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On Characteristic Function of a Contraction,

Its Model and Function of Strauss
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Abstract. It is shown that the Nagy-Foias characteristic func-
tion of a completely nonunitary contraction and a variant of its
functional model can be represented by means of a projection-
valued analytic operator function, arising in the representation
theory of A.V. Strauss.
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Introduction

The present note is rather of a methodical character. A completely nonuni-
tary contraction in a Hilbert space is discussed. Motivated by the work of
Sh.N. Saakyan [2], the approach proposed here to a characteristic function
and a functional model of a such contraction is based on its partial isomet-
ric dilation, acting in a doubled Hilbert space, that somewhat differs from
considerations in [2].

Directly related to a characteristic function, a maximal function of a
contraction introduced by I. Valuşescu in [5] provides also the functional
models, presented by I. Valuşescu in [6] and by J.A. Ball, N. Cohen in [1].
In the case under consideration it coincides, in essence, with a projection-
valued operator function in the representation theory of A.V. Strauss [3],
which is closely related to that of M.G Krĕın. This allows to obtain one
more model of a contraction in a reproducing kernel Hilbert space, where
values of a kernel are operators acting in the initial Hilbert space.

1 On characteristic function of a contraction

Let H be a Hilbert space with an inner product 〈·, ·〉, [H] be a linear space
of linear bounded operators acting in H and [H1,H2] be a space of such
operators acting from H1 to H2.
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Consider completely nonunitary (c.n.u.) contraction T , that is ‖T‖ 6 1,
and there is no subspace of H, on which T induces a unitary operator.
Then, the number 1 is not an eigenvalue of T (1∈̄σp(T )), hence the operator
(I − T )−1 exists.

Denote

DT = (I − T ∗T )
1
2 , DT ∗ = (I − TT ∗)

1
2 ; DT = DTH, DT ∗ = DT ∗H

the detect operators and the defect subspaces of T . Then

TDT = DT ∗T, T ∗DT ∗ = DTT
∗. (1)

Let us form the doubled Hilbert space H = H ⊕ H, denote H1 = H ⊕ {0},
H2 = {0} ⊕ H and P1,2 – orthogonal projections in H onto its subspaces
H1,2, which can be identified with the first and second copies of H.

Consider operators V0, V inH, given on domains D(V0) = H1, D(V) = H
by the block operator matrix [

T 0
DT 0

]
.

It is clear that V0 is an isometry, V is its partial isometric extension and the
dilation of T

T n = P1VnP1, n > 1,

by identifiying H1 with H.
It is not hard to see that V0 and V are c.n.u. contractions, hence there

exist the operators (I − V0)−1 and (I − V)−1 (I is the identity operator in
H).

Introduce also the unitary operators in H

U =

[
DT ∗ T
−T ∗ DT

]
, J =

[
0 I
I 0

]
(2)

such that V = UJP1, J 2 = I, JP1,2J = P2,1. Then the defect operators
of a partial isometry V are the orthogonal projections D = P2, D∗ = UP1U∗
onto the defect subspaces

D =

{[
0
h

]
, h ∈ H

}
, D∗ = UP1H =

{[
DT ∗h
−T ∗h

]
, h ∈ H

}
. (3)

It is evident that
VD = 0, V∗D∗ = 0. (4)

A maximal function of a contraction T as the operator function DT ∗(I −
ωT ∗)−1, analytic in the unit disk |ω| < 1, was introduced in [5]. Denote
Q(ω) = D∗(I − ωV∗)−1 its analog for V .
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Proposition 1 The Nagy-Foias characteristic function ΘT (ω) of c.n.u. con-
traction T can be represented as

ΘT (ω) = (U∗Q(ω)|D)|DT . (5)

Proof. The operators D∗ and (I −ωV∗)−1 have the following block matrix
representations

D∗ =

[
D2
T ∗ −DT ∗T

−T ∗DT ∗ T ∗T

]
,

(I − ωV∗)−1 =

[
(I − ωT ∗)−1 ω(I − ωT ∗)−1DT

0 I

]
,

hence

Q(ω) =

[
D2
T ∗(I − ωT ∗)−1 DT ∗Θ(ω)

−T ∗DT ∗(I − ωT ∗)−1 −T ∗Θ(ω)

]
, (6)

where Θ(ω) = −T + ωDT ∗(I − ωT ∗)−1DT . Then the restriction U∗Q(ω)|D
is

U∗Q(ω)|D =

{[
Θ(ω)h

0

]
, h ∈ H

}
.

