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Perfect 3-colorings of cubic graphs of order 8

M. Alaeiyan and A. Mehrabani

Abstract. Perfect coloring is a generalization of the notion
of completely regular codes, given by Delsarte. A perfect m-
coloring of a graph G with m colors is a partition of the vertex set
of G into m parts A1, . . . , Am such that, for all i, j ∈ {1, · · · ,m},
every vertex of Ai is adjacent to the same number of vertices,
namely, aij vertices, of Aj . The matrix A = (aij)i,j∈{1,··· ,m} is
called the parameter matrix. We study the perfect 3-colorings
(also known as the equitable partitions into three parts) of the
cubic graphs of order 8. In particular, we classify all the re-
alizable parameter matrices of perfect 3-colorings for the cubic
graphs of order 8.
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Introduction

The concept of a perfect m-coloring plays an important role in graph the-
ory, algebraic combinatorics, and coding theory (completely regular codes).
There is another term for this concept in the literature as “equitable parti-
tion” (see [11]).
The existence of completely regular codes in graphs is a historical problem
in mathematics. Completely regular codes are a generalization of perfect
codes. In 1973, Delsarte conjectured the non-existence of nontrivial perfect
codes in Johnson graphs. We are looking for a positive answer to find the
conjecture Delsarte for each cubic graphs of order 8. Therefore, some ef-
fort has been done on enumerating the parameter matrices of some Johnson
graphs, including J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) (see
[4, 5, 9]).
Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of
n-dimensional hypercube Qn for n < 24. He also obtained some construc-
tions and a necessary condition for the existence of perfect 2-colorings of the
n-dimensional cube with a given parameter matrix (see [6, 7, 8]).
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In this paper all graphs are finite, undirected, simple and connected. Let
G = (V,E) be an undirected graph. Two vertices u, v ∈ V (G) are adjacent
if there exists an edge e = {u, v} ∈ E(G) to which they are both incident.
The adjacent will be shown u↔ v.

A cubic graph is a 3-regular graph. In [12], it is shown that the number
of connected cubic graphs with 8 vertices is 5. Each graph is described by a
drawing as shown in Figure 1.

Figure 1: Connected cubic graphs of order 8

Definition 1 For a graph G and an integer m, a mapping T : V (G) →
{1, · · · ,m} is called a perfect m-coloring with matrix A = (aij)i,j∈{1,··· ,m} if
it is surjective, and for all i, j, for every vertex of color i, the number of its
neighbors of color j is equal to aij. The matrix A is called the parameter
matrix of a perfect coloring. In the case m = 3, we use three colors: white,
black and red. The sets of white, black and red vertices are denoted by W,B
and R, respectively. In this paper, we generally show a parameter matrix by

A =

a b c
d e f
g h i

 .
Remark 1 In this paper, we consider all perfect 3-colorings, up to renaming
the colors; i.e. we identify the perfect 3-coloring with the matrices:a c b

g i h
d f e

 ,
e d f
b a c
h g i

 ,
e f d
h i g
b c a

 ,
 i h g
f e d
c b a

 ,
 i g h
c a b
f d e

 ,
obtained by switching the colors with the original coloring.
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1 Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for
the existence of perfect 3-colorings of connected graph of order 8 with a
given parameter matrix A.
The simplest necessary condition for the existence of perfect 3-colorings of

a cubic connected graph with the matrix

a b c
d e f
g h i

 is:

a+ b+ c = d+ e+ f = g + h+ i = 3.

Also, it is clear that we cannot have b = c = 0, d = f = 0, or g = h = 0,
since the graph is connected. In addition, b = 0, c = 0, f = 0 if d = 0,
g = 0, h = 0, respectively.
The number θ is called an eigenvalue of a graph G, if θ is an eigenvalue of
the adjacency matrix of this graph. The number λ is called an eigenvalue
of a perfect coloring T into three colors with the matrix A, if λ is an eigen-
value of A. The following theorem demonstrates the connection between the
introduced notions.

Theorem 1 ([1]) If T is a perfect coloring of a graph G in m colors, then
any eigenvalue of T is an eigenvalue of G.

The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 2 Let A =

a b c
d e f
g h i

 be a parameter matrix of a k-regular graph.

Then the eigenvalues of A are

λ1,2 =
tr (A)− k

2
±

√(
tr (A)− k

2

)2

− det(A)

k
, λ3 = k.

