. Therefore, according to the

inequality (15) and

mes{x ∈ [0, 1) : σk,1(r, x) > λ} < mes{x ∈ [0, 1) : σ∗(x) > λ} < 1

mk

,

we obtain that

|σk,1(r, x)| =

∣∣∣∣∣
mk−1∑
n=0

an(r)fn(x)

∣∣∣∣∣ ≤ λ for all x ∈ [0, 1) and r ∈ R.

Since fn(x) is an orthonormal system on [0, 1), then in view of the last
inequality, we obtain that for any n < mk and r ∈ R the following inequality
holds:

|an(r)| ≤ λ.

�

In [2], for any integrable function f on [0, 1), the following function is defined:

M∗(f, x) := sup
q,J:x∈J∈Jk

0≤q≤ pk2

1

mes(J)q

∫
(J)q
|f(t)|dt,

and it is proved that

mes{x : M∗(f, x) > λ} ≤ 3

λ
‖f‖1, (16)

lim
λ→∞

λ ·mes{x : M∗(f, x) > λ} = 0. (17)
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2 Proof of the main results

We prove Theorem 5 by mathematical induction. The induction is carried
out over the dimension d.

First let us separately state and prove the theorem in the case d = 1.
Suppose that

∞∑
n=0

an(r, s)fn(x)

is a series with respect to the system {fn}, where coefficients an(r, s) depend
on r ∈ R ⊂ Nm and s ∈ S ⊂ Rl. Denote

σk,q(r, s, x) :=
∞∑
n=0

an(r, s)(fn, ϕ
(q)
k,x) and σ∗(x) := sup

k,q,r,s
|σk,q(r, s, x)|.

Theorem 6 If the sums σk,q(r, s, x) converge a.e. on the interval [0, 1) to an
integrable function f(x) as k → ∞ and r → ∞, (i.e. min{k, r1, . . . , rm} →
∞), and

lim
λ→∞

λ ·mes{x ∈ [0, 1) : σ∗(x) > λ} = 0, (18)

then for any n ∈ N0,

lim
r→∞

an(r, s) =

∫ 1

0

f(x)fn(x)dx.

Proof. First consider the case when f(x) = 0.
Suppose the sums σk,q(r, s, x) converge a.e. to f(x) = 0 and the condition

(18) holds.
Let n be a non-negative integer and i be the smallest natural number for

which n < mi. It is clear that fn(x) is constant on each interval Iu ∈ Ji.
Denote by fn(Iu) the value of fn on the interval Iu. Notice that

an(r, s) =

∫ 1

0

Smi−1(r, s, t)fn(t)dt =

mi∑
u=1

fn(Iu)

∫
Iu

Smi−1(r, s, t)dt,

where

SN(r, s, x) :=
N∑
n=0

an(r, s)fn(x).

Therefore, in order to prove theorem 6 in the case f(x) = 0, it is sufficient
to prove that for any natural number i and for each I ∈ Ji, we have

lim
r→∞

∫
I

Smi−1(r, s, t)dt = 0. (19)
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Let I ∈ Ji for some i ∈ N and ε ∈
(

0, 1
20pi+1

)
. Denote

Eλ := {x ∈ I : σ∗(x) > λ}. (20)

In view of (18), one can choose a number λ > 1 such that

λ ·mes(Eλ) < ε ·mes(I). (21)

Since mes(Eλ) <
1

20pi+1

·mes(I), then, applying Lemma 1 for any ν > i, we

obtain the following representation for the characteristic function of I

II(t) =
ν∑

k=i+1

∑
∆∈Ω1

k

α∆ϕ
(q∆)
∆ (t) +

ν−1∑
k=i+1

∑
∆∈Ω2

k

β∆ϕ
(1)
∆ (t) +

∑
∆∈Ω3

ν

γ∆ϕ
(1)
∆ (t), (22)

where Ωi
k ⊂ Jk, i = 1, 2, 3, with the following properties:

α∆ ≥ 0, β∆ ≥ 0, γ∆ ≥ 0, (23)

mes(supp(ϕ
(q∆)
∆ ) ∩ Eλ) >

1

6
mes(supp(ϕ

(q∆)
∆ )), if ∆ ∈ Ω1

k, k = i+ 1, . . . , ν,

(24)

mes(supp(ϕ
(1)
∆ )∩Eλ) >

1

20
mes(supp(ϕ

(1)
∆ )), if ∆ ∈ Ω2

k, k = i+1, . . . , ν−1

(25)
and if ∆ ∈ Ωi

k for some k and i, then

mes(∆ ∩ Eλ) ≤
1

2
mes(∆). (26)

According to (5), (22) and (23) we get that∑
∆∈Ω3

ν

γ∆ ≤ mes(I). (27)

For any ν > i, we denote

Fν :=

 ν⋃
k=i+1

⋃
∆∈Ω1

k

supp
(
ϕ

(q∆)
∆

)⋃ ν−1⋃
k=i+1

⋃
∆∈Ω2

k

supp
(
ϕ

(1)
∆

) . (28)

In view of (24) and (25) we have that

M∗(IEλ , x) >
1

20
for any x ∈ Fν ,

which means (see also (16)) that

mes(Fν) ≤ 60mes(Eλ). (29)
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Combining the last inequality with (5), (22) and (23), we obtain that

ν∑
k=i+1

∑
∆∈Ω1

k

α∆+
ν−1∑
k=i+1

∑
∆∈Ω2

k

β∆+
∑

∆∈Ω3
ν ,∆⊂Fν

γ∆ =
ν∑

k=i+1

∑
∆∈Ω1

k

α∆

∫
I

ϕ
(q∆)
∆ (t)dt+

+
ν−1∑
k=i+1

∑
∆∈Ω2

k

β∆

∫
I

ϕ
(1)
∆ (t)dt+

∑
∆∈Ω3

ν ,∆⊂Fν

γ∆

∫
I

ϕ
(1)
∆ (t)dt ≤

∫
Fν

1dt ≤ 60mes(Eλ). (30)

According to (22), (7) and the definition of functions fn, we get that for any
ν > i,

∫
I

Smi−1(r, s, t)dt =

∫
I

Smν−1(r, s, t)dt =

ν∑
k=i+1

∑
∆∈Ω1

k

α∆

∫
I

Smk−1(r, s, t)ϕ
(q∆)
∆ (t)dt+

+
ν−1∑
k=i+1

∑
∆∈Ω2

k

β∆

∫
I

Smk−1(r, s, t)ϕ
(1)
∆ (t)dt+

+
∑

∆∈Ω3
ν ,∆⊂Fν

γ∆

∫
I

Smν−1(r, s, t)ϕ
(1)
∆ (t)dt+

+
∑

∆∈Ω3
ν ,∆⊂I\Fν

γ∆

∫
I

Smν−1(r, s, t)ϕ
(1)
∆ (t)dt =

: Aν,1 + Aν,2 + Aν,3 + Aν,4. (31)

Since for any fixed (admissible) k > i, q, r, s the function σk,q(r, s, x) is con-
stant on the interval ∆ ∈ Jk and (see (5) and (7))

σk,q(r, s, x) =

∫ 1

0

Smk−1(r, s, t)ϕ
(q)
∆ (t)dt =

∫
I

Smk−1(r, s, t)ϕ
(q)
∆ (t)dt, x ∈ ∆,

then according to (26) and (20), we obtain that for any natural k > i∣∣∣∣∫
I

Smk−1(r, s, t)ϕ
(q∆)
∆ (t)dt

∣∣∣∣ ≤ λ, if ∆ ∈ Ω1
k∣∣∣∣∫

I

Smk−1(r, s, t)ϕ
(1)
∆ (t)dt

∣∣∣∣ ≤ λ, if ∆ ∈ Ω2
k or ∆ ∈ Ω3

k. (32)

Therefore, using (21), (30) and (31) we obtain

|Aν,1|+ |Aν,2|+ |Aν,3| ≤ 60λ ·mes(Eλ) ≤ 60ε ·mes(I). (33)
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Denote

Bν := Bν(r, s, q) := {x ∈ I \ Fν : |σν,q(r, s, x)| > ε}, B′ν := I \ (Fν ∪Bν).