The identification of H1 with H and the definition of the Nagy-Foias char-
acteristic function as

ΘT (ω) = Θ(ω)|DT

brings to (5). �

Let us first note that the function ΘV(ω) = ωQ(ω)|D is the characteristic
function of the partial isometry V in view of (4).

Note also that the formula (5) makes more precise the corresponding
formula in [2].

2 On a functional model of T

The properties of the operator function Q(ω) are revealed in the following
statement.

Proposition 2 The values of Q(ω) are projections in H onto D∗. There
hold the direct sum decomposition

H = Ran(V0 − ωI)uD∗, (7)

and the formula

Q(ω)V0f0 = ωQ(ω)f0, f0 ∈ D(V0). (8)
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Proof. It follows from (4) that (I−ωV∗)D∗ = D∗, and also ((I−ωV∗)−1D∗ =
D∗, since I − ωV∗ is bounded invertible.

Operator D∗ is a projection, hence

Q2(ω) = D∗(I − ωV∗)−1D∗(I − ωV∗)−1 = D∗(I − ωV∗)−1 = Q(ω).

Consider the direct sum decomposition

H = (I − ωV∗)H = (I − ωV∗)VHu (I − ωV∗)(I − V)H. (9)

In view of (4) one has

Q(ω)(I − V∗)(I − V)H = D∗(I − V)H = D∗.

It is clear from (8) that Q(ω)H = D∗, so (9) takes the form

H = (I − ωV∗)VHuD∗.

Now the definitions of V and V0 lead to

(I − ωV∗)VH = (V − ωP1)H = Ran(V0 − ωI),

and the relation Q(ω)Ran(V0 − ωI) = 0 completes the proof. �

Consider the operator function Q1(ω) = U∗Q(ω) = P1U∗(I−ωV∗)−1, which
essentially maps H to H. Clearly, from (8) one has also

Q1(ω)V0f0 = ωQ1(ω)f0, f0 ∈ D(V0). (10)

Now we follow to [1] and state some facts presented there. The H-valued
function h(ω) = Q1(ω)h, h ∈ H belongs to the Hardy space H2

H over the
unit disk, and

‖h(ω)‖H2
H
6 ‖h‖H ,

so the map F0 : H → H2
H (F0h = h(ω)) is contractive.

Completely nonunitary property of V∗ leads to KerF0 = {0}. The linear
manifold H0 = RanF0 of H2

H endowed with the new inner product

〈h(ω), g(ω)〉H = 〈h, g〉H (11)

yields the Hilbert space H, and the map F0 defines a unitary operator F :
H → H, F−1 = F ∗.

Proposition 3 The operator function K(ω, σ) = Q1(ω)Q∗1(σ) is a repro-
ducing kerned for the Hilbert space H. In a matrix representation of K(ω, σ)
the only nonzero block is

K11(ω, σ) =
[
DT∗(I − ωT ∗)−1(I − σ̄T )−1DT ∗ + Θ(ω)Θ∗(σ)

]
∈ [H]. (12)
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Proof. The proof is immediate. It is clear that for arbitrary g ∈ H and
fixed σ, |σ| < 1 one has

K(ω, σ)g = Q1(ω)Q∗1(σ)g ∈ H.

The use of (11) brings the reproducing property of K(ω, σ)

〈h(σ), g〉H = 〈Q1(σ)h, g〉H = 〈h,Q∗1(σ)g〉H = 〈h(ω),Q1(ω)Q∗1(σ)g〉H =

〈h(ω), K(ω, σ)g〉H ,

and the formula (12) follows from (6). �

Set K(ω, σ) = K11(ω, σ).

