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Introduction

At the beginning of the creation of mathematical statistical physics, the
problem of Gibbsian description of various classes of random fields was quite
relevant and was considered by many authors (see, for example, [1,2,13,18]).
The main attention was paid to random fields with a state space of finite
measure, and the case of a non-compact state space has not been studied
enough. As Dobrushin [7] noted, due to the difficulties that arise when
transferring known results to the non-compact case, it is natural first con-
sider the problem of Gibbsian description for a class of well-studied random
fields, namely, Gaussian random fields.

This problem for homogeneous Gaussian random fields was considered
by Sinai [17] and Dobrushin [7]; Georgi [10] provides a solution to the same
problem for inhomogeneous Gaussian random fields as well. Let us also note
the work of Künsch [16], in which Dobrushin’s results [7] were applied to
some problems of thermodynamics and statistics.

All mentioned works were based on the DLR–definition of a Gibbs ran-
dom field (the only definition present at that time) according to which a ran-
dom filed P is Gibbsian if its conditional distributions coincide (for P -a.e.
boundary conditions) with a Gibbsian specification constructed by some uni-
formly convergent potential (see [6]). The DLR–definition is strongly based
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on the theorem of existence of a random field corresponding to a given spec-
ification. This was the reason why the solution to the problem of Gibbsian
description was carried out not individually for each given Gaussian random
field, but for a set of random fields corresponding to a suitable (quadratic)
potential (see, for example, Theorem 4.1 in [7]). Note also that in the case
of a non-compact state space, corresponding Hamiltonian (potential) can be
defined only for some subset of the set of infinite boundary conditions (see,
for example, the remarks after formula (13.11) in [10]), and after that one
has to prove that this set has P -measure one. That is, DLR–definition of
a Gibbs random field with a finite state space (or a state space of a finite
measure) has to be modified if one wants to apply it to Gaussian random
fields.

In [4], a purely probabilistic definition of a Gibbs random field with finite
state space was introduced. This definition does not use physical concept of
potential, and within its framework, the problem of Gibbsianess of a random
field is solved directly for each random field through the behavior of its finite-
conditional distributions. However, this definition has some limitations in
application to random fields with non-compact state space.

In [12], a purely probabilistic definition (or Pr–definition) of a Gibbs
random field (with a finite state space) was improved, on the base of which
the theory of Gibbs random fields can be constructed according to a scheme
typical for the theory of random processes. These results can be extended
to the case of positive random fields with Polish state space whose finite-
dimensional distributions have densities. This allows us to give a solution to
the problem of Gibbsian description of Gaussian random fields within the
framework of Gibbs scheme developed in [12]. Namely, we obtain conditions
on the elements of matrices, inverse to finite-volume covariance matrices,
under which the corresponding Gaussian random field is Gibbsian, and give
a Gibbs form of its conditional densities in terms of transition energies. It
should be emphasized that in our solution, we do not use any objects external
to the random field, but obtain the result through direct computations and
the proposed definition of a Gibbs random field.

Finally, let us note that Dobrushin [7] and Georgii [10] observed that
to solve the problem of whether a Gaussian random field is Gibbsian, it is
sufficient to consider one-point conditional densities. Since the definition
of a Gibbs random field they used is essentially based on solving the (in-
verse) problem of the existence of a random field with a given (Gibbsian)
specification, they still had to deal with the entire specification, albeit re-
constructed from its one-point subsystem. This was due to the absence at
that time of explicit consistency conditions that would allow one to define a
one-point specification as an independent object, from which a specification
can be constructed. This problem (Dobrushin’s problem) was solved in [3]
(see also the paper by Fernández and Maillard [8] where sufficient conditions
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were provided). In the present paper, we also consider one-point conditional
densities only. However, we do not need to solve the inverse problem since
we use Pr–definition of a Gibbs random field that is formulated in terms of
finite-conditional densities but not in terms of specification.

The remainder of the paper is organized as follows. In the next section,
we give some preliminary notations and definitions. Section 2 shows how the
main results of [12] are transferred to the case of random fields with Polish
state spaces whose finite-dimensional distributions have densities. Section
3 presents the main part of the work. We obtain Gibbs form for condi-
tional densities of Gaussian random fields in terms of transition energies and
present conditions under which the corresponding Gaussian random field is
Gibbsian. Particularly, we consider the case of Gaussian Markov random
fields which are widely used in various applications. The paper ends with
Appendix which contains proof of auxiliary results about inverse matrices.

1 Preliminaries

In this section, we present some general notations and definitions used in
the following.

Let Zd be a d-dimensional integer lattice, i.e., a set of d-dimensional
vectors with integer components, d ≥ 1. For S ⊂ Zd, denote by W (S) =
{V ⊂ S, 0 < |V | < ∞} the set of all non-empty finite subsets of S. In the
case S = Zd, we will use a simpler notation W . To denote the complement
of the set S, we will write Sc. When denoting one-point sets (singletons)
{t}, t ∈ Zd, the brackets will be usually omitted.

Let (X,B, µ) be a complete separable space (Polish space), where X is a
non-empty set (state space), B is a σ-algebra generated by open subsets of
X, and µ is a not identically equal to zero σ-additive measure. In particular,
we will consider state space X = R with Borel σ-algebra B of subsets of R
and Lebesgue measure µ on R. Further, let each point t ∈ Zd be associated
with the space (X t,Bt, µt) which is a copy of (X,B, µ).

