Perfect 3-colorings of cubic graphs of order 8

M. Alaeiyan and A. Mehrabani

Abstract

Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_{1}, \ldots, A_{m} such that, for all $i, j \in\{1, \cdots, m\}$, every vertex of A_{i} is adjacent to the same number of vertices, namely, $a_{i j}$ vertices, of A_{j}. The matrix $A=\left(a_{i j}\right)_{i, j \in\{1, \cdots, m\}}$ is called the parameter matrix. We study the perfect 3 -colorings (also known as the equitable partitions into three parts) of the cubic graphs of order 8. In particular, we classify all the realizable parameter matrices of perfect 3 -colorings for the cubic graphs of order 8 .

Key Words: perfect coloring, parameter matrices, Cubic graph, equitable partition
Mathematics Subject Classification 2010: 03E02, 05C15, 68R05

Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another term for this concept in the literature as "equitable partition" (see [11]).
The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. We are looking for a positive answer to find the conjecture Delsarte for each cubic graphs of order 8. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including $J(6,3), J(7,3), J(8,3), J(8,4)$, and $J(v, 3)$ (v odd) (see [4, 5, 9]).
Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_{n} for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the n-dimensional cube with a given parameter matrix (see [6, 7, 8]).

In this paper all graphs are finite, undirected, simple and connected. Let $G=(V, E)$ be an undirected graph. Two vertices $u, v \in V(G)$ are adjacent if there exists an edge $e=\{u, v\} \in E(G)$ to which they are both incident. The adjacent will be shown $u \leftrightarrow v$.

A cubic graph is a 3 -regular graph. In [12], it is shown that the number of connected cubic graphs with 8 vertices is 5 . Each graph is described by a drawing as shown in Figure 1.

Figure 1: Connected cubic graphs of order 8

Definition 1 For a graph G and an integer m, a mapping $T: V(G) \rightarrow$ $\{1, \cdots, m\}$ is called a perfect m-coloring with matrix $A=\left(a_{i j}\right)_{i, j \in\{1, \cdots, m\}}$ if it is surjective, and for all i, j, for every vertex of color i, the number of its neighbors of color j is equal to $a_{i j}$. The matrix A is called the parameter matrix of a perfect coloring. In the case $m=3$, we use three colors: white, black and red. The sets of white, black and red vertices are denoted by W, B and R, respectively. In this paper, we generally show a parameter matrix by

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Remark 1 In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. we identify the perfect 3-coloring with the matrices:

$$
\left[\begin{array}{lll}
a & c & b \\
g & i & h \\
d & f & e
\end{array}\right],\left[\begin{array}{lll}
e & d & f \\
b & a & c \\
h & g & i
\end{array}\right],\left[\begin{array}{lll}
e & f & d \\
h & i & g \\
b & c & a
\end{array}\right],\left[\begin{array}{lll}
i & h & g \\
f & e & d \\
c & b & a
\end{array}\right],\left[\begin{array}{lll}
i & g & h \\
c & a & b \\
f & d & e
\end{array}\right],
$$

obtained by switching the colors with the original coloring.

1 Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for the existence of perfect 3 -colorings of connected graph of order 8 with a given parameter matrix A.
The simplest necessary condition for the existence of perfect 3-colorings of a cubic connected graph with the matrix $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is:

$$
a+b+c=d+e+f=g+h+i=3 .
$$

Also, it is clear that we cannot have $b=c=0, d=f=0$, or $g=h=0$, since the graph is connected. In addition, $b=0, c=0, f=0$ if $d=0$, $g=0, h=0$, respectively.
The number θ is called an eigenvalue of a graph G , if θ is an eigenvalue of the adjacency matrix of this graph. The number λ is called an eigenvalue of a perfect coloring T into three colors with the matrix A , if λ is an eigenvalue of A . The following theorem demonstrates the connection between the introduced notions.

Theorem 1 ([1]) If T is a perfect coloring of a graph G in m colors, then any eigenvalue of T is an eigenvalue of G.