Proposition 4 In the decomposition

H = DT ∗ ⊕D⊥T ∗ (h = d∗ + d∗⊥) (13)

the kernel K(ω, σ) takes the following form

K(ω, σ) =

[ 1

1− ωσ̄
[I∗ − ωσ̄ΘT (ω)Θ∗T (σ)] ©

© I∗⊥

]
(14)

where I∗, I∗⊥ are identity operators in DT ∗, D⊥T ∗.

Proof. With the use of relations (1) and

ω(I − ωT ∗)−1T ∗ = (I − ωT ∗)−1 − I, σ̄T (I − σ̄T )−1 = (I − σ̄T )−1 − I

not complicated derivations lead to

Θ(ω)Θ∗(σ) =
[
−T + ωDT ∗(I − ωT ∗)−1DT

] [
−T ∗ + σ̄DT (1− σ̄T )−1DT ∗

]
=

= I − (1− ωσ̄)DT ∗(I − ωT ∗)−1(I − σ̄T )−1DT ∗ .

Thus, the formula (12) can be rewritten as

K(ω, σ) =
1

1− ωσ̄
[I −Θ(ω)Θ∗(σ)]+Θ(ω)Θ∗(σ) =

1

1− ωσ̄
[I − ωσ̄Θ(ω)Θ∗(σ)] .

Since

ΘT (ω) = Θ(ω)|DT ∈ [DT ,DT ∗ ], Θ∗T (σ) = Θ∗(σ)|DT ∗ ∈ [DT ∗ ,DT ]

hence
Θ(ω)Θ∗(σ)d∗ = ΘT (ω)Θ∗T (σ)d∗.

For arbitrary h ∈ H it holds

(DT ∗d∗⊥, h) = (d∗⊥, DT ∗h) = 0,

so DT ∗d∗⊥ = 0, hence

[I −Θ(ω)Θ∗(σ)] d∗⊥ = [I − TT ∗] d∗⊥ = D2
T∗d∗⊥ = 0,

and (14) is proved. �
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Denote by Ω the multiplication operator by the independent variable ω
in H with the domain D(Ω) = {h(ω) ∈ H; ωh(ω) ∈ H}. It is proved in [4]
that D(Ω) = FD(V0), so formula (10) can be represented as

V0f0 = F−1ΩFf0, f0 ∈ D(V0).

Since

V0f0 =

[
Th
DTh

]
, f0 =

[
h
0

]
, h ∈ H,

we get the functional model of c.n.u. contraction T in the form

Th = P1F
−1ΩF

[
h
0

]
.

3 Maximal function Q(ω) and the projection-

valued function of Strauss

Let A0 be a closed Hermitian operator in H with the domain D(A0) not
dense in H, D(A0) 6= H. Assume that A0 is simple, that is A0 does not
induce a self-adjoint operator on any linear submanifold in H.

Let some γ ∈ C+ (Imγ > 0) be fixed. Then Ran(A0− γI), Ran(A0− γ̄I)
are subspaces of H and their orthogonal complements

Nγ = H	 Ran(A0 − γ̄I), Nγ̄ = H	 Ran(A0 − γI)

are called the defect subspaces of A0.
It is known that D(A0)∩Nγ = {0}, D(A0)uNγ = H, hence the operator

Aγ defined on D(Aγ) = D(A0)uNγ as

Aγf = A0f0 + γfγ, f0 ∈ D(A0), fγ ∈ Nγ

is a maximal dissipative extension of A0, since Ran(Aγ − γ̄I) = H (see [3]).
Consider the Cayley transforms of A0, Aγ

V0 = (A0 − γI)(A0 − γ̄I)−1, D(V0) = Ran(A0 − γ̄I),

RanV0 = Ran(A0 − γI),

V = (Aγ − γI)(Aγ − γ̄I)−1, D(V ) = H,

RanV = Ran(Aγ − γI) = Ran(A0 − γI).

Clearly, operator V is an extension of isometry V0, and V0, V are c.n.u. in
view of simplicity of A0, A.