Denote by XS the set of all configurations on S, S ⊂ Zd, that is, the
set XS = {(xt, t ∈ S) : xt ∈ X t, t ∈ S}, of all functions defined on S and
tacking values in X. For S = Ø, we assume that XØ = {Ø} where Ø is an
empty configuration. For any disjoint S, T ⊂ Zd and any x ∈ XS, y ∈ XT ,
denote by xy the concatenation of x and y, that is, the configuration on
S ∪ T equal to x on S and to y on T . When T ⊂ S, we denote by xT the
restriction of configuration x ∈ XS on T , i.e., xT = (xt, t ∈ T ).

For each S ⊂ Zd, the set XS is endowed with the σ-algebra BS, which
is the product of the σ-algebras Bt, t ∈ S.

A random field on Zd with state space X is a probability measure P on
(XZd

,BZd
). By PS we denote the restriction of P on S, S ⊂ Zd, that is, a
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probability distribution on (XS,BS) such that

PS(A) = (P )S(A) = P (AXZd\S), A ∈ BS.

For S = Ø, we assume PØ(Ø) = 1. By PP = {PV , V ∈ W} we denote the
system of finite-dimensional distributions of the random field P .

In this paper, we consider random fields whose finite-dimensional dis-
tributions {PV , V ∈ W} have densities {pV , V ∈ W} with respect to the
measure µ:

PV (A) =

∫
A

pV (x)µV (dx), A ∈ BV , V ∈ W.

By the Radon–Nikodym theorem, for each V ∈ W , function pV is defined
on XV , and there exist other densities coinciding with pV on a set of µV -
measure 1. In what follows, for each random field P , we choose a version of
its densities {pV , V ∈ W} and associate the random field with this set by
writing P = {pV , V ∈ W}.

A random field P = {pV , V ∈ W} is called positive if for any V ∈ W ,
one has pV (x) > 0 for all x ∈ XV .

For a given random field P = {pV , V ∈ W} and any t, s ∈ Zd, denote

mt =

∫
Xt

xpt(x)µt(dx),

cts =

∫
X{t,s}

(xt −mt)(xs −ms)p{t,s}(x)µ{t,s}(dx),

Then m = {mt, t ∈ Zd} is the vector of mean values of the random field P
and C = {cts, t, s ∈ Zd} is its covariance matrix.

For any S ⊂ Zd and any function h : W (S)→ R, the notation lim
Λ↑S

h(Λ) =

a means that for any ε > 0 there exists Λε ∈ W (S) such that for any
Λ ∈ W (S), Λ ⊃ Λε, it holds |h(Λ)− a| < ε. We will also consider limits
lim
n→∞

h(Λn) with respect to some increasing sequence {Λn}n≥1 of finite sets

converging to S, that is, Λn ⊂ Λn+1 ∈ W (S), n ≥ 1, and
∞⋃
n=1

Λn = S. It

is clear that if lim
Λ↑S

h(Λ) = a, then for any increasing sequence {Λn}n≥1 of

finite sets converging to S, we have lim
n→∞

h(Λn) = a. At the same time, if

lim
n→∞

h(Λn) = a for any increasing sequence {Λn}n≥1, then lim
Λ↑S

h(Λ) = a.

Any increasing sequence F = {Fn}n≥1 of σ-subalgebras of BZd
, that is,

Fn ⊂ Fn+1 ⊂ BZd
, n ≥ 1, is called a filtration on (XZd

,BZd
). In particu-

lar, F = {BΛn}n≥1 forms a filtration corresponding to increasing sequence
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{Λn}n≥1 of finite sets converging to Zd. In what follows, we will consider
only such filtrations, usually without explicitly specifying the corresponding
sequence {Λn}n≥1.

A function f : XS → R, S ⊂ Zd, is called local if there exists Λ ∈ W (S)
such that for x ∈ XS, the value f(x) depends only on the restriction xΛ of
configuration x on Λ, that is, f(uy) = f(uz) for any u ∈ XΛ and y, z ∈ XS\Λ.

A function f : XS → R, S ⊂ Zd, is called quasilocal if it is the uniformly
convergent limit of some sequence of local functions. Equivalently, f is
quasilocal if

lim
Λ↑S

sup
x,y∈XS :xΛ=yΛ

∣∣f(x)− f(y)
∣∣ = 0.

We will say that f is quasilocal on Y ⊂ XS if the relation above holds when
supremum is taken over configurations x, y ∈ Y coinciding on Λ.

2 Gibbs random fields and Gibbs form of

conditional densities

In this section, we show how the main results of [12] can be transferred
to the case of positive random fields with Polish state space whose finite-
dimensional distributions have densities. In what follows, by a random field
we mean such a random field only.

We start with the definition of a Gibbs random field in terms of its one-
point conditional densities. Further, we show that conditional densities of
any random field admit a Gibbs form in terms of corresponding transition
energies and present conditions on the system of transition energies under
which the corresponding random field is Gibbsian. All results presented in
this section can be obtained under appropriate (technical) restrictions in
a manner similar to that used in [12], and therefore, their proofs will be
omitted.

Let P = {pV , V ∈ W} be a random field and let

gzV (x) =
pV ∪Λ(xz)

pΛ(z)
, x ∈ XV ,

be its conditional density on XV under condition z ∈ XΛ, Λ ∈ W (V c),
V ∈ W . Such densities will be called finite-conditional densities.

