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On a Convergence of

Rational Approximations by the

Modified Fourier Basis

Tigran K. Bakaryan

Abstract. We continue investigations of the modified-trigo-
nometric-rational approximations that arise while accelerating
the convergence of the modified Fourier expansions by means
of rational corrections. Previously, we investigated the point-
wise convergence of the rational approximations away from the
endpoints and the L2-convergence on the entire interval. Here,
we study the convergence at the endpoints and derive the ex-
act constants for the main terms of asymptotic errors. We show
that the Fourier-Pade approximations are much more accurate
in all frameworks than the modified expansions for sufficiently
smooth functions. Moreover, we consider a simplified version
of the rational approximations and explore the optimal values
of parameters that lead to better accuracy in the framework of
the L2-error. Numerical experiments perform comparisons of the
rational approximations with the modified Fourier expansions.
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Introduction

We consider a modified Fourier basis

H = {cos πnx : n ∈ Z+} ∪ {sin π(n− 1
2
)x : n ∈ N} (1)

which was originally proposed by Krein [1] and then thoroughly investigated
in a series of papers [2–10].

Obviously, for even functions on [−1, 1], expansions by the modified
Fourier basis coincide with the expansions by the classical Fourier basis

Hclass = {cos πnx : n ∈ Z+} ∪ {sin πnx : n ∈ N}, x ∈ [−1, 1]. (2)
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Moreover, the modified Fourier basis can be derived from the other classical
basis H∗ on [0, 1]

H∗ = {cos πnx : n ∈ Z+}, x ∈ [0, 1] (3)

by means of changing the variable.
By MN(f, x) denote the truncated modified Fourier series

MN(f, x) =
1

2
f c0 +

N∑
n=1

[f cn cosπnx+ f sn sin π(n− 1
2
)x], (4)

where

f cn =

∫ 1

−1
f(x) cosπnxdx, f sn =

∫ 1

−1
f(x) sinπ(n− 1

2
)xdx. (5)

In [10], we considered convergence acceleration of the modified expan-
sions by means of rational correction functions which led to the modified
Fourier-Pade (MFP) approximations. There, we studied the pointwise con-
vergence of the MFP-approximations on |x| < 1 and the convergence in
the L2-norm. We proved better accuracies of approximations in comparison
with the modified expansions for enough smooth functions.

Consider a sequence of real numbers θ = {θk}pk=1, p ≥ 1. Let ĉ = {cn}
for some sequence {cn} of complex or real numbers. By ∆k

n(θ, ĉ), we denote
the following generalized finite differences

∆0
n(θ, ĉ) = cn,

∆k
n(θ, ĉ) = ∆k−1

n (θ, ĉ) + θk∆
k−1
n−1(θ, ĉ), k ≥ 1.

(6)

By ∆k
n(ĉ), we denote the classical finite differences which correspond to the

generalized differences ∆k
n(θ, ĉ) with θ ≡ 1.

Let

RN(f, x) = f(x)−MN(f, x)

= Rc
N(f, x) +Rs

N(f, x),
(7)

where

Rc
N(f, x) =

∞∑
n=N+1

f cn cos πnx, (8)

and

Rs
N(f, x) =

∞∑
n=N+1

f sn sin π(n− 1
2
)x. (9)

Consider two sequences of real numbers θc = {θck}
p
k=1 and θs = {θsk}

p
k=1.

Denote f̂ s = {f sn}∞n=1 and f̂ c = {f cn}∞n=0.
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Let µt(k, θ) be defined by the following identities

k∏
t=1

(1 + θtx) =
k∑
t=0

µt(k, θ)x
t. (10)

By means of Abel transformations (see details in [10]), we derive the
following modified-trigonometric-rational (MTR-) approximations:

MN,p(f, θ
c, θs, x) = MN(f, x)−

p∑
k=1

θck ∆k−1
N (θc, f̂ c)∏k

r=1(1 + 2θcr cosπx+ (θcr)
2)