The next theorem can be useful to find the eigenvalues of a parameter matrix.
Theorem 2 Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a parameter matrix of a k-regular graph.
Then the eigenvalues of A are

$$
\lambda_{1,2}=\frac{\operatorname{tr}(A)-k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(A)-k}{2}\right)^{2}-\frac{\operatorname{det}(A)}{k}} \quad, \quad \lambda_{3}=k
$$

Proof. By using the condition $a+b+c=d+e+f=g+h+i=k$, it is clear that one of the eigenvalues is k. Therefore $\operatorname{det}(A)=k \lambda_{1} \lambda_{2}$. From $\lambda_{2}=\operatorname{tr}(A)-\lambda_{1}-k$, we get

$$
\operatorname{det}(A)=k \lambda_{1}\left(\operatorname{tr}(A)-\lambda_{1}-k\right)=-k \lambda_{1}^{2}+k(\operatorname{tr}(A)-k) \lambda_{1} .
$$

By solving the equation $\lambda^{2}+(k-\operatorname{tr}(A)) \lambda+\frac{\operatorname{det}(A)}{k}=0$, we obtain

$$
\lambda_{1,2}=\frac{\operatorname{tr}(A)-k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(A)-k}{2}\right)^{2}-\frac{\operatorname{det}(A)}{k}} .
$$

The eigenvalues of the all cubic graphs of order 8 are stated in the next theorem.

Theorem 3 ([12]) The distinct eigenvalues of the graph G_{1} are the numbers $3, \sqrt{5},-1,-\sqrt{5}$. The distinct eigenvalues of the graph G_{2} are the numbers $\sqrt{3}, 1,1-\sqrt{2},-1,-\sqrt{3},-3+\sqrt{2}$. The distinct eigenvalues of the graph G_{3} are the numbers $3,1.5616,0.618,0,-1.618,-2.5616$. The distinct eigenvalues of the graph G_{4} are the numbers $3,1,-1,3$. The distinct eigenvalues of the graph G_{5} are the numbers $3,1,1-\sqrt{2},-1,-2,-3+\sqrt{2}$.

The next proposition gives a formula for calculating the number of white, black and red vertices, in a perfect 3 -coloring.

Proposition 1 ([3]) Let T be a perfect 3-coloring of a graph G with the matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.

1. If $b, c, f \neq 0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}},|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{f}{h}},|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}} .
$$

2. If $b=0$, then

$$
|W|=\frac{|V(G)|}{\frac{c}{g}+1+\frac{c h}{f g}},|B|=\frac{|V(G)|}{\frac{f}{h}+1+\frac{f g}{c h}},|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}} .
$$

3. If $c=0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{b f}{d h}},|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{f}{h}},|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{d h}{b f}} .
$$

4. If $f=0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}},|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{c d}{b g}},|R|=\frac{|V(G)|}{\frac{g}{c}+1+\frac{b g}{c d}} .
$$

In this section, without loss of generality, we may assume $|W| \leq|B| \leq$ $|R|$.

Lemma 1 Let G be a cubic connected graph of order 8. Then G has no perfect 3-coloring T with the matrix that $|W|=1$.

Proof. Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a parameter matrix with $|W|=1$. Consider the white vertex. It is clear that none of its adjacent vertices are white; i.e. $a=0$. Therefore, we have two cases below.
(1) The adjacent vertices of the white vertex are the same color.

If they are black, then $b=3$ and $c=0$. From $c=0$, we get $g=0$. Also, since the graph is connected, $f, h \neq 0$. Hence, we obtain the following matrices:

$$
\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 3 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 3 & 0
\end{array}\right] .
$$

If the adjacent vertices of the white vertex are red, then $c=3, b=0$. From $b=0$, we get $d=0$. Also, since the graph is connected, $f, h \neq 0$. Hence, we obtain the following matrices:

$$
\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right] .
$$

Finally, by using Remark 1 and the fact that $|W| \leq|B| \leq|R|$, it is obvious that there are only six matrices in (1), as shown A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}.