Consider filtration F = {BΛn}n≥1 where {Λn}n≥1 is some increasing
sequence of finite sets converging to Zd. For any fixed V ∈ W and x ∈
XV , let us consider a sequence of random variables ξn : XV c → R defined
by ξn(x̄) = q

x̄Λn\V
V (x), x̄ ∈ XV c

, n ≥ 1. Then the sequence (ξn,BΛn)
forms a martingale, and since sup

n≥1
E|ξn| = pV (x) < ∞, by the martingale
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convergence theorem, the limit

gx̄V (x) = lim
n→∞

g
x̄Λn\V
V (x), (1)

exists for P -almost all x̄ ∈ XV c
.

Limits (1) will be called conditional densities of P with respect to F .
Following the terminology accepted in mathematical statistical physics, any
configuration x̄ will be called a boundary condition.

For the filtration F and any V ∈ W , x ∈ XV , denote by XV,x(F ) the
set of all boundary conditions x̄ ∈ XV c

for which the limit in (1) exists, and
let

XV (F ) =
⋃

x∈XV

XV,x(F ).

We will call the elements of XV (F ), V ∈ W , admissible boundary conditions
for the random field P with respect to filtration F . It should be noted that,
unlike the case of finite state space, the set XV may not have P -measure 1.

The set G(P,F ) = {gx̄V , x̄ ∈XV (F ), V ∈ W} will be called a system of
conditional densities of the random field P with respect to filtration F . The
system G(P,F ) will be called (strictly) positive if its elements are positive,
and will be called quasilocal if its elements are quasilocal as functions on
the set of admissible boundary conditions, that is, if for any V ∈ W and
x ∈ XV , it holds

lim
Λ↑V c

sup
x̄,ȳ∈XV (F ):x̄Λ=ȳΛ

∣∣gx̄V (x)− gȳV (x)
∣∣ = 0. (2)

The system G1(P,F ) = {gx̄t , x̄ ∈ Xt(F ), t ∈ Zd} of one-point condi-
tional densities of the random field P (with respect to filtration F ) is of
special interest. It can be shown (see [11] and [3]) that the positive sys-
tem G1(P,F ) restores G(P,F ), and G(P,F ) inherits such properties of
G1(P,F ) as positivity, homogeneity, quasilocality and Markov property.
Therefore, in what follows, we will consider one-point conditional densities
only.

The following statement holds true.

Proposition 1 Let G1(P,F ) be a system of one-point conditional densities
of the random field P with respect to filtration F . Then for any t, s ∈ Zd,
x, u ∈ X t, y, v ∈ Xs and x̄ ∈X{t,s}(F ), it holds

gx̄yt (x)gx̄xs (v)gx̄vt (u)gx̄us (y) = gx̄yt (u)gx̄us (v)gx̄vt (x)gx̄xs (y).

2.1 Gibbs random fields

Following the approach developed in [12], we present the purely probabilistic
definition (or Pr–definition) of a Gibbs random field under the assumptions
of the present paper.
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A random filed P = {pV , V ∈ W} will be called a Gibbs random field
if there exists a filtration F = {BΛn}n≥1 and sets of admissible boundary
conditions Yt(F ) ⊂Xt(F ), P (Yt(F )) = 1, t ∈ Zd, such that for all t ∈ Zd
and any x̄ ∈ Yt(F ), the limits of finite-conditional densities

lim
n→∞

g
x̄Λn\t
t (x) = lim

n→∞

pΛn(xx̄Λn\t)

pΛn\t(x̄Λn\t)
= gx̄t (x), x ∈ X t,

are positive and convergence with respect to x̄ is uniform. Any such filtration
F is called a determining filtration. Note that any Gibbs random field may
have several determining filtrations.

Thus, for a random field P to be Gibbsian, it must have a version of its
finite-dimensional densities {pV , V ∈ W} that satisfies the above conditions.

The following statements are analogous of the corresponding statements
in [12] (Theorem 3 and Theorem 4, respectively).

Theorem 1 Let P be a Gibbs random field, F = {BΛn}n≥1 be its deter-
mining filtration and Yt(F ), t ∈ Zd, be corresponding sets of admissible
boundary conditions. Then for any filtration F ′ = {BΛ′

n}n≥1, the sequence

of finite-conditional densities
{
g
x̄Λ′

n\t
t (x)

}
n≥1

converge (when n → ∞) uni-

formly with respect to x̄ ∈ Yt(F ) for all x ∈ X t and t ∈ Zd.

Theorem 2 A random field P = {pV , V ∈ W} is a Gibbs random field
if there exists a filtration F such that for each t ∈ Zd, there is a set of
admissible boundary conditions Yt(F ) ∈ Xt(F ), P (Yt(F )) = 1, on which
one-point conditional densities of P with respect to F are quasilocal, and
for each x̄ ∈ Yt(F ), one has gx̄t (x) > 0, x ∈ X t.

Conversely, if P = {pV , V ∈ W} is a Gibbs random field, then there exist
sets of boundary conditions Yt ⊂ X tc, P (Yt) = 1, t ∈ Zd, such that for any
filtration F one-point conditional densities G1(P,F ) are quasilocal on Yt,
t ∈ Zd, and for each x̄ ∈ Yt, one has gx̄t (x) > 0, x ∈ X t.