Since σν,q(r, s, x) converges a.e. to f(x) = 0, then there exists N0 such that

mes(Bν) < mes(Eλ) for any ν, r with min{ν, r1, . . . , rm} > N0. (34)

Note that bothBν andB′ν are unions of intervals of Jν , because σν,q(r, s, x)
is constant on each interval ∆ ∈ Jν . Hence, Aν,4 in (31) can be represented
as follows

Aν,4 =
∑

∆⊂Bν

γ∆

∫
I

Smν−1(r, s, t)ϕ
(1)
∆ (t)dt+

∑
∆⊂B′ν

γ∆

∫
I

Smν−1(r, s, t)ϕ
(1)
∆ (t)dt =: A′ν,4 + A′′ν,4.

According to (5), (32), (21) (22), (27), (28) and (34) we obtain that

|A′ν,4| ≤
∑

∆⊂Bν

γ∆ · λ = λ
∑

∆⊂Bν

γ∆

∫
I

ϕ
(1)
∆ (t)dt =

λ

∫
I

IBν (t)dt ≤ λ ·mes(Eλ) ≤ ε ·mes(I),

|A′′ν,4| ≤ ε
∑

∆⊂B′ν

γ∆ ≤ ε ·mes(I),

as min{ν, r1, . . . , rm} > N0. Therefore, |Aν,4| ≤ 2ε ·mes(I). The last inequal-
ity with (33) and (31) completes the proof of theorem 6 in the case when
f(x) = 0.

Now suppose the sums σk,q(r, s, x) converge a.e. to an integrable function

f and the condition (18) holds. Let
∞∑
n=0

cnfn(x) be the Fourier series of f

and σ̃k,q(x) :=
∞∑
n=0

cn(fn, ϕ
(q)
k,x). By theorem 3, we have

lim
k→∞

σ̃k,q(x) = f(x) a.e. on [0, 1)

and
lim
λ→∞

λ ·mes{x ∈ [0, 1) : sup
k,q
|σ̃k,q(x)| > λ} = 0.

Denote

cn(r, s) := an(r, s)− cn and σ̂k,q(r, s, x) :=
∞∑
n=0

cn(r, s)(fn, ϕ
(q)
k,x).
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It can be easily seen that

σ̂k,q(r, s, x) = σk,q(r, s, x)− σ̃k,q(x)→ 0 a.e. as k →∞, r→∞,

and

lim
λ→∞

λ ·mes{x ∈ [0, 1) : sup
k,q
|σ̂k,q(x)| > λ} ≤

lim
λ→∞

λ ·mes

{
x ∈ [0, 1) : sup

k,q
|σk,q(x)| > λ

2

}
+

lim
λ→∞

λ ·mes

{
x ∈ [0, 1) : sup

k,q
|σ̃k,q(x)| > λ

2

}
= 0.

Therefore, for any n ∈ N0,

lim
r→∞

cn(r, s) = lim
r→∞

an(r, s)− cn = 0,

which proves the theorem 6.
�

Proof of Theorem 5. Theorem 5 has already been proved in the case
d = 1 (see the previous theorem). Suppose that its statement is true for
dimension d = ν − 1 and let us prove it for d = ν.