×
k∑
t=0

µt(k, θ
c) cosπ(N + 1− t)x

−
p∑

k=1

θsk ∆k−1
N (θs, f̂ s)∏k

r=1(1 + 2θsr cosπx+ (θsr)
2)

×
k∑
t=0

µt(k, θ
s) sinπ(N + 1

2
− t)x

(11)

with the error

RN,p(f, θ
c, θs, x) = f(x)−MN,p(f, θ

c, θs, x)

= Rc
N,p(f, θ

c, x) +Rs
N,p(f, θ

s, x),
(12)

where

Rc
N,p(f, θ, x) =

1

2
∏p

k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, f̂ c)eiπnx

+
1

2
∏p

k=1(1 + θke−iπx)

∞∑
n=N+1

∆p
n(θ, f̂ c)e−iπnx,

(13)

and

Rs
N,p(f, θ, x) =

e−
iπx
2

2i
∏p

k=1(1 + θkeiπx)

∞∑
n=N+1

∆p
n(θ, f̂ s)eiπnx

− e
iπx
2

2i
∏p

k=1(1 + θke−iπx)

∞∑
n=N+1

∆p
n(θ, f̂ s)e−iπnx.

(14)

In this setting, the parameters θc = {θc1, . . . , θcp} and θs = {θs1, . . . , θsp} are
unknown.

Different approaches are known for their determination. We know that
(see [11–17]) by appropriate choice of those parameters, we will get better



RATIONAL APPROXIMATIONS BY THE MODIFIED FOURIER BASIS 71

convergence in comparison with the classical expansions if the approximated
function is sufficiently smooth.

An interesting approach (see [10, 12, 18]) leads to the Fourier-Pade type
approximations, where the parameters are determined as the solutions of
the following systems

∆p
n(θc, f̂ c) = 0, n = N,N − 1, . . . , N − p+ 1, (15)

and
∆p
n(θs, f̂ s) = 0, n = N,N − 1, . . . , N − p+ 1. (16)

We call this approach as the modified Fourier-Pade (MFP-) approximation.
The MFP-approximations are essentially non-linear in the sense that

MN,p(f + g, θc, θs, x) 6= MN,p(f, θ
c, θs, x) +MN,p(g, θ

c, θs, x) (17)

as for each approximation we need to determine its own θc and θs vectors.
As we showed in [10], the parameters θc and θs derived as solutions of

(15) and (16), respectively, has the following asymptotic expansions in terms
of 1/N

θck = 1− τ ck
N

+ o(N−1), θsk = 1− τ sk
N

+ o(N−1), k = 1, . . . , p, (18)

where τ ck = τ sk are the roots of the generalized Laguerre polynomial L
(2q+1)
p (x).

In this paper, we continue investigations of the MFP-approximations and
explore the pointwise convergence at the endpoints x = ±1. We derive the
exact constants of the main terms of asymptotic errors and show that the
rational and classical expansions by the modified Fourier basis have the same
convergence rate. However, a comparison of the exact estimates allows to
observe that rational approximations have bigger asymptotic accuracy.

Then, we consider more simplified parametric version of the rational
approximations. Instead of solving the systems (15) and (16) for each N , we
assume that parameters θc and θs are determined as follows (compare with
(18))

θck = θsk = 1− τk
N
, k = 1, . . . , p, (19)

where τk are independent of N . Further, we determine parameters τk to
minimize the error of the rational approximations in the L2-norm. We call
this approach as L2-minimal MTR-approximations.

It is important that in the optimal rational approximations, the values
of parameters τk, k = 1, . . . , p depend only on p and the smoothness of f . It
means that if functions f , g and f + g have the same smoothness, then the
optimal approach leads to linear rational approximations in the sense that

MN,p(f + g, θc, θs, x) = MN,p(f, θ
c, θs, x) +MN,p(g, θ

c, θs, x) (20)

with the same parameters θc and θs for all included functions.
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1 Pointwise Convergence of the Modified

Fourier-Pade Approximations

Let f ∈ C2q+1[−1, 1], q ≥ 0 and denote

A2k+1(f) =
(
f (2k+1)(1)− f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q, (21)

and
B2k+1(f) =

(
f (2k+1)(1) + f (2k+1)(−1)

)
(−1)k, k = 0, . . . , q. (22)

The next result describes the pointwise convergence of the MFP-approxi-
mation on |x| < 1 by deriving the exact constants of the corresponding
asymptotic errors.