2.2 Gibbs form of conditional densities

The concepts of a system of transition energies and a Hamiltonian of a
random field with finite state space were considered in [12], while their au-
tonomous (without appeal to the notion of a random field) analogues were
introduced in [5]. The definitions of these objects can be easily transferred
on the case considered in the present paper. Here we will consider one-point
systems only.

Let P = {pV , V ∈ W} be a random field having a positive system of
one-point conditional densities G1(P,F ) = {gx̄t , x̄ ∈ Xt(F ), t ∈ Zd} with
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respect to some filtration F = {BΛn}n≥1. Denote by ∆1(P,F ) = {∆x̄
t , x̄ ∈

Xt(F ), t ∈ Zd} the set of functions defined by

∆x̄
t (x, u) = ln

gx̄t (x)

gx̄t (u)
= lim

n→∞
ln
pΛn(xx̄Λn\t)

pΛn(ux̄Λn\t)
, x, u ∈ X t.

It is not difficult to see that for all t ∈ Zd and x̄ ∈ Xt(F ), the following
equalities take place:

∆x̄
t (x, u) = ∆x̄

t (x, y) + ∆x̄
t (y, u), x, u, y ∈ X t. (3)

The set ∆1(P,F ) will be called a system of (one-point) transition energies
of the random field P with respect to filtration F .

Let us also mention the following property of the system ∆1(P,F ): for
all t, s ∈ Zd and x̄ ∈Xt(F ), x, u ∈ X t, y, v ∈ Xs, it holds

∆x̄y
t (x, u) + ∆x̄u

s (y, v) = ∆x̄x
s (y, v) + ∆x̄v

t (x, u). (4)

Both properties (3) and (4) can be interpreted as the energy conservation
law.

The following statement directly follows from the definition of ∆1(P,F ).

Theorem 3 Let P = {pV , V ∈ W} be a random field with a positive sys-
tem G1(P,F ) = {gx̄t , x̄ ∈ Xt(F ), t ∈ Zd} and let ∆1(P,F ) = {∆x̄

t , x̄ ∈
Xt(F ), t ∈ Zd} be its system of transition energies. Then the elements of
G1(P,F ) necessarily have a Gibbs form

gx̄t (x) =
exp{∆x̄

t (x, u)}∫
α∈Xt

exp{∆x̄
t (α, u)}µt(dα)

, x ∈ X t, x̄ ∈Xt(F ), t ∈ Zd,

where u ∈ X t.

Let ∆1(P,F ) = {∆x̄
t , x̄ ∈ Xt(F ), t ∈ Zd} be a system of transition

energies of the random field P . Since the elements of ∆1(P,F ) satisfy (3),
for all t ∈ Zd and x̄ ∈Xt(F ), they can be presented in the form

∆x̄
t (x, u) = H x̄

t (u)−H x̄
t (x), x, u ∈ X t.

The set of functions H1(P,F ) = {H x̄
t , x̄ ∈Xt(F ), t ∈ Zd} forms a one-point

Hamiltonian corresponding to the random field P (with respect to filtration
F ). Due to (4), the elements of H1(P,F ) satisfy the following consistency
conditions: for all t, s ∈ Zd and x̄ ∈X{t,s}(F ), x, u ∈ X t, y, v ∈ Xs, it holds

H x̄y
t (x) +H x̄x

s (v) +H x̄v
t (u) +H x̄u

s (y) =

= H x̄y
t (u) +H x̄u

s (v) +H x̄v
t (x) +H x̄x

s (y).

A direct corollary of Theorem 3 is the following result.
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Corollary 1 Let conditional densities G1(P,F ) of the random field P =
{pV , V ∈ W} be positive. Then they have a Gibbs form

gx̄t (x) =
exp{−H x̄

t (x)}∫
α∈Xt

exp{−H x̄
t (α)}µt(dα)

, x ∈ X t, x̄ ∈Xt(F ), t ∈ Zd,

where H1(P,F ) = {H x̄
t , x̄ ∈Xt(F ), t ∈ Zd} is a Hamiltonian corresponding

to the random field P .

Let us emphasize that Theorem 3 and Corollary 1 hold true for any
random field with positive conditional densities. At the same time, according
to the following proposition, quasilocality of transition energies as functions
on boundary conditions is a sufficient condition for a random field to be
Gibbsian.

Proposition 2 A random field P = {pV , V ∈ W} is a Gibbs random field
if there exists a filtration F such that for all t ∈ Zd, there is a set of admis-
sible boundary conditions Yt(F ), P (Yt(F )) = 1, on which the elements of
∆1(P,F ) are quasilocal, that is,

lim
Λ↑tc

sup
x̄,ȳ∈Yt(F ):x̄Λ=ȳΛ

∣∣∆x̄
t (x, u)−∆ȳ

t (x, u)
∣∣ = 0. x, u ∈ X t,

3 Gibbsian description of Gaussian random

fields

In this section, we apply the approach presented above to Gaussian random
fields. First, we compute corresponding systems of one-point conditional
densities and one-point transition energies. Further, we present conditions
on the covariances under which the corresponding Gaussian random field is
Gibbsian. Finally, we consider the case of Gaussian Markov random fields.

3.1 Conditional densities and transition energies of a
Gaussian random field

Let P be a Gaussian random field with a vector of mean values m = {mt, t ∈
Zd} and covariance matrix C = {cts, t, s ∈ Zd}. We consider non-degenerate
Gaussian random fields only, that is, such random fields that ctt > 0 for any
t ∈ Zd.

