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Abstract. In this paper, we formulate the conformable Fourier
transform on time scales, drawing motivation from the structure
of the conformable bilateral Laplace transform. Some of the
elementary properties are proved, including shifting, transform
of derivative, conjugation, transform of Hilger delta function, and
transform of integral.
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1 Introduction

Since Hilger’s pioneering work [14], the study of time scales and measure
chains has drawn considerable attention. Significant progress has been made
by researchers, particularly in exploring dynamic equations on time scales,
which unify concepts from both differential and difference equations (see, for
example, [4]).

In the study of dynamic equations on time scales, the development of the
integral transform method is a key focus for solving initial value problems.
Thus far, various integral transforms have been generalized on time scales;
we refer to [6, 9, 11, 12,17–24] among the others.

The classical Fourier transform is a mathematical technique that converts
a signal from the time domain to the frequency domain, revealing the differ-
ent frequency components present and their magnitudes. During the initial
development of time scale theory, Hilger [15] began exploring Fourier analy-
sis on time scales. The Fourier transform defined by Hilger combines various
forms of Fourier analysis into a unified framework. It offers a closed-form
expression representing both the Fourier integral and Fourier series, through
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a simple integral defined on a time scale. Later, he explored Fourier trans-
forms on specific subclasses of time scales that also have a group structure,
as discussed in [16]. The concept of discrete Fourier transform was intro-
duced in [7], extending Fourier analysis to discrete time scales. Furthermore,
a “generalized Fourier transform” with kernel as a classical exponential func-
tion is defined on a time scale.

Researchers have extended the conformable fractional calculus to arbi-
trary time scales by applying the principles of classical fractional calculus
(see, for example, [1–3, 26]). In [25], we introduced conformable Laplace
transform on time scales as follows:

Lα{f(t)}(z) =

∫ ∞
t0

E	α(σ(t), t0)f(t)∆αt.

Subsequently, in [13], the conformable bilateral Laplace transform was de-
fined on time scales, where the region of integration is the entire time scales,
as follows:

Lb(f)(z, s) =

∫ ∞
−∞

Eσ	αz(t, s)f(t)∆αt. (1)

Motivated by the bilateral Laplace transform given by equation (1), in the
present work, we develop conformable Fourier transform on time scales.

This paper is organized as follows. The foundational concepts and no-
tations of conformable fractional calculus are presented in Section 2. In
Section 3, we introduce the conformable Fourier transform on time scales.
Some of its basic properties, including transform of conformable fractional
derivative, and conformable α-fractional integral, are given. At last, in Sec-
tion 4, we solve a conformable dynamic equation using conformable Fourier
transform.

2 Preliminaries

Assuming a foundational understanding of time scale calculus as elaborated
in [4, 5, 8, 10, 26], we present the essential definitions and theorems for our
discussion. Throughout this paper, we consider a time scale T that is un-
bounded both above and below. For t ∈ T, the forward jump operator
σ : T→ T is defined as

σ(t) = inf{τ ∈ T : τ > t},

and the forward graininess function µ : T→ [0,∞) is defined as

µ(t) = σ(t)− t.
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For a given time scale T, the non-maximal set Tκ is given by

Tκ =

{
T \ ρ(supT, supT] for supT <∞,
T for supT =∞.

Definition 1 A function f : T → R is called regressive if 1 + µ(t)f(t) 6= 0
for all t ∈ Tκ, and a positively regressive if 1 + µ(t)f(t) > 0 for all t ∈ Tκ.
The set of regressive and positively regressive functions are denoted as R
and R+, respectively.

Let h > 0. The Hilger complex numbers and the Hilger real axis are
defined as

Ch = C\
{−1

h

}
and Rh = (Ch ∩ R)\

{−1

h

}
,

respectively. If h = 0, we have C0 := C and R0 = R. Further, Zh is a strip

Zh :=
{
z ∈ C :

−π
h

< Im(z) ≤ π

h

}
,

and for h = 0, we have Z0 = C.
For z ∈ Ch, the Hilger real part of z is is given by

Reh(z) :=
|hz + 1| − 1

h
.