Proposition 5 The operator V is a partial isometry and KerV = Nγ.
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Proof. It is sufficient to show that KerV = Nγ. Let gγ ∈ Nγ and (Aγ −
γ̄I)−1gγ = f0 + fγ. Then

gγ = (A0 − γ̄I)f0 + (γ − γ̄)fγ

implies f0 = 0, so

V gγ = (γ − γ̄)(Aγ − γI)fγ = 0.

If V h = (Aγ − γI)(Aγ − γ̄I)−1h = 0, then (Aγ − γ̄I)−1h = f ∈ Nγ, hence
h = (γ − γ̄)f ∈ Nγ, with the result. �

The converse statement is also true.

Proposition 6 Let the operator V is a c.n.u. partial isometry. Then its
Cayley transform

A = (γI − γ̄V )(I − V )−1 (15)

is a maximal dissipative extension of a simple Hermitian operator

A0 = (γI − γ̄V0)(I − V0)−1, V0 = V |Ker⊥V. (16)

Proof. Since V is c.n.u., the operator (I−V )−1 exists, Ran(I−V ) = D(A)
is dense in H in view of Ker(I − V ∗) = {0}. Thus

D(A) = (I−V )H = (I−V )KerV u (I−V )Ker⊥V = KerV u (I−V )Ker⊥V.
(17)

If h0 ∈ KerV , so (I − V )h0 = h0, then also (1− V )−1h0 = h0, and

Ah0 = (γI − γ̄V )h0 = γh0.

The operator V0 = V |Ker⊥V is a c.n.u. isometry, hence its Cayely transform
(16), defined on

D(A0) = Ran(I − V0) = (I − V )Ker⊥V

is Hermitian. Now the formula (17) takes the form

D(A) = D(A0)uKerV,

hence Af = A0f0 +γh0, so A is a dissipative extension of A0. It follows from

(A− γ̄I) = (γI − γ̄V )(I − V )−1 − γ̄I = (γ − γ̄)(I − V )−1

that (A− γ̄I)D(A) = (A− γ̄I)Ran(I − V ) = H, completing the proof. �
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In the base of a representation theory of Strauss it lies the direct sum
decomposition

H = Ran(A0 − λI)uNγ̄, λ ∈ C+, (18)

proved in [3]. Formula (18) defines an operator-function P (λ) analytic in C+,
which values are skew projections in H onto Nγ̄ parallel to Ran(A0 − λI).
Assigning Nγ̄-valued function h(λ) = P (λ)h to each h ∈ H, one has the
following representation of the Hermitian operator A0

P (λ)[A0f0] = λP (λ)f0, f0 ∈ D(A0). (19)

Now, going back to the decomposition (7) and formula (8), consider the
Hermitian Cayley transform A0 of the isometry V0 in H, and the linear

fractional function λ =
γ − γ̄ω
1− ω

, mapping the unit disk |ω| < 1 onto the

upper half-plane C+.
The defect subspaces of A0 denote Nγ, Nγ̄.

Proposition 7 Decomposition (7) coincides with

H = Ran(A0 − λI)uNγ̄. (20)

Proof. For the operator A0 one has

D(A0) = Ran(I − V0) =

{[
(I − T )h
−DTh

]
, h ∈ H

}
,

Ran(A0) =

{[
(γI − γ̄T )h
−γ̄DTh

]
, h ∈ H

}
.

Clearly, both

Ran(A0 − γ̄I) = D(V0) = P1H, Ran(A0 − γI) = RanV0 = UJP1H
are subspaces and their orthogonal complements are

Nγ = [D(V0)]⊥ = P2H = D, Nγ̄ = Ran⊥V0 = D∗.

On account of

V0 = (A0 − γI)(A0 − γ̄I)−1, ω =
λ− γ
λ− γ̄

,

it is readily seen that

V0 − ωI =
γ − γ̄
λ− γ̄

(A0 − λI)(A0 − γ̄I)−1,

hence Ran(V0−ωI) = Ran(A0−λI), since Ran(A0− γ̄I)−1 = D(A0). The
proof is complete. �

Thus, the maximal functionQ(ω) and the function of Strauss P(λ) which
corresponds to the decomposition (20), are connected by the relation

P(λ) = Q
(
λ− γ
λ− γ̄

)
.
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