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right], A_{2}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right], A_{3}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right], A_{4}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \\
& A_{5}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right], A_{6}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right] .
\end{aligned}
$$

(2) The adjacent vertices of the white vertex are different colors. It immediately gives that $b, c \neq 0$. Also, it can be seen that $d=g=1$. An easy computation, as in (1), shows that there are only five matrices that can be a parameter matrix in this case, as shown $A_{7}, A_{8}, A_{9}, A_{10}$,
A_{11}.
$A_{7}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right], A_{8}=\left[\begin{array}{lll}0 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right], A_{9}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right], A_{10}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right]$,
$A_{11}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$.
By using the Proposition 1, it can be seen that no matrix can be a parameter.

We now peresent two lemmas which can be useful to reach our goal.
Lemma 2 Let G be a cubic connected graph of order 8. If T is a perfect 3-coloring with the matrix A, and $|W|=|B|=2,|R|=4$, then A should be one of the following matrices:

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right] .
$$

Proof. First, suppose that $b, c \neq 0$. As $|W|=2$, by Proposition 1, it follows that $\frac{b}{d}+\frac{c}{g}=3$. From $b+c \leq 3$, we have $b=2, c=g=d=1$, or $c=2$, $b=g=d=1$. If $b=2, c=g=d=1$, we get a contradiction of $|B|=2$. If $c=2, b=d=g=1$, then we conclude from $|B|=2$ and $|R|=4$ that $h=1, f=2$. Therefore $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right]$ or $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$.
Second, suppose that $b=0$ and, in consequence, $d=0$. As $|R|=4$, by Proposition 1. it follows that $\frac{g}{c}+\frac{h}{f}=1$. Therefore, $c=f=2, g=h=1$, or $c=f=3, h=2, g=1$, or $c=f=3, g=2, h=1$. If $c=f=2, g=h=1$, then $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]$. In the other two cases, we get a contradiction of $|B|=2$.
Third, suppose that $c=0$ and, in consequence, $g=0$. As $|B|=2$, by Proposition 1. it follows that $\frac{d}{b}+\frac{f}{h}=3$. Therefore $d=2, b=f=h=1$, or $f=2, b=h=d=1$. If $d=2, b=f=h=1$, then we get a contradiction of $|R|=4$. If $f=2, b=h=d=1$, then $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2\end{array}\right]$.

Finally, note that the matrix $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ is the same as the matrix $\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2\end{array}\right]$ up to renaming the colors, by Remark 1 .

Lemma 3 Let G be a cubic connected graph of order 8. If T is a perfect 3-coloring with the matrix A, and $|W|=2,|B|=|R|=3$, then A should be the following matrix:

$$
\left[\begin{array}{lll}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2
\end{array}\right] .
$$

Proof. First, suppose that $b, c \neq 0$. As $|W|=2$, by Proposition 1. it follows that $\frac{b}{d}+\frac{c}{g}=3$. From $b+c \leq 3$, we get $b=2, c=g=d=1$, or $c=2$, $b=g=d=1$. If $b=2, c=g=d=1$, we get a contradiction of $|B|=3$. If $c=2, b=d=g=1$, then from Proposition 1, we have $f=2, h=3$, which is a contradiction of $g+h \leq 3$.
Second, suppose that $b=0$ and, in consequence, $d=0$. As $|R|=3$, by Proposition 1 , it follows that $\frac{g}{c}+\frac{h}{f}=\frac{5}{3}$. Therefore, $c=3, g=2$, $h=f=1$, or $f=3, h=2, c=g=1$. If $c=3, g=2, h=f=1$, then $A=\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$. In the other case, we get a contradiction of $|W|=2$.
Third, suppose that $c=0$ and, in consequence, $g=0$. As $|B|=3$, by Proposition 1 . it follows that $\frac{d}{b}+\frac{f}{h}=\frac{5}{3}$. Therefore $h=3, f=2, b=d=1$, or $b=3, d=2, f=h=1$. If $h=3, f=2, b=d=1$, then we get a contradiction of $|W|=2$. If $b=3, d=2, f=h=1$, then $A=\left[\begin{array}{lll}0 & 3 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$. Finally, note that the matrix $\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$ is the same as the matrix $\left[\begin{array}{lll}0 & 3 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$ up to renaming the colors, by Remark 1 .