For k > 0, the cylindrical transformation ξk : Ck→ Zk is defined as

ξk(z) =
1

k
log(1 + zk),

where log is the principal logarithm function.

Definition 2 Let g : T → R, t ∈ Tκ, and α ∈ (0, 1]. Suppose there is a
number g(α)(t) such that for ε > 0, there exists a neighbourhood U ⊂ T of t
such that

|(g(σ(t))− g(s))|t|1−α − g(α)(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . Then g(α)(t) is called the conformable fractional derivative of
g of order α at t.

If g is a regulated function, its conformable α-fractional integral is given by∫
g(t)∆αt =

∫
g(t)|t|α−1∆t.
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Definition 3 A function f : T → R is said to be rd-continuous if f is
continuous at right-dense points in T and has a finite limit at the left-dense
points in T. We denote the set of all rd-continuous functions by Crd(T,R).

Definition 4 A function f : T→ R is said to be ‘α-regressive’ if

1 + µ(t)f(t)|t|α−1 6= 0 for all t ∈ Tκ,

and is said to be ‘α-positively regressive’ provided

1 + µ(t)f(t)|t|α−1 > 0, for all t ∈ Tκ.

We denote the set of all α-regressive and rd-continuous (α-positively regres-
sive and rd-continuous) functions by Rα(Rα+).

For a set Rα, ‘α-circle plus’ addition ⊕α is a binary operation defined as

(f1 ⊕α f2)(t) = f1(t) + f2(t) + µ(t)f1(t)f2(t)|t|α for all t ∈ Tκ.

The set Rα forms an abelian group under ⊕α. For f ∈ Rα, the inverse of f
is given as

	αf(t) =
−f(t)

1 + µ(t)f(t)|t|α
, t ∈ Tκ.

Further, Rα, ‘α-circle minus’ substraction 	α is defined as

(f1 	α f2)(t) =
f1(t)− f2(t)

1 + µ(t)f2(t)|t|α−1
, t ∈ Tκ.

For f ∈ Rα, the generalized exponential function is defined by

Ef (t, s) = exp
(∫ t

s

ξµ(τ)

(
f(τ)|τ |α−1

)
∆τ
)

for all t, s ∈ T. (2)

Applying the concept of the cylindrical transformation [4, Definition 2.21],
equation (2) can be written as

Ef (t, s) = exp
(∫ t

s

1

µ(τ)
Log(1 + µ(τ)f(τ)|τ |α−1)∆τ

)
, t, s ∈ T.

Some important properties of the generalized exponential function are
given in the following theorem.

Theorem 1 If g1, g2 ∈ Rα, then for all s, t, r ∈ T,

(1) E0(t, s) = 1 and Eg1(t, t) = 1;

(2) Eg1(t, s)Eg1(s, r) = Eg1(t, r);
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(3) Eg1(t, s) =
1

Eg1(s, t)
= E	αg1(s, t);

(4) Eg1(t, s)Eg2(t, s) = Eg1⊕αg2(t, s);

(5)
Eg1(t, s)
Eg2(t, s)

= Eg1	αg2(t, s);

(6) Eg1(σ(t), s) = (1 + µ(t)g1(t)|t|α−1)Eg1(t, s);

(7) E	αg1(σ(t), s) =
E	αg1(t, s)

1 + µ(t)g1(t)|t|α−1
;

(8) E∆
g1

(t, s) = g1(t)Eg1(t, s)|t|α−1;

(9) E(α)
g1 (t, s) = g1(t)Eg1(t, s).

Definition 5 Let s ∈ T, β ∈ Rα+([s,∞)), γ ∈ Rα+((−∞, s]). We say that
(s, β, γ) is an admissible triple if

Cs,β,γ =

{
z ∈ C : Reµ∗(s)(z) < γ, Reµ∗(s)(z) > β, 1+µ(s)Reµ(s)(z) 6= 0

}
6= ∅.

Definition 6 Let f : T→ R be regulated. Then for s ∈ T, the conformable
bilateral Laplace transform of f is defined by

Lb(f)(z, s) =

∫ ∞
−∞

f(t)Eσ	αz(t, s)∆
αt

for z ∈ C such that 1 + µ(t)z|t|α−1 6= 0 for any t ∈ Tκ and the improper
integral exists.