Suppose that ∑
n∈Nν0

an(r, s)fn(x)

is a ν-dimensional series with respect to the system {fn}, where coefficients
an(r, s) depend on r ∈ R ⊂ Nm and s ∈ S ⊂ Rl. Also suppose that the
sums

σk,q(r, s,x) =
∑
n∈Nν0

an(r, s)(fn, ϕ
(q)
k,x)

converge almost everywhere on [0, 1)ν to an integrable function f as k→∞
and r→∞, and

lim
λ→∞

λ ·mesν{x ∈ [0, 1)ν : σ∗(x) > λ} = 0. (35)

For any r = (r1, r2, . . . , rm) ∈ R, k = (k1, k2, . . . , kν) ∈ Nν , s =
(s1, s2, . . . , sl) ∈ S, q = (q1, q2, . . . , qν) and x = (x1, x2, . . . , xν) ∈ [0, 1)ν

denote

r̂ := (r1, r2, . . . , rm, k2, . . . , kν), ŝ := (s1, s2, . . . , sl, q2, . . . qν , x2, . . . , xν).

If for each n1 ∈ N0 we denote

An1(r̂, ŝ) :=
∑

ni∈N0,i=2,...ν

an(r, s)
ν∏
i=2

(
fni , ϕ

(qi)
ki,xi

)
, (n = (n1, n2, . . . , nν)),

(36)
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then σk,q(r, s,x) can be written as follows:

σk,q(r, s,x) =
∞∑

n1=0

An1(r̂, ŝ)
(
fn1 , ϕ

(q1)
k1,x1

)
=: σ̃k1,q1(r̂, ŝ, x1). (37)

Also note that

σ∗(x) = sup
k,q,r,s

|σk,q(r, s,x)| = sup
k1,q1,r̂,̂s

|σ̃k1,q1(r̂, ŝ, x1)|. (38)

According to (35) and Lemma 2, we get that for almost all (x2, . . . , xν) ∈
[0, 1)ν−1,

lim
λ→∞

λ ·mes{x1 ∈ [0, 1) : σ∗(x) > λ} = 0, where x = (x1, x2, . . . , xν).

(39)
Denote by H the set of all points (x2, . . . , xν) ∈ [0, 1)ν−1 for which

f(·, x2, . . . , xν) ∈ L1[0, 1),

mes{x1 : lim
k→∞
r→∞

σk,q(r, s,x) = f(x) a.e.} = 1

and (39) holds. It is clear that

mesν−1(H) = mesν−1[0, 1)ν−1 = 1.

Now, for any (x2, . . . , xν) ∈ H, applying Theorem 6 we obtain that

lim
r̂→∞

An1(r̂, ŝ) =

∫ 1

0

f(t, x2, . . . , xν)fn1(t)dt for all n1 ∈ N0. (40)

Let n1 be a natural number and let i be the smallest number for which
n1 < mi. Suppose that k′ = (k2, . . . , kν), q

′ = (q2, . . . , qν) and

A∗n1
(x2, . . . , xν) := sup

k′,q′,r,s
|An1(r̂, ŝ)|

In view of Lemma 1, (37) and (38), we obtain, that if for some (x2, . . . , xν)
and λ ∈ R the inequality

mes{x1 : σ∗(x) > λ} < 1

mi

holds, then
A∗n1

(x2, . . . , xν) ≤ λ.

Therefore, if
A∗n1

(x2, . . . , xν) > λ,
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then

mes{x1 : σ∗(x) > λ} ≥ 1

mi

,

which means that

mesν−1{(x2, . . . , xν) : A∗n1
(x2, . . . , xν) > λ} ≤

mimesν{x ∈ [0, 1)ν : σ∗(x) > λ}.

Therefore, using also (35), we get that for any n1 ∈ N0

lim
λ→∞

λ ·mesν−1{(x2, . . . , xν) : A∗n1
(x2, . . . , xν) > λ} = 0. (41)

Now according to (36), (40), (41) and the inductive assumption for d = ν−1,
we obtain that

lim
r→∞

an(r, s) =

∫
[0,1)ν

f(x)fn(x)dx.

Theorem 5 is proved.
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