Theorem 1 [10] Let f ∈ C2q+2p+2[−1, 1], f (2q+2p+2) ∈ BV [−1, 1], q ≥ 0,
p ≥ 0. Let θc, θs be the unique solutions of (15) and (16), respectively. Let

f (2k+1)(±1) = 0, k = 0, . . . , q − 1, (23)

and
A2q+1(f)B2q+1(f) 6= 0. (24)

Then, the following estimates are valid for x ∈ (−1, 1) as N →∞

Rc
N,p(f, θ

c, x) = A2q+1(f)
(−1)N+1(2q + p+ 1)!p!

22p+1π2q+2N2q+2p+2(2q + 1)!

×
cos πx

2
(2N − 2p+ 1)

cos2p+1 πx
2

+ o(N−2q−2p−2),

(25)

and

Rs
N,p(f, θ

s, x) = B2q+1(f)
(−1)N(2q + p+ 1)!p!

22p+1π2q+2N2q+2p+2(2q + 1)!

×
sin πx

2
(2N − 2p)

cos2p+1 πx
2

+ o(N−2q−2p−2).

(26)

Note that for p = 0, Theorem 1 coincides with the well-known result for
the modified Fourier expansion proved in [9] (Theorem 2.22, page 29):

Theorem 2 [9] Suppose that f ∈ C2q+2(−1, 1), f (2q+2) ∈ BV [−1, 1] and f
obeys the first q derivative conditions

f (2r+1)(±1) = 0, r = 0, . . . , q − 1. (27)

Then, the following estimates are valid for x ∈ (−1, 1) as N →∞

f(x)−MN(f, x) =
(−1)N+1

2π2q+2N2q+2 cos πx
2

Hq(x) + o(N−2q−2), (28)

where

Hq(x) = A2q+1(f) cosπ(N + 1/2)x−B2q+1(f) sinπNx. (29)
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A comparison of Theorems 1 and 2 shows better pointwise convergence
rate of the MFP-approximations on |x| < 1 and, the improvement is thanks
to the factor O(N2p) as N →∞.

Let
fq(x) = sin(x− 1)(x2 − 1)2q, q = 0, 1, 2, . . . . (30)

It is easy to verify that these functions obey the first q derivative conditions.
Figure 1 shows the results of the approximation of f1(x) by the modified

Fourier expansion (p = 0) and the MFP-approximations (p = 1, 2, 3). We see
a tremendous increase in accuracy while applying the MFP-approximations
for smooth function on [−0.7, 0.7]. For example, in case of p = 3, the
improvement is 3.8 · 107 times.
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Figure 1: The graphs of |RN,p(f, θ
c, θs, x)| on [−0.7, 0.7] for N = 64 while

approximating f1(x) by the modified Fourier expansions (p = 0) and the
MFP-approximations (p = 1, 2, 3).

Now, we investigate the pointwise convergence of the MFP-approxima-
tions at the endpoints x = ±1. We estimate (13) and (14) for x = ±1.
Hence, we need asymptotic expansions for ∆p

n(θc, f̂ c) and ∆p
n(θs, f̂ s) .

Lemma 1 [10] Let f ∈ C(2q+p+1)[−1, 1], f (2q+p+1) ∈ BV [−1, 1], q ≥ 0, and

f (2k+1)(±1) = 0, k = 0, . . . , q − 1, (31)

with
A2q+1(f)B2q+1(f) 6= 0. (32)
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Let the systems (15), (16) have unique solutions θc and θs, respectively.
Then, the following estimates hold

∆p
n(θc, f̂ c) = A2q+1(f)

(−1)n(2q + p+ 1)!