For each Λ ∈ W , denote CΛ = {cts, t, s ∈ Λ}, and let AΛ = {aΛ
ts, t, s ∈

Λ} = C−1
Λ . The matrices CΛ and AΛ are symmetric and positive definite.

In particular, it follows that detCΛ = (detAΛ)−1 > 0, and all diagonal
elements css and aΛ

ss, s ∈ Λ, are positive.
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According to the next proposition, the elements of inverse matrices do not
depend on the order of adding points to Λ (the proof is given in Appendix).

Proposition 3 For any t, s ∈ Zd and Λ ∈ W ({t, s}c), matrices At∪s∪Λ and
As∪t∪Λ differ only by the order of first two rows and columns, that is,

at∪s∪Λ
ij = as∪t∪Λ

ij , i, j ∈ {t, s} ∪ Λ.

The following proposition establishes the recurrent relations between the
elements of inverse matrices At∪Λ and AΛ (see Appendix for the proof).

Proposition 4 Let AΛ = {aΛ
sk, s, k ∈ Λ} be the inverse of the matrix CΛ =

{csk, s, k ∈ Λ}, Λ ∈ W . Then for any t ∈ Λc, the elements of At∪Λ =
{at∪Λ

sk , s, k ∈ t ∪ Λ} = C−1
t∪Λ have the following form:

at∪Λ
tt =

detCΛ

detCt∪Λ

=
(
ctt −

∑
i,j∈Λ

aΛ
ijctictj

)−1

, (5)

at∪Λ
ts = − detCΛ

detCt∪Λ

∑
j∈Λ

aΛ
sjctj, s ∈ Λ, (6)

at∪Λ
sk = aΛ

sk +
detCΛ

detCt∪Λ

∑
i,j∈Λ

aΛ
sia

Λ
jkctictj, s, k ∈ Λ. (7)

Finite-dimensional densities of Gaussian random field P have the follow-
ing form:

pΛ(x) =

√
detAΛ

(2π)|Λ|
exp

{
− 1

2

∑
t,s∈Λ

aΛ
ts(xt −mt)(xs −ms)

}
, x ∈ RΛ,Λ ∈ W.

Let us note that using relations from Proposition 4, one can directly check
their consistency in Kolmogorov’s sense without appealing to characteristic
functions or other technics.

Suppose for a Gaussian random field P , there exists an increasing se-
quence {Λn}n≥1 of finite sets converging to Zd such that for all t ∈ Zd, the
following limit exists:

att = lim
n→∞

aΛn
tt . (8)

Let F = {BΛn}n≥1 be the filtration generated by the sequence {Λn}n≥1, and
let G1(P,F ) be the corresponding system of one-point conditional densities.

Proposition 5 The elements of the system G1(P,F ) = {gx̄t ,Xt(F ), t ∈
Zd} have the following form:

gx̄t (x) =

√
att
2π

exp
{
− att

2

(
(x−mt) +

1

att
lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms)

)2}
,
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x ∈ Rt, and for each t ∈ Zd, the set of admissible boundary conditions
Xt(F ) is the set of those configurations x̄ ∈ Rtc for which there exist limits

lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms). (9)

If att > 0 for all t ∈ Zd, then system G1(P,F ) is positive.

Proof. For all t ∈ Zd, Λ ∈ W (tc) and x ∈ Rt, z ∈ RΛ, we have

gzt (x) =
pt∪Λ(xz)

pΛ(z)
=

pt∪Λ(xz)∫
R
pt∪Λ(uz)du

=

=

√
at∪Λ
tt

2π
exp

{
− at∪Λ

tt

2
(x−mt)

2 − (x−mt)
∑
s∈Λ

at∪Λ
ts (zs −ms)−

− 1

2at∪Λ
tt

(∑
s∈Λ

at∪Λ
ts (zs −ms)

)2}
=

=

√
at∪Λ
tt

2π
exp

{
− at∪Λ

tt

2

(
(x−mt) +

1

at∪Λ
tt

∑
s∈Λ

at∪Λ
ts (zs −ms)

)2}
.

It remains to note that by the martingale convergence theorem, for all
t ∈ Zd, x ∈ Rt and P -a.e. x̄ ∈ Rtc , there exist conditional densities

gx̄t (x) = lim
n→∞

g
x̄Λn\t
t (x) =

=

√
att
2π

exp
{
− att

2

(
(x−mt) +

1

att
lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms)

)2}
.

In particular, from here it follows the existence of limits (9). On the other
hand, the existence of limits (9) on a set of probability 1 guarantees the
convergence of corresponding finite-conditional densities. Thus, the sets
of admissible boundary conditions are Xt(F ), t ∈ Zd. Further, from the
existence of limits (9), we conclude that there are positive numbers Nt,
t ∈ Zd, such that for all n ≥ 1,∣∣∣ ∑

s∈Λn\t

aΛn
ts (x̄s −ms)

∣∣∣ < Nt, x̄ ∈Xt(F ).

If att > 0, t ∈ Zd, then for all x ∈ Rt and Xt(F ), we have

gx̄t (x) >

√
att
2π

exp
{
− att

2

(
|x−mt|+

Nt

att

)2 }
> 0.

�
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The following statement presents the corresponding transition energies.

Proposition 6 Let Gaussian random field P be such that att > 0, t ∈ Zd.
Then the elements of its system ∆1(P,F ) have the following form:

∆x̄
t (x, u) =

=
att
2

(
(u−mt)

2 − (x−mt)
2
)

+ (u− x) lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms), (10)

x, u ∈ Rt, x̄ ∈Xt(F ), t ∈ Zd.