Proof. By using the condition a + b + c = d + e + f = g + h + i = k, it
is clear that one of the eigenvalues is k. Therefore det(A) = kλ1λ2. From
λ2 = tr (A)− λ1 − k, we get

det(A) = kλ1(tr (A)− λ1 − k) = −kλ21 + k(tr (A)− k)λ1.

By solving the equation λ2 + (k − tr (A))λ+
det(A)

k
= 0, we obtain

λ1,2 =
tr (A)− k

2
±

√(
tr (A)− k

2

)2

− det(A)

k
.

�
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The eigenvalues of the all cubic graphs of order 8 are stated in the next
theorem.

Theorem 3 ([12]) The distinct eigenvalues of the graph G1 are the num-
bers 3,

√
5,−1,−

√
5. The distinct eigenvalues of the graph G2 are the num-

bers
√

3, 1, 1−
√

2,−1,−
√

3,−3 +
√

2. The distinct eigenvalues of the graph
G3 are the numbers 3, 1.5616, 0.618, 0,−1.618,−2.5616. The distinct eigen-
values of the graph G4 are the numbers 3, 1,−1, 3.The distinct eigenvalues
of the graph G5 are the numbers 3, 1, 1−

√
2,−1,−2,−3 +

√
2.

The next proposition gives a formula for calculating the number of white,
black and red vertices, in a perfect 3-coloring.

Proposition 1 ([3]) Let T be a perfect 3-coloring of a graph G with the

matrix A =

a b c
d e f
g h i

.

1. If b, c, f 6= 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

2. If b = 0, then

|W | = |V (G)|
c

g
+ 1 +

ch

fg

, |B| = |V (G)|
f

h
+ 1 +

fg

ch

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

3. If c = 0, then

|W | = |V (G)|
b

d
+ 1 +

bf

dh

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

dh

bf

.

4. If f = 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

cd

bg

, |R| = |V (G)|
g

c
+ 1 +

bg

cd

.

In this section, without loss of generality, we may assume |W | ≤ |B| ≤
|R|.
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Lemma 1 Let G be a cubic connected graph of order 8. Then G has no
perfect 3-coloring T with the matrix that |W | = 1.

Proof. Let A =

a b c
d e f
g h i

 be a parameter matrix with |W | = 1. Consider

the white vertex. It is clear that none of its adjacent vertices are white; i.e.
a = 0. Therefore, we have two cases below.

(1) The adjacent vertices of the white vertex are the same color.
If they are black, then b = 3 and c = 0. From c = 0, we get g = 0.
Also, since the graph is connected, f, h 6= 0. Hence, we obtain the
following matrices:0 3 0

1 1 1
0 1 2

 ,
0 3 0

1 0 2
0 1 2

 ,
0 3 0

1 0 2
0 2 1

 ,
0 3 0

1 1 1
0 2 1

 ,
0 3 0

1 0 2
0 3 0

 ,
0 3 0

1 1 1
0 3 0

 .
If the adjacent vertices of the white vertex are red, then c = 3, b = 0.
From b = 0, we get d = 0. Also, since the graph is connected, f, h 6= 0.
Hence, we obtain the following matrices:0 0 3

0 1 2
1 1 1

 ,
0 0 3

0 1 2
1 2 0

 ,
0 0 3

0 2 1
1 1 1

 ,
0 0 3

0 2 1
1 2 0

 ,
0 0 3

0 0 3
1 1 1

 ,
0 0 3

0 0 3
1 2 0

 .
Finally, by using Remark 1 and the fact that |W | ≤ |B| ≤ |R|, it is
obvious that there are only six matrices in (1), as shown A1, A2, A3,
A4, A5, A6.

A1 =

0 3 0
1 1 1
0 1 2

 , A2 =

0 3 0
1 0 2
0 1 2

 , A3 =

0 3 0
1 0 2
0 2 1

 , A4 =

0 0 3
0 1 2
1 1 1

 ,
A5 =

0 0 3
0 0 3
1 1 1

 , A6 =

0 0 3
0 0 3
1 2 0

 .
(2) The adjacent vertices of the white vertex are different colors. It im-

mediately gives that b, c 6= 0. Also, it can be seen that d = g = 1. An
easy computation, as in (1), shows that there are only five matrices
that can be a parameter matrix in this case, as shown A7, A8, A9, A10,
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A11.