Npn2q+2π2q+2(2q + 1)!

(
1− N

n

)p
+ o(N−p)

1

n2q+2
, n > N,N →∞,

(33)

and

∆p
n(θs, f̂ s) = B2q+1(f)

(−1)n+1(2q + p+ 1)!

Npn2q+2π2q+2(2q + 1)!

(
1− N

n− 1
2

)p
+ o(N−p)

1

n2q+2
, n > N,N →∞.

(34)

Theorem 3 Assume f ∈ C2q+p+2[−1, 1], f (2q+p+2) ∈ BV [−1, 1], q ≥ 0,
p ≥ 0, and

f (2k+1)(±1) = 0, k = 0, . . . , q − 1, (35)

with
A2q+1(f)B2q+1(f) 6= 0. (36)

Let the systems (15), (16) have unique solutions θc and θs, respectively.
Then, the following estimate holds

RN,p(f, θ
c, θs,±1) =

hp,q
π2q+2(2q + 1)N2q+1

(A2q+1(f)±B2q+1(f) )

+ o(N−2q−1),

(37)

where

hp,q =
p!(2q + 1)!

(2q + p+ 1)!
. (38)

Proof. As we mentioned above parameters θc and θs have asymptotic ex-
pansions as in (18), where parameters τ ck = τ sk = τk, k = 1, . . . , p and τk are
the roots of the generalized Laguerre polynomial

L(2q+1)
p (x) =

p∑
k=0

(−1)k
(p+ 2q + 1)!

k!(p− k)!(2q + 1 + k)!
xk. (39)

From here and the Vieta’s formula, we also have

p∏
k=1

τk =
(2q + 1 + p)!

(2q + 1)!
. (40)

In view of (13) and (14), we write

Rc
N,p(f, θ

c,±1) =
Np∏p

k=1(τk + o(1))

∞∑
n=N+1

∆p
n(θc, f cn)(−1)n, (41)
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and

Rs
N,p(f, θ

s,±1) = ± Np∏p
k=1(τk + o(1))

∞∑
n=N+1

∆p
n(θs, f sn)(−1)n. (42)

From (18) and Lemma 1, we get

Rc
N,p(f, θ

c,±1) =
A2q+1(f)

π2q+2

(2q + p+ 1)!

(2q + 1)!
∏p

k=1 τk

∞∑
n=N+1

1

n2q+2

(
1− N

n

)p
+ o(N−2q−1).

(43)

Finally, we get

Rc
N,p(f, θ

c, θs,±1) =
A2q+1(f)

π2q+2N2q+1

hp,q
(2q + 1)

+ o(N−2q−1), (44)

where

hp,q = (2q + 1)

p∑
k=0

(
p

k

)
(−1)k

2q + k + 1
. (45)

Similarly, we show that

Rs
N,p(f, θ

c, θs,±1) = ± B2q+1(f)

π2q+2N2q+1

hp,q
(2q + 1)

+ o(N−2q−1). (46)

It remains to note that ([19])

p∑
k=0

(
p

k

)
(−1)k

2q + k + 1
=

p!(2q)!

(2q + p+ 1)!
. (47)

�

For p = 0, Theorem 3 coincides with the following well-known result:

Theorem 4 [6] Suppose that f ∈ C2q+2(−1, 1), f (2q+2) ∈ BV [−1, 1] and f
obeys the first q derivative conditions

f (2r+1)(±1) = 0, r = 0, . . . , q − 1. (48)

Then,

f(±1)−MN(f,±1) =
1

π2q+2(2q + 1)N2q+1
(A2q+1(f)±B2q+1(f))

+ o(N−2q−1).

(49)
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p\q q=0 q=1 q=2 q=3 q=4 q=5 q=6

p = 1 2 4 6 8 10 12 14
p = 2 3 10 21 36 55 78 105
p = 3 4 20 56 120 220 364 560
p = 4 5 35 126 330 715 1365 2380

Table 1: The values of 1/hp,q.