Proof. For each t ∈ Zd, Λ ∈ W (tc) and x, u ∈ Rt, z ∈ RΛ, we have

ln
pt∪Λ(xz)

pt∪Λ(uz)
=
at∪Λ
tt

2

(
(u−mt)

2 − (x−mt)
2
)

+ (u− x)
∑
s∈Λ

at∪Λ
ts (zs −ms).

Hence, for all x̄ ∈Xt(F ), we obtain

∆x̄
t (x, u) = lim

n→∞
ln
pt∪Λn(xx̄Λn)

pt∪Λn(ux̄Λn)
=

=
att
2

(
(u−mt)

2 − (x−mt)
2
)

+ (u− x) lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms).

�

From (10), it follows that a Hamiltonian H1(P,F ) of the Gaussain ran-
dom field can be defined in the following way:

H x̄
t (x) =

att
2

(x−mt)
2 + (x−mt) lim

n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms) =

=
1

2
lim
n→∞

∑
s∈Λn

aΛn
ts (x−mt)(αs −ms),

where αt = x, αs = x̄s, s ∈ tc, and x̄ ∈Xt(F ), x ∈ Rt, t ∈ Zd.

3.2 Gibbsianess of Gaussian random fields

Now we can apply the suggested definition of a Gibbs random field to the
case of Gaussian random fields.

Theorem 4 Let P be a Gaussian random field with covariance matrix C
and a vector of mean values m. Suppose there is an increasing sequence
{Λn}n≥1 of finite sets converging to Zd such that limits

att = lim
n→∞

detCΛn

detCt∪Λn

, t ∈ Zd,
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exist and are positive. If there exist sets of admissible boundary conditions
Yt(F ) ⊂ Xt(F ), P (Yt(F )) = 1, t ∈ Zd, such that for all t ∈ Zd, the
convergence in limits

lim
n→∞

∑
s∈Λn\t

aΛn
ts (x̄s −ms),

where aΛn
ts = (C−1

Λn
)ts, is uniform with respect to x̄ ∈ Yt(F ), then P is a

Gibbs random field.

Proof. Let F = {BΛn}n≥1 be the filtration generated by the sequence
{Λn}n≥1. Since att > 0, t ∈ Zd, by Proposition 5, the corresponding system
G1(P,F ) is positive, and by Proposition 6, the elements of ∆1(P,F ) have
the form (10). Denote

∆
x̄Λn
t (x, u) =

at∪Λn
tt

2

(
(u−mt)

2 − (x−mt)
2
)

+ (u− x)
∑
s∈Λn

at∪Λn
ts (zs −ms),

x, u ∈ Rt, x̄ ∈ Yt(F ), t ∈ Zd, n ≥ 1. Due to the uniform (in x̄) convergence
of limits (9), each function ∆

x̄Λn
t converges to ∆x̄

t uniformly in x̄ ∈ Yt(F ).
Therefore, ∆1(P,F ) is quasilocal, and thus, according to Proposition (2),
P is Gibbsian. �

Let us briefly recall the previous results before comparing them with the
ones obtained.

Sinai [17] considered a stationary Gaussian random field P whose spectral
density satisfies certain conditions and showed that such random fields admit
a Gibbs representation with a Hamiltonian written in terms of the Fourier
coefficients of the function on the spectral density of P .

Dobrushin [7] studied the same problem in more detail. First, he obtained
the form of conditional densities of a stationary Gaussian random field P
by considering the corresponding characteristic functional. He then showed
that for a centered Gaussian random field, these densities are representable in
Gibbs form with a Hamiltonian corresponding to a pair quadratic potential
with parameters depending on the Fourier coefficients U = {U(t), t ∈ Zd} of
the spectral density of P . In this case, certain conditions for the convergence
of such potential are naturally imposed. Dobrushin’s main result (Theorem
4.1 in [7]) consists of describing the set of Gibbsian random fields corre-
sponding to a certain Hamiltonian depending on U and some real number.
Particularly, it follows that a centered stationary Gaussian random field is
Gibbsian (see Remark 1 in [7]).

Georgii [10] considered Gaussian random fields with arbitrary mean vec-
tors in both the Markov and general cases. For Markov Gaussian random
fields, he shows that their conditional densities are representable in Gibbs
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form with a Hamiltonian whose parameters can be expressed in terms of
the conditional covariances and means of the random fields. In the case
of an arbitrary Gaussian random field, conditional densities with admissi-
ble boundary conditions are representable in Gibbs form by some vector
h = (ht, t ∈ Zd) and a symmetric positive definite matrix J = {Jts, t, s ∈
Zd}. According to Georgii, for each Λ ∈ W , the restriction JΛ of matrix
J on Λ can be considered as the inverse of the covariance matrix CΛ of
the Gaussian random field, and the vector h is defined as the solution to
some equation. Thus, Georgii [10] generalizes Dobrushin’s result to the case
of non-stationary random fields, namely, he shows that centered Gaussian
random fields admit a Gibbsian representation of their conditional densities.