A7 =

0 1 2
1 1 1
1 1 1

 , A8 =

0 2 1
1 0 2
1 1 1

 , A9 =

0 1 2
1 2 0
1 0 2

 , A10 =

0 1 2
1 0 2
1 1 1

 ,
A11 =

0 1 2
1 0 2
1 2 0

 .
By using the Proposition 1, it can be seen that no matrix can be a
parameter.

�

We now peresent two lemmas which can be useful to reach our goal.

Lemma 2 Let G be a cubic connected graph of order 8. If T is a perfect
3-coloring with the matrix A, and |W | = |B| = 2, |R| = 4, then A should be
one of the following matrices:0 1 2

1 0 2
1 1 1

 ,
1 0 2

0 1 2
1 1 1

 ,
2 1 0

1 0 2
0 1 2

 .
Proof. First, suppose that b, c 6= 0. As |W | = 2, by Proposition 1, it follows

that
b

d
+
c

g
= 3. From b + c ≤ 3, we have b = 2, c = g = d = 1, or c = 2,

b = g = d = 1. If b = 2, c = g = d = 1, we get a contradiction of |B| = 2.
If c = 2, b = d = g = 1, then we conclude from |B| = 2 and |R| = 4 that

h = 1, f = 2. Therefore A =

0 1 2
1 0 2
1 1 1

 or A =

0 1 2
1 2 0
1 0 2

.

Second, suppose that b = 0 and, in consequence, d = 0. As |R| = 4, by

Proposition 1, it follows that
g

c
+
h

f
= 1. Therefore, c = f = 2, g = h = 1, or

c = f = 3, h = 2, g = 1, or c = f = 3, g = 2, h = 1. If c = f = 2, g = h = 1,

then A =

1 0 2
0 1 2
1 1 1

. In the other two cases, we get a contradiction of

|B| = 2.
Third, suppose that c = 0 and, in consequence, g = 0. As |B| = 2, by

Proposition 1, it follows that
d

b
+
f

h
= 3. Therefore d = 2, b = f = h = 1, or

f = 2, b = h = d = 1. If d = 2, b = f = h = 1, then we get a contradiction

of |R| = 4. If f = 2, b = h = d = 1, then A =

2 1 0
1 0 2
0 1 2

.
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Finally, note that the matrix

0 1 2
1 2 0
1 0 2

 is the same as the matrix

2 1 0
1 0 2
0 1 2


up to renaming the colors, by Remark 1. �

Lemma 3 Let G be a cubic connected graph of order 8. If T is a perfect
3-coloring with the matrix A, and |W | = 2, |B| = |R| = 3, then A should be
the following matrix: 0 3 0

2 0 1
0 1 2

 .
Proof. First, suppose that b, c 6= 0. As |W | = 2, by Proposition 1, it follows

that
b

d
+
c

g
= 3. From b + c ≤ 3, we get b = 2, c = g = d = 1, or c = 2,

b = g = d = 1. If b = 2, c = g = d = 1, we get a contradiction of |B| = 3. If
c = 2, b = d = g = 1, then from Proposition 1, we have f = 2, h = 3, which
is a contradiction of g + h ≤ 3.
Second, suppose that b = 0 and, in consequence, d = 0. As |R| = 3,

by Proposition 1, it follows that
g

c
+
h

f
=

5

3
. Therefore, c = 3, g = 2,

h = f = 1, or f = 3, h = 2, c = g = 1. If c = 3, g = 2, h = f = 1, then

A =

0 0 3
0 2 1
2 1 0

. In the other case, we get a contradiction of |W | = 2.

Third, suppose that c = 0 and, in consequence, g = 0. As |B| = 3, by

Proposition 1, it follows that
d

b
+
f

h
=

5

3
. Therefore h = 3, f = 2, b = d = 1,

or b = 3, d = 2, f = h = 1. If h = 3, f = 2, b = d = 1, then we get a

contradiction of |W | = 2. If b = 3, d = 2, f = h = 1, then A =

0 3 0
2 0 1
0 1 2

.