A comparison of Theorems 3 and 4 shows that the expansions by the
modified Fourier basis and the MFP-approximations have the same conver-
gence rates at the endpoints x = ±1. However, a comparison of constants
hp,q with h0,q = 1 shows that the MFP-approximations are much more ac-
curate than the classical expansions and asymptotic improvement is thanks
to the factor h0,q/hp,q = 1/hp,q. Table 1 presents the numerical values of the
ratio 1/hp,q.

It would be interesting to compare the asymptotic improvement with
actual improvement for moderate values of N . Table 2 shows the values of

max |RN (f,±1)|
max |RN,p(f,θc,θs,±1)|

for fq(x) (see (30)) for N = 64. We see that for small

values of p and q, the corresponding numbers of Tables 1 and 2 are rather
close.

p\q q=0 q=1 q=2 q=3 q=4 q=5 q=6

p = 1 1.97 3.82 5.55 7.17 8.70 10.13 11.49
p = 2 2.91 9.10 17.93 28.90 41.54 55.50 70.50
p = 3 3.81 17.33 44.11 86.08 143.93 217.63 306.81
p = 4 4.69 28.88 91.42 211.17 404.31 684.00 1060.94

Table 2: The values of ratio max |RN (f,±1)|
max |RN,p(f,θc,θs,±1)|

while approximating (30) for

q = 0, 1, . . . , 6 with N = 64.

Figure 2 demonstrates the values of − log10 (max |RN,p(f, θ
c, θs,±1)|) for

different values of N and p = 0, 1, 2, 3 while approximating f1(x). The case
p = 0 corresponds to the expansions by the modified Fourier basis.

2 L2-minimal MTR-approximations

Next theorem reveals the behavior of the MFP-approximations in the L2-
norm.
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Figure 2: The values of − log10 (max |RN,p(f, θ
c, θs,±1)|) for different N and

p while approximating f1(x). The case p = 0 corresponds to the expansion
by the modified Fourier basis.

Theorem 5 [10] Let f ∈ C2q+p+1[−1, 1], f (2q+p+1) ∈ BV [−1, 1], q ≥ 0, p ≥
1. Let θc, θs be the unique solutions of (15) and (16), respectively. If

f (2k+1)(±1) = 0, k = 0, . . . , q − 1, (50)

and
A2q+1(f)B2q+1(f) 6= 0, (51)

then, the following estimate holds

lim
N→∞

N2q+ 3
2 ||RN,p||L2 =

cp,q
π2q+2

√
4q + 3

√
A2

2q+1(f) +B2
2q+1(f), (52)

where

cp,q =
(p+ 2q + 1)!

√
4q + 3

(2q + 1)!

×

∫ ∞
1

dt

∣∣∣∣∣∣
∫ t

1

(1− x)p

x2q+p+2

p∑
j=1

e−τj(t−x)∏p
k=1
k 6=j

(τj − τk)
dx

∣∣∣∣∣∣
2

1
2

,

(53)

and τk, k = 1, . . . , p are the roots of the generalized Laguerre polynomial
L
(2q+1)
p (x) (see (39)).

The estimate (52) is valid also for p = 0. This leads to the next theorem
concerning the L2-convergence of the modified Fourier expansion.
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Theorem 6 Let f ∈ C2q+1[−1, 1], q ≥ 0, f (2q+1) ∈ BV [−1, 1] and

f (2k+1)(±1) = 0, k = 0, . . . , q − 1. (54)

Then, the following estimate holds

lim
N→∞

N2q+ 3
2 ||RN(f, x)||L2 =

1

π2q+2
√

4q + 3

√
A2

2q+1(f) +B2
2q+1(f). (55)

Proof. We prove that c0,q = 1. We use (53) and after some transformations
derive

cp,q =
(p+ 2q + 1)!

√
4q + 3

(2q + 1)!

∫ ∞
1

(−1)p

t2q+2
−

p∑
j=1

e−τj(t−1)∏p
i=1
i 6=j

(τi − τj)

×
p∑

k=0

(−1)k+1γk(τ)

p−k−1∑
m=0

τmj
(2q + p− k −m)!