By using the Lemmas 1, 2 and 3, it can be seen that only the following matrices:

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right], A_{2}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], A_{3}=\left[\begin{array}{lll}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2
\end{array}\right], A_{4}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

can be parameter ones.

2 Perfect 3-colorings of cubic graphs with 8 vertices

In this section we enumerate the parameter matrices of all perfect 3-colorings of cubic graphs with 8 vertices. As it has been shown in section 3, only matrices A_{1}, A_{2}, A_{3} and A_{4} can be parameter matrices. With consideration of cubic graphs eigenvalues and using Theorems 1, 2 and 3, it can be seen that the connected cubic graphs with 8 vertices can have a perfect 3 -coloring with the matrices A_{1}, A_{2} and A_{3} which is represented by table 1 .

graphs	matrix A_{1}	matrix A_{2}	matrix A_{3}
G_{1}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{2}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{3}	\times	\times	$\sqrt{ }$
G_{4}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{5}	$\sqrt{ }$	$\sqrt{ }$	\times

Table 1

Theorem 4 There are no perfect 3-colorings with the matrix A_{1} for the graph G_{5}.

Proof. Countrary to our claim, suppose that T is a perfect 3 -coloring with the matrix $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right]$ for the graph G_{5}. Without restriction of generality, suppose that $T\left(a_{1}\right)=1$. Therefore, again without restriction of generality, suppose that $T\left(a_{2}\right)=T\left(a_{8}\right)=3$ and $T\left(a_{5}\right)=2$. From $T\left(a_{5}\right)=2$, we can easily seen that $T\left(a_{4}\right)=T\left(a_{6}\right)=3$. Therefore $T\left(a_{4}\right)=2$, which is a contradiction with third row of the matrix A_{1}.

Theorem 5 The parameter matrices of cubic graphs of order 8 are listed in the following table.

graphs	matrix A_{1}	matrix A_{2}	matrixA A_{3}
G_{1}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{2}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{3}	\times	\times	$\sqrt{ }$
G_{4}	$\sqrt{ }$	$\sqrt{ }$	\times
G_{5}	\times	$\sqrt{ }$	\times

Table 2

Proof. As it has been shown in the table 1, only the matrices A_{1}, A_{2} and A_{3} can be parameter matrices. Hence, from Theorem 4 it suffices to show that there are perfect 3 -colorings with the matrices in the table 2 . The graph G_{1} has perfect 3 -colorings with the matrices A_{1} and A_{2}. Consider two mappings T_{1} and T_{2} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{2}\right)=T_{1}\left(a_{6}\right)=1, T_{1}\left(a_{4}\right)=T_{1}\left(a_{8}\right)=2, \\
& T_{1}\left(a_{1}\right)=T_{1}\left(a_{3}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{7}\right)=3 . \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{2}\right)=1, T_{2}\left(a_{5}\right)=T_{2}\left(a_{6}\right)=2, \\
& T_{2}\left(a_{3}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{7}\right)=T_{2}\left(a_{8}\right)=3 .
\end{aligned}
$$

It is clear that T_{1} and T_{2} are perfect 3 -colorings with the matrices A_{1} and A_{2}, respectively.

The graph G_{2} has perfect 3 -colorings with the matrices A_{1} and A_{2}. Consider two mappings T_{1} and T_{2} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{1}\right)=T_{1}\left(a_{3}\right)=1, T_{1}\left(a_{5}\right)=T_{1}\left(a_{7}\right)=2, \\
& T_{1}\left(a_{2}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{6}\right)=T_{1}\left(a_{8}\right)=3, \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{5}\right)=1, T_{2}\left(a_{3}\right)=T_{2}\left(a_{7}\right)=2, \\
& T_{2}\left(a_{2}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{6}\right)=T_{2}\left(a_{8}\right)=3 .
\end{aligned}
$$