Next theorems give the conditions for the absolute and uniform conver-
gence for the conformable bilateral Laplace transform.

Theorem 2 [13] Let (s, β, γ) is an admissible triple and f ∈ Crd(T) is
of conformable double exponential order (β, γ). Then Lb(f)(·, s) exists on
Cs,β,γ and converges absolutely.

Theorem 3 [13] Let (s, β, γ) is an admissible triple and f ∈ Crd(T) is
of conformable double exponential order (β, γ). Then Lb(f)(·, s) converges
uniformly in Cs,β,γ.
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3 The conformable Fourier transform

Suppose that T is a time scale with forward jump operator σ and delta
differentiation operator ∆. Also, let inf T = −∞, supT = ∞ and s ∈ T.
Denote

µ∗(s) = inf
t∈[s,∞)

µ(t), µ∗(s) = sup
t∈(−∞,s]

µ(t), µ(s) = inf
t∈(−∞,s]

µ(t),

and for x ∈ R, put

µ(s) =

{
µ∗(s) if Reµ(s)(x) ≤ 0,

µ(s) if Reµ(s)(x) > 0.

Definition 7 Suppose that f : T→ R is regulated. Then the Fourier trans-
form of the function f is defined by

F(f)(x, s) =

∫ ∞
−∞

f(t)Eσ	αix(t, s)∆
αt

for x ∈ R such that 1 + ixµ(t)|t|α−1 6= 0 for any t ∈ Tκ and the improper
integral exists.

Definition 8 Let β ∈ R+([s,∞)), γ ∈ R+((−∞, s]). We say that (s, β, γ)
is a real admissible triple if

Rs,β,γ =

{
x ∈ R : Reµ∗(s)(ix) < γ, Reµ∗(s)(ix) > β,

1 + µ(s)Reµ(s)(ix) 6= 0

}
6= ∅.

If f ∈ Crd(T), then triple (s, β, γ) is a real admissible triple and f is of
double exponential order (β, γ). By Theorem 2 and Theorem 3, it follows
that F(f)(·, s) exists on Rs,β,γ and converges absolutely and uniformly there.
Below we present some of the properties of the Fourier transform.

Theorem 4 Let f, g : T→ R, λ1, λ2 ∈ C. Then

F(λ1f + λ2g)(x, s) = λ1F(f)(x, s) + λ2F(g)(x, s)

for those x ∈ R for which 1+ixµ(t)|t|α−1 6= 0, t ∈ Tκ, and the corresponding
integrals exist.
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Proof. Indeed,

F(λ1f + λ2g)(x, s) =

∫ ∞
−∞

(λ1f + λ2g)(t)Eσ	αix(t, s)∆
αt

= λ1

∫ ∞
−∞

f(t)Eσ	αix(t, s)∆
αt+ λ2

∫ ∞
−∞

g(t)Eσ	αix(t, s)∆
αt

= λ1F(f)(x, s) + λ2F(g)(x, s).

�

Theorem 5 Let f : T→ R. Then

F (Eσy(·, s)f(·)) (x, s) = F(f)(z, s),

where z = x+ iy/1 + µ|t|α−1, and x, y ∈ R are such that 1 +µ(t)|t|α−1y 6= 0
for any t ∈ Tκ, and the corresponding integrals exist.

Proof. Note that

iz = i
x+ iy

1 + µ|t|α−1y
= − x+ iy

i(1 + µ|t|α−1y)

and

	αiz =
−iz

1 + iµ|t|α−1z
=

x+iy
i(1+µ|t|α−1y)

1− µ|t|α−1 x+iy
i(1+µ|t|α−1y)

=
x+ iy

i+ iµ|t|α−1y − µ|t|α−1x− iµ|t|α−1y

=
x+ iy

i− µ|t|α−1x
=

i(x+ iy)

−1− iµ|t|α−1x

=
y − ix

1 + iµ|t|α−1x
= y	αix.

Hence,

F (Eσy(·, s)f(·)) (x, s) =

∫ ∞
−∞

Eσ	αix(t, s)Ey
σ(t, s)f(t)∆αt

=

∫ ∞
−∞

Eσy	αix(t, s)f(t)∆αt

= F(f)(z, s).