(2q + 1)!

)2

dt

 1
2

.

(56)

By putting p = 0, we get

c0,q =
√

4q + 3

(∫ ∞
1

1

t4q+4
dt

) 1
2

= 1, (57)

which concludes the proof. �

Comparison of Theorems 5 and 6 shows that the classical expansions and
the MFP-approximations have the same convergence rates in the L2-norm.
However, comparison of constants cp,q and c0,q = 1 shows that the rational
approximations are asymptotically more accurate and, the improvement is
thanks to the factor c0,q/cp,q = 1/cp,q. Table 3 shows the numerical val-
ues of ratio 1/cp,q. For example, when q = 6 and p = 4, the asymptotic
improvement is 5595 times.

p\q q=0 q=1 q=2 q=3 q=4 q=5 q=6

p = 1 3.4 6.6 9.9 13 16 19 22
p = 2 6.3 20 41 70 107 151 203
p = 3 9.8 46 125 265 481 791 1212
p = 4 13 89 310 797 1706 3229 5595

Table 3: The values of the ratio 1/cp,q.

Let us see, how those asymptotic estimates could be achieved for mod-

erate values of N . Table 4 shows the values of
||RN ||L2

||RN,p||L2
while approximating
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p\q q=0 q=1 q=2 q=3 q=4 q=5 q=6

p = 1 3.3 6.3 9.1 11 15 16 18
p = 2 6.1 18 34 55 89 106 134
p = 3 9.2 38 96 185 343 461 647
p = 4 12 71 217 493 1042 1565 2413

Table 4: The values of
||RN ||L2

||RN,p||L2
while approximating (30) with N = 64.

fq(x) (see (30)) for N = 64. We see that the corresponding numbers in
Tables 3 and 4 are close for small p and q.

Theorem 5 shows that the L2-error of the MFP-approximations depends
only on the τk parameters which are the coefficients of the second term in
the asymptotic expansion of θk = θk(N) in terms of 1

N
. Paper [11] showed

that the accuracy of the rational approximations by the classical Fourier
basis could be increased by appropriate selection of those parameters. We
try the same approach for the MTR-approximations with parameters θc and
θs defined by (19).

We omit the proof of the next theorem as it imitates the proof of similar
theorem in [11].

Theorem 7 Let f ∈ C(2q+p+1)[−1, 1] and f (2q+p+1) ∈ BV [−1, 1], q ≥ 0
p ≥ 1. Let

f (2k+1)(±1) = 0, k = 0, . . . , q − 1, (58)

and
θck = θsk = 1− τk

N
, τk > 0, k = 1, . . . , p. (59)

Then,

lim
N→∞

N2q+ 3
2 ||RN,p||L2 =

c∗p,q
π2q+2

√
4q + 3

√
A2

2q+1(f) +B2
2q+1(f), (60)

where c∗p,q is defined by (53) for all τk > 0, k = 1, . . . , p.

In the estimate (60), the constant c∗p,q will coincide with cp,q if the pa-

rameters τk are the roots of L
(2q+1)
p (x). Our goal is the minimization of c∗p,q

by an appropriate selection of parameters τk, k = 1, . . . , p (see also [11] for
a similar problem). The corresponding MTR-aproximation we call as L2-
minimal MTR-approximation. Table 5 shows some of the optimal values of
τk (see [11]) with the corresponding value of 1/c∗p,q which shows the efficiency
of the L2-minimal MTR-approximation in comparison with the classical ex-
pansions by the modified Fourier basis with the exact asymptotic constant
c0,q = 1.
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q 0 1 2 3 4 5 6

1/c∗1,q 5.7 12.2 18.7 25.3 31.8 38.3 44.9

τ1 1.35 3.3 5.3 7.3 9.3 11.3 13.3

1/c∗2,q 21.1 82.4 183.8 326 508 731 994

τ1 2.8 5.4 3.3 4.9 6.5 14.9 17.1
τ2 0.53 1.8 7.8 10.2 12.6 8.2 9.9

1/c∗3,q 61.3 412 1297 2965 5667 9650 15167

τ1 4.2 7.3 5.2 7.2 4.95 17.9 20.4
τ2 0.3 3.2 10.1 12.7 9.1 6.4 7.9
τ3 1.29 1.12 2.3 3.6 15.3 11.1 13.1