It is clear that T_{1} and T_{2} are perfect 3 -coloring with the matrices A_{1} and A_{2}, respectively.
The graph G_{3} has perfect 3 -colorings with the matrix A_{3}. Consider a mapping T_{1} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{2}\right)=T_{1}\left(a_{8}\right)=1, T_{1}\left(a_{1}\right)=T_{1}\left(a_{3}\right)=T_{1}\left(a_{7}\right)=2, \\
& T_{1}\left(a_{4}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{6}\right)=3
\end{aligned}
$$

It is clear that T_{1} is a perfect 3 -colorings with the matrices A_{3}.
The graph G_{4} has perfect 3 -colorings with the matrices A_{1} and A_{2}. Consider two mappings T_{1} and T_{2} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{2}\right)=T_{1}\left(a_{7}\right)=1, T_{1}\left(a_{5}\right)=T_{1}\left(a_{8}\right)=2, \\
& T_{1}\left(a_{1}\right)=T_{1}\left(a_{3}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{6}\right)=3 . \\
& T_{2}\left(a_{2}\right)=T_{2}\left(a_{5}\right)=1, T_{2}\left(a_{7}\right)=T_{2}\left(a_{8}\right)=2, \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{3}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{6}\right)=3 .
\end{aligned}
$$

It is clear that T_{1} and T_{2} are perfect 3 -colorings with the matrices A_{1} and A_{2}, respectively.
The graph G_{5} has perfect 3 -colorings with the matrix A_{3}. Consider a mapping T_{1} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{4}\right)=T_{1}\left(a_{8}\right)=1, T_{1}\left(a_{2}\right)=T_{1}\left(a_{6}\right)=2, \\
& T_{1}\left(a_{1}\right)=T_{1}\left(a_{3}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{7}\right)=3 .
\end{aligned}
$$

It is clear that T_{1} is a perfect 3 -colorings with the matrices A_{3}.

References

[1] M. Alaeiyan and A. Abedi, Perfect 2-colorings of Johnson graphs J(4, 3), $J(4,3), J(6,3)$ and Petersen graph, Ars Combinatoria,(to appear)
[2] M. Alaeiyan, H. Karami, Perfect 2-colorings of the generalized Petersen graph, Proceedings Mathematical Sciences, 126 (2016), pp. 1-6
[3] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10, Electronic Journal of Graph Theory and Applications (EJGTA), 5(2) (2017), pp. 194-206.
[4] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs $J(6,3)$ and $J(7,3)$, Lecture Notes in Computer Science, 5228 (2008), pp. 11-19.
[5] S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs $J(8,3)$ and $J(8,4)$ with two colors, Journal of Applied and Industrial Mathematics, 5 (2011), pp. 19-30.
[6] D. G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal, 4 (2007), pp. 133-135.
[7] D. G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal, 4 (2007), pp. 923-930.
[8] D. G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, Siberian Mathematical Journal, 4 (2007), pp. 292-295.
[9] A. L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs $J(v, 3)$, Journal of Combinatorial Designs, 21 (2013), pp. 232252.
[10] Godsil, Chris, and Gordon Royle, Algebraic graph theory, volume 207 of Graduate Texts in Mathematics, (2001).
[11] C. Godsil, Compact graphs and equitable partitions,, Linear Algebra and Its Application, 255 (1997), pp. 259-266.
[12] F. C. Bussemaker, S. Cobeljic, D.M. Cvetkovic, J.J. Seidel, Computer investigation of cubic graphs, Technische Hogeschool Eindhoven Nederland Onderafedeling Der Wiskunde, January 1976.

Mehdi Alaeiyan
School of Mathematics,
Iran University of Science and Technology
Narmak 16846, Tehran, Iran.
alaeiyan@iust.ac.ir
Ayoob Mehrabani
School of Mathematics,
Iran University of Science and Technology
Narmak 16846, Tehran, Iran.
amehrabani@mathdep.iust.ac.ir
Please, cite to this paper as published in
Armen. J. Math., V. 10, N. 2(2018), pp. 11