�
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Theorem 6 Let f : T→ R. For any k ∈ N, we have

F
(
f (αk)

)
(x, s) = (ix)kF(f)(x, s)

for those x ∈ R for which 1 + ixµ(t)|t|α−1 6= 0, t ∈ Tκ, the corresponding
integrals exist, and

lim
t→±∞

f (αl)(t)E	αix(t, s) = 0, l ∈ {0, . . . , k − 1}.

Proof. We will use the principle of mathematical induction. For k = 1, we
have

F
(
f (α)

)
(x, s) =

∫ ∞
−∞

f (α)(t)Eσ	αix(t, s)∆
αt

= lim
t→∞

f(t)E	αix(t, s)− lim
t→−∞

f(t)E	αix

−
∫ ∞
−∞

(	αix)f(t)E	αix(t, s)∆αt

= ix

∫ ∞
−∞

f(t)Eσ	αix(t, s)∆
αt

= ixF(f)(x, s).

Further, if

F
(
f (αk)

)
(x, s) = (ix)kF(f)(x, s)

for some k ∈ N, then

F
(
f (αk+1)

)
(x, s) = ixF

(
f (αk)

)
(x, s) = (ix)k+1F(f)(x, s).

This completes the proof. �

Theorem 7 Let f : T→ R. Then

F(f)(x, s) = F(f)(−x, s)
for those x ∈ R for which 1±ixµ(t)|t|α−1 6= 0, t ∈ Tκ, and the corresponding
integrals exist.

Proof. Let t ∈ Tκ and x ∈ R be such that 1 ± ixµ(t)|t|α−1 6= 0. Then we
have

(	α(ix)) (t) = − ix

1 + iµ(t)|t|α−1x

= − ix(1− iµ(t)|t|α−1x)

(1 + iµ(t)|t|α−1x)(1− iµ(t)|t|α−1x)

= − ix+ µ(t)|t|α−1x2

1 + (µ(t))2|t|2(α−1)x2
,
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1 + µ(t)|t|α−1 (	α(ix)) (t) = 1− µ(t)|t|α−1 ix+ µ(t)|t|α−1x2

1 + (µ(t))2|t|2α−2x2

=
1 + (µ(t))2|t|2α−2x2 − iµ(t)|t|α−1x− (µ(t))2|t|2α−2x2

1 + (µ(t))2|t|2α−2x2

=
1− iµ(t)|t|α−1x

1 + (µ(t))2|t|2α−2x2

=
1√

1 + (µ(t))2|t|2α−2x2

·

(
1√

1 + (µ(t))2|t|2α−2x2
− i µ(t)|t|α−1x√

1 + (µ(t))2|t|2α−2x2

)
and

(	α(i(−x))) (t) =
1√

1 + (µ(t))2|t|2α−2x2

·

(
1√

1 + (µ(t))2|t|2α−2x2
+ i

µ(t)|t|α−1x√
1 + (µ(t))2|t|2α−2x2

)
.

Let

r(t) =
1√

1 + (µ(t))2|t|2α−2x2
, cos θ(t) =

1√
1 + (µ(t))2|t|2α−2x2

.

Then
1 + µ(t)|t|α−1 (	α(ix)) (t) = r(t)e−iθ(t)

and
1 + µ(t)|t|α−1 (	α(i(−x))) (t) = r(t)eiθ(t).

Also,

log
(
1 + µ(t)|t|α−1 (	α(ix)) (t)

)
= ln(r(t))− i (θ + 2kπ) ,

log
(
1 + µ(t)|t|α−1 (	α(i(−x))) (t)

)
= ln(r(t)) + i (θ + 2kπ) , k ∈ Z.

From here and from the definition of the Fourier transform, we have

F(f)(x, s) =

∫ ∞
−∞

f(t)Eσ	α(ix)(t, s)∆
αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 log(1+µ(τ)|τ |α−1(	α(ix))(τ))∆ατ

f(τ)∆ατ

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt
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and

F(f)(x, s) =

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)−i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 (ln r(τ)+i(θ(τ)+2kπ))∆ατ

f(t)∆αt

=

∫ ∞
−∞

e
∫ σ(t)
s

1
µ(τ)|τ |α−1 log(1+µ(τ)|τ |α−1(	α(i(−x)))(τ))∆ατ

f(τ)∆ατ

=

∫ ∞
−∞

f(t)Eσ	α(i(−x))(t, s)∆
αt

= F(f)(−x, s).