1/c∗4,q 157 1704 7378 21442 49700 99492 179701

τ1 2.2 4.6 6.9 5.4 11.4 5.2 10.6
τ2 5.7 9.1 12.2 15.1 17.9 8.8 6.5
τ3 0.1 2.1 3.7 9.2 7.1 20.6 23.3
τ4 0.67 0.74 1.6 2.7 3.9 13.7 15.9

Table 5: Numerical values of 1/c∗p,q for p = 1, 2, 3, 4 with the optimal values
of τk, k = 1, . . . , p that minimize c∗p,q.

A comparison of Tables 3 and 5 shows that the L2-error of the L2-minimal
MTR-approximation is smaller than the L2-error of the corresponding MFP-
approximation. For example, in case of p = 2 and q = 6, the asymptotic
improvement is thanks to the factor 4.9.

Table 6 presents the values of the ratio
||RN ||L2

||R∗N,p||L2
while approximating

fq(x) with N = 64. Here, R∗N,p corresponds to the error of the L2-minimal
MTR-approximation. We see that in case of the L2-minimal approximations
it is harder to achieve the theoretical estimates with moderate values of N .

p\q q=0 q=1 q=2 q=3 q=4 q=5 q=6

p = 1 5.72 11.78 16.35 17.46 17.70 13.49 11.33
p = 2 20.01 53.39 60.92 60.78 68.71 64.43 70.81
p = 3 31.32 38.96 108.66 157.55 269.63 436.33 1016.48
p = 4 10.88 56.53 148.14 367.79 1476.83 1823.77 864.76

Table 6: The values of
||RN ||L2

||R∗N,p||L2
while approximating (30) with N = 64.

Now, let us compare the pointwise convergence of the rational approxi-
mations for |x| < 1. Figure 3 shows the behaviors of the L2-minimal MTR-
approximations on [−0.7, 0.7]. A comparison with Figure 1 shows that the
MFP-approximations are substantially more accurate on |x| < 1 than the
L2-minimal MTR-approximations.
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Figure 3: The graphs of R∗N,p for N = 64 while approximating f1(x) on
[−0.7, 0.7].

3 Conclusion

In this article, we explored convergence of the modified-trigonometric-ratio-
nal (MTR-) approximations in different frameworks. These approxima-
tions arose while accelerating the convergence of expansions by the mod-
ified Fourier basis by means of parametrized rational corrections. Different
approaches are known for the parameter determination.

One approach led to the modified Fourier-Pade (MFP-) approximations.
Previously, we investigated the pointwise convergence of the MFP-approxi-
mations away from the endpoints of an interval of approximation and the
L2-convergence on the entire interval.

Here, we continued those investigations considering the pointwise con-
vergence at the endpoints of the interval by deriving the exact constant of
the main term of the asymptotic error. Although the classical modified ex-
pansions and the MFP-approximations have the same convergence rates, the
comparison of the exact constants outlines the bigger asymptotic accuracy
of the rational approximations.

As a result, we observed that the MFP-approximations are much more
accurate in comparison with the classical expansions in all considered frame-
works for sufficiently smooth functions.

Another approach for parameter determination leads to MTR-approxi-
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mations optimal in different frameworks. Here, we considered optimality
in the sense of the L2-norm and found the optimal values of parameters
minimizing the corresponding constant of the main term of the asymptotic
error. We called this approach as L2-minimal MTR-approximation.

Although the MFP and the L2-minimal MTR-approximations have the
same convergence rate in the L2-norm, the comparison of the asymptotic es-
timates shows better accuracy of the optimal approach. However, optimality
in the L2-norm degrades the pointwise accuracy away from the endpoints in
comparing with the MFP-approximations.
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