In all mentioned works, a set of admissible boundary conditions must be
specified (in terms of Fourier coefficients U in [7] and [17], or through infinite
matrix J in [10]). Within the framework of the DLR–definition, one has to
modify the definition of a Gibbs random field correspondingly, namely, to
define potential on the set of admissible boundary conditions only (see, for
example, the remarks after formula (13.11) in [10]). At the same time, the
Pr–definition turns out to be more appropriate: we obtained a similar result
(Theorem 4) as a direct corollary of the suggested Pr–definition of Gibbs
random fields.

As for Hamiltonian, in all works it has the same quadratic form, differing
in the meaning of the coefficients. In previous works, the Hamiltonian was
defined ambiguously and depended on the additional parameter h, which is
the solution of an infinite system of equations. At the same time, within
the framework of our approach, the Hamiltonian can be explicitly written
directly through the parameters m and C of the Gaussian random field. In
addition, we obtained Hamiltonian as a result of direct calculations, and
we do not need to represent it as a sum of interactions since it is indeed a
Hamiltonian in the sense of axiomatic definition introduced in [5].

Thus, the approach proposed in the present paper allows one to obtain a
Gibbs representation of the conditional densities of a given Gaussian random
field quite simply by means of direct calculations. The conditions of Gibb-
sianess of a Gaussian random field are given in terms of its covariances and
follows directly from the suggested Pr–definition of a Gibbs random field.

3.2.1 Gaussian Markov random fields

There are several works in which the problem of Gibbsianness was considered
for Gaussian Markov random fields (see, for example, [10, 14–16]). To solve
this problem, one has to prove the fact that Gaussian Markov random fields
are Gibbsian with a suitable finite-range potential. Within the framework of
Pr–definition, the answer to this question directly follows from the definition
of a Gibbs random field: all Gaussian Markov random fields are Gibbsian.
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Let us remind the definition of Markov random fields. It is based on the
notion of neighborhood system in Zd, which is a collection ∂ = {∂t, t ∈ Zd}
of finite subsets of the lattice Zd such that t /∈ ∂t and s ∈ ∂t if and only if
t ∈ ∂s, s ∈ Zd.

A random field P is called a Markov random field (with respect to the
neighborhood system ∂) if for any filtration =, its one-point conditional
densities G1(P,F ) posses the following (Markov) property: for all t ∈ Zd
and x̄ ∈Xt(F ), it holds

gx̄t (x) = gx̄∂tt (x), x ∈ X t.

The equivalent condition for a random field to be Markovian can be formu-
lated in terms of finite-conditional densities (see, for example, Proposition 12
in [11]) as follows: for any t ∈ Zd and Λ ∈ W (tc) such that ∂t ⊂ Λ, it holds

gzt (x) = gz∂tt (x), x ∈ X t, z ∈ XΛ.

Note that for any Markov random field P , all systems of conditional
distributions constructed with respect to different filtrations F coincide,
and the sets of admissible boundary conditions are Xt(F ) = X tc , t ∈ Zd.
Thus, the system of one-point conditional densities of the Markov random
field P is the set G1(P ) = {gx̄t , x̄ ∈ X tc , t ∈ Zd}.

It is clear that conditional densities of any Markov random field sat-
isfy (2), i.e., are quasilocal. Thus, by Criterioan 2, any Markov random
field with positive conditional densities is Gibbsian. For Gaussian Markov
random fields, this result can also be obtained by application of Theorem 4,
which will be shown in the remainder of the subsection.

Let us present the conditions under which a Gaussian random field is
Markovian (see also Proposition 13.7 in [10]).

Theorem 5 Gaussian random field P is Markovian if and only if the ele-
ments of corresponding inverse matrices AΛ, Λ ∈ W , satisfy the following
conditions: for all t ∈ Zd and Λ ∈ W (tc) such that ∂t ⊂ Λ, it holds

at∪Λ
tt = at∪∂ttt , at∪Λ

ts =


at∪∂tts , s ∈ ∂t,

0, s ∈ Λ\∂t.
(11)

Proof. Let P be a Gaussian random field such that the elements of corre-
sponding inverse matrices AΛ, Λ ∈ W , satisfy conditions (11). Then for all
t ∈ Zd and Λ ∈ W (tc) such that ∂t ⊂ Λ and any x ∈ Rt, z ∈ RΛ, we can
write

gzt (x) =

√
at∪Λ
tt

2π
exp

{
− at∪Λ

tt

2

(
(x−mt) +

1

at∪Λ
tt

∑
s∈Λ

at∪Λ
ts (zs −ms)

)2}
=

=

√
at∪∂ttt

2π
exp

{
− at∪∂ttt

2

(
(x−mt) +

1

at∪∂ttt

∑
s∈∂t

at∪∂tts (zs −ms)
)2}

= gz∂tt (x).



16 L.A. KHACHATRYAN

Hence, P is Markovian.
Conversely, let the Gaussian random field P be Markovian. Then for any

t ∈ Zd and Λ ∈ W (tc) such that ∂t ⊂ Λ, we have

gzt (x) = gz∂tt (x), x ∈ Rt, z ∈ RΛ.

Taking into account the positivity of finite-conditional distributions of Gaus-
sian random field, from here for any x, u ∈ Rt, we obtain

ln
gzt (x)

gzt (u)
= ln

gz∂tt (x)

gz∂tt (u)
,

or, equivalently,

at∪Λ
tt

2
(u2 − x2) + (u− x)

∑
s∈Λ

at∪Λ
ts zs =

at∪∂ttt

2
(u2 − x2) + (u− x)

∑
s∈∂t

at∪∂tts zs.