�

Theorem 8 Let f : T→ R be regulated and

F (t) =

∫ t

a

f(τ)∆ατ, t ∈ T,

for some fixed a ∈ T. Then

F(F )(x, s) = − i
x
F(f)(x, s)

for those x ∈ R, x 6= 0, for which

lim
t→±∞

F (t)E	αix(t, s) = 0.
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Proof. Let x ∈ R satisfy the conditions of the theorem. Then

F(F )(x, s) =

∫ ∞
−∞

F (t)Eσ	αix(t, s)∆
αt

=

∫ ∞
−∞

F (t)
(
1 + µ(t)|t|α−1(	α(ix))(t)

)
E	αix(t, s)∆αt

=

∫ ∞
−∞

F (t)
1

1 + iµ(t)|t|α−1x
E	αix(t, s)∆αt

= − 1

ix

∫ ∞
−∞

F (t)
−ix

1 + iµ(t)|t|α−1x
E	αix(t, s)∆αt

=
i

x

∫ ∞
−∞

F (t)(	αix)(t)E	αix(t, s)∆αt

=
i

x

∫ ∞
−∞

F (t)E(α)
	αix(t, s)∆

αt

=
i

x

(
lim
t→∞

F (t)E	αix(t, s)− lim
t→−∞

F (t)E	αix(t, s)
)

− i
x

∫ ∞
−∞

f(t)Eσ	αix(t, s)∆
αt

= − i
x
F(f)(x, s).

�

4 Applications

In this section, we will give some applications of the conformable Fourier
transform. Consider the equation

u(αn) + a1u
(αn−1) + . . . an−1u

(α) + anu = f(t), t ∈ T,

where aj, j ∈ {1, . . . , n}, are given constants, and f : T→ R is given function
such that F(f)(x, s) exists. Applying the conformable Fourier transform of
both sides of the considered equation, we get

F(f)(x, s) = F
(
u(αn)

)
(x, s) + a1F

(
u(αn−1)

)
(x, s) + . . .

+an−1F
(
u(α)

)
(x, s) + anF(u)(x, s)

= (ix)nF(u)(x, s) + (ix)n−1a1F(u)(x, s) + . . .

+ixan−1F(u)(x, s) + anF(x, s)

=
(
(ix)n + (ix)n−1a1 + · · ·+ ixan−1 + an

)
F(u)(x, s),
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whereupon

F(u)(x, s) =
F(f)(x, s)

(ix)n + (ix)n−1a1 + · · ·+ ixan−1 + an
.

Taking the inverse conformable Fourier transform for the solution u of the
considered equation, we obtain

u(t) = F−1
( F(f)(x, s)

(ix)n + (ix)n−1a1 + . . . ixan−1 + an

)
(t), t ∈ T.

For example let us consider the equation

u(α) − u = f(t), t ∈ T,

where

f(t) =

{
Ei(t, s) for t ≥ s,

0 for t < s.

We will search a solution of this equation in the form

u(t) =

{
v(t) for t ≥ s

0 for t < s.

Applying the conformable Fourier transform of both sides of the consid-
ered equation, we get

1

x− i
= F(f)(x, s) = F

(
v(α)
)

(x, s)−F(v)(x, s)

= ixF(v)(x, s)−F(v)(x, s) = (ix− 1)F(v)(x, s)

= i(x+ 1)F(v)(x, s),

whereupon

F(v)(x, s) = − i

(x− i)(x+ i)
= − i

x2 + 1
.

Now, taking the inverse conformable Fourier transform, we find

v(t) = −iF−1
( 1

x2 + 1

)
(t) = −i sin1,α(t, s), t ≥ s.

Consequently,

u(t) =

{
−i sin1,α(t, s) for t ≥ s,

0 for t < s,

is a solution of the considered equation.
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