Finally, note that the matrix

0 0 3
0 2 1
2 1 0

 is the same as the matrix

0 3 0
2 0 1
0 1 2


up to renaming the colors, by Remark 1. �

By using the Lemmas 1, 2 and 3, it can be seen that only the following
matrices:

A1 =

0 1 2
1 0 2
1 1 1

 , A2 =

1 0 2
0 1 2
1 1 1

 , A3 =

0 3 0
2 0 1
0 1 2

 , A4 =

2 1 0
1 0 2
0 1 2

 ,
can be parameter ones.
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2 Perfect 3-colorings of cubic graphs with 8

vertices

In this section we enumerate the parameter matrices of all perfect 3-colorings
of cubic graphs with 8 vertices. As it has been shown in section 3, only ma-
trices A1 , A2, A3 and A4 can be parameter matrices. With consideration
of cubic graphs eigenvalues and using Theorems 1, 2 and 3, it can be seen
that the connected cubic graphs with 8 vertices can have a perfect 3-coloring
with the matrices A1, A2 and A3 which is represented by table 1.

graphs matrix A1 matrix A2 matrixA3

G1

√ √
×

G2

√ √
×

G3 × ×
√

G4

√ √
×

G5

√ √
×

Table 1

Theorem 4 There are no perfect 3-colorings with the matrix A1 for the
graph G5.

Proof. Countrary to our claim, suppose that T is a perfect 3-coloring with

the matrix

0 1 2
1 0 2
1 1 1

 for the graph G5. Without restriction of generality,

suppose that T (a1) = 1. Therefore, again without restriction of generality,
suppose that T (a2) = T (a8) = 3 and T (a5) = 2. From T (a5) = 2, we
can easily seen that T (a4) = T (a6) = 3. Therefore T (a4) = 2, which is a
contradiction with third row of the matrix A1. �

Theorem 5 The parameter matrices of cubic graphs of order 8 are listed in
the following table.

graphs matrix A1 matrix A2 matrixA3

G1

√ √
×

G2

√ √
×

G3 × ×
√

G4

√ √
×

G5 ×
√

×

Table 2
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Proof. As it has been shown in the table 1, only the matrices A1, A2 and A3

can be parameter matrices. Hence, from Theorem 4, it suffices to show that
there are perfect 3-colorings with the matrices in the table 2. The graph G1

has perfect 3-colorings with the matrices A1 and A2. Consider two mappings
T1 and T2 as follows:

T1(a2) = T1(a6) = 1, T1(a4) = T1(a8) = 2,

T1(a1) = T1(a3) = T1(a5) = T1(a7) = 3.

T2(a1) = T2(a2) = 1, T2(a5) = T2(a6) = 2,

T2(a3) = T2(a4) = T2(a7) = T2(a8) = 3.

It is clear that T1 and T2 are perfect 3-colorings with the matrices A1 and
A2, respectively.

The graph G2 has perfect 3-colorings with the matrices A1 and A2. Con-
sider two mappings T1 and T2 as follows:

T1(a1) = T1(a3) = 1, T1(a5) = T1(a7) = 2,

T1(a2) = T1(a4) = T1(a6) = T1(a8) = 3,

T2(a1) = T2(a5) = 1, T2(a3) = T2(a7) = 2,

T2(a2) = T2(a4) = T2(a6) = T2(a8) = 3.

It is clear that T1 and T2 are perfect 3-coloring with the matrices A1 and
A2, respectively.
The graph G3 has perfect 3-colorings with the matrix A3. Consider a map-
ping T1 as follows:

T1(a2) = T1(a8) = 1, T1(a1) = T1(a3) = T1(a7) = 2,

T1(a4) = T1(a5) = T1(a6) = 3.

It is clear that T1 is a perfect 3-colorings with the matrices A3.
The graph G4 has perfect 3-colorings with the matrices A1 and A2. Consider
two mappings T1 and T2 as follows:

T1(a2) = T1(a7) = 1, T1(a5) = T1(a8) = 2,

T1(a1) = T1(a3) = T1(a4) = T1(a6) = 3.

T2(a2) = T2(a5) = 1, T2(a7) = T2(a8) = 2,

T2(a1) = T2(a3) = T2(a4) = T2(a6) = 3.
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It is clear that T1 and T2 are perfect 3-colorings with the matrices A1 and
A2, respectively.
The graph G5 has perfect 3-colorings with the matrix A3. Consider a map-
ping T1 as follows:

T1(a4) = T1(a8) = 1, T1(a2) = T1(a6) = 2,

T1(a1) = T1(a3) = T1(a5) = T1(a7) = 3.

It is clear that T1 is a perfect 3-colorings with the matrices A3.
�
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