Since the last equality must be satisfied for all z ∈ Λ, and, particularly, for
zs = 0, s ∈ Λ, we conclude that at∪Λ

tt = at∪∂ttt . Therefore, for any z ∈ RΛ, it
holds ∑

s∈Λ

at∪Λ
ts zs =

∑
s∈∂t

at∪∂tts zs.

Choosing different values for z, one can obtain the required relations (11).
�

Thus, for the Gaussian Markov random field P , conditions of Theorem 4
are satisfied for any filtration F = {BΛn}n≥1 and sets of admissible bound-
ary conditions Yt(F ) = Rtc , t ∈ Zd. Therefore, P is Gibbsian. The elements
of its Hamiltonian can be written in the following form:

H x̄
t (x) =

at∪∂ttt

2
(x−mt)

2+(x−mt)
∑
s∈∂t

at∪∂tts (x̄s−ms), x ∈ Rt, x̄ ∈ Rtc , t ∈ Zd.

Appendix

Proof of Proposition 3 For any t, s ∈ Zd and Λ ∈ W ({t, s}c), denote
by Et,s,Λ the matrix which is obtained from the identity matrix It∪s∪Λ by
permuting first two rows indexed by t and s:

Et,s,Λ =

 0 1 0Λ

1 0 0Λ

0TΛ 0TΛ IΛ

 ,

where 0Λ is the zero vector of length |Λ|. Then

As∪t∪Λ = C−1
s∪t∪Λ = (Et,s,ΛCt∪s∪ΛEt,s,Λ)−1 =

= E−1
t,s,ΛC

−1
t∪s∪ΛE

−1
t,s,Λ = Et,s,ΛAt∪s∪ΛEt,s,Λ,

since E−1
t,s,Λ = Et,s,Λ. �
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Proof of Proposition 4 Let AΛ = C−1
Λ , Λ ∈ W , and let us compute

At∪Λ = C−1
t∪Λ, t ∈ Λc.

Enumerate the points in Λ: 1, 2, ..., n, n = |Λ|, and assign number 0 to

point t. Then CΛ = Cn = {cij, 1 ≤ i, j ≤ n}, AΛ = An = {a(n)
ij , 1 ≤ i, j ≤ n},

and Ct∪Λ = Cn+1 = {cij, 0 ≤ i, j ≤ n}, At∪Λ = An+1 = {a(n+1)
ij , 0 ≤ i, j ≤

n}. Matrix Cn+1 can be represented as follows:

Cn+1 =

(
c00 (c0j)

(c0j)
T Cn

)
,

where (c0j) = (c0j, 1 ≤ j ≤ n) is a 1 × n row vector and (c0j)
T = (c0j, 1 ≤

j ≤ n)T is an n× 1 column vector.
First note that according to the formula for calculating the determinant

of a block matrix (see, for example, [9]), we have

detCn+1 = detCn detK,

where

K = c00 − (c0j) · C−1
n · (c0j)

T = c00 −
n∑

i,j=1

a
(n)
ij c0ic0j,

and hence,

detCn+1

detCn
= detK = K = c00 −

n∑
i,j=1

a
(n)
ij c0ic0j.

According to the Frobenius formula for the inversion of a block matrix
(see, for example, [9])(

A B
C D

)−1

=

(
K−1 −K−1BD−1

−D−1CK−1 D−1 +D−1CK−1BD−1

)
,

where K = A−BD−1C, we have

An+1 = C−1
n+1 =

=

(
K−1 −K−1 · (c0j) · C−1

n

−C−1
n · (c0j)

T ·K−1 C−1
n + C−1

n · (c0j)
T ·K−1 · (c0j) · C−1

n

)
=

=
detCn

detCn+1

·
(

1 −(c0j) · An
−An · (c0j)

T K · An + An · (c0j)
T · (c0j) · An

)
.

Further,

(c0j) · An =
(
b

(n)
0j , 1 ≤ j ≤ n

)
, An · (c0j)

T =
(
b

(n)
0j , 1 ≤ j ≤ n

)T
,
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where

b
(n)
0j =

n∑
i=1

a
(n)
ij c0i, 1 ≤ j ≤ n.

Thus, matrix An+1 takes the form

detCn
detCn+1

− detCn
detCn+1

b
(n)
01 . . . − detCn

detCn+1

b
(n)
0n

− detCn
detCn+1

b
(n)
01 a

(n)
11 +

detCn
detCn+1

(
b

(n)
01

)2

. . . a
(n)
1n +

detCn
detCn+1

b
(n)
01 b

(n)
0n

...
...

. . .
...

− detCn
detCn+1

b
(n)
0n a

(n)
1n +

detCn
detCn+1

b
(n)
0n b

(n)
01 . . . a

(n)
nn +

detCn
detCn+1

(
b

(n)
0n

)2


.

Therefore,

a00 =
detCn

detCn+1

, (12)

a
(n+1)
0k = − detCn

detCn+1

n∑
j=1

a
(n)
kj c0j, 1 ≤ k ≤ n, (13)

a
(n+1)
km = a

(n)
km +

detCn
detCn+1

n∑
i,j=1

a
(n)
ki a

(n)
mjc0ic0j, 1 ≤ k,m ≤ n. (14)

It remains to note that according to Proposition 3, the elements of ma-
trix An+1 do not depend on the enumeration of points in Λ. Hence, formu-
las (12)–(14) can be written in the form (5)–(7). �
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