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On Growth of Free Burnside Groups
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Abstract. In his seminal monograph, S. I. Adian established
a lower bound on the growth of the free Burnside group B(2, n)
for odd n ≥ 665. Building on Adian’s methods, we extend this
result to free Burnside groups B(m,n) of arbitrary rank m ≥ 2.
As a consequence, we obtain growth estimates for a broad class
of finitely generated groups.
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Introduction

The growth of a finitely generated group measures how quickly the number
of its elements increases with their word length. To define this formally, let
G be a finitely generated group, and S be a finite generating set for G. For
every element g ∈ G, denote by `S(g) the word length of g, i.e., the smallest
integer r ≥ 0 for which there exist s1, . . . , sr ∈ S such that g = sε11 . . . sεrr ,
where εi ∈ {1,−1}, i ∈ {1, . . . , r}. The growth function of a group G with
respect to a generating set S, denoted by γG,S(r), is the number of elements
g ∈ G such that `S(g) ≤ r. Although the growth function γG,S depends on
the particular choice of generating set S, its asymptotic behavior is well-
defined up to a natural equivalence relation. Two growth functions f and g
are said to be equivalent, f ∼ g, if there exists a constant C > 0 such that
for all sufficiently large r,

f(r) ≤ g(Cr) and g(r) ≤ f(Cr).

It is straightforward to show that for any two finite generating sets S and
S ′ of the same group G, the corresponding growth functions γG,S and γG,S′

are equivalent in this sense. Consequently, one can speak of the growth type
of G, regardless of the generating set used, as the equivalence class of its
growth function under this relation.
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A group G is said to have polynomial growth if γG,S(r) ∼ rd for some
d ≥ 0. If γG,S(r) ∼ er, then G is said to have exponential growth. Finally, we
say thatG has intermediate growth if its growth is faster than any polynomial
and slower than any exponential function. It is known that finitely generated
groups have either polynomial, exponential or intermediate growth.

The growth of finitely generated groups has been studied extensively in
recent decades. It is well known that finitely generated solvable groups have
either polynomial or exponential growth (see, for example, [12, 15]). The
same dichotomy applies to linear groups by the Tits alternative (see [14]).
One of the most striking results in geometric group theory is Gromov’s the-
orem [11] asserting that finitely generated groups of polynomial growth are
exactly the virtually nilpotent groups. In 1984, Grigorchuk [10] constructed
the first example of a group of intermediate growth, providing a negative an-
swer to a long-standing question by Milnor on the possible types of growth.

The notion of growth rate is important to differentiate between types of
growth. For a finitely generated group G with a finite generating set S, its
growth rate is defined to be

λ(G,S) = lim
r→∞

γ
1
r
G,S(r).

It is clear that having exponential growth type is equivalent to λ(G,S) > 1.
If

inf
S
λ(G,S) > 1,

where the infimum is taken over all finite generating sets S, then we say that
the group G has uniform exponential growth.

Groups with exponential growth include free groups, non-elementary hy-
perbolic groups, certain Baumslag-Solitar groups, and the free Burnside
groups B(m,n). The growth of free Burnside groups is of particular in-
terest and constitutes the main focus of this paper. This focus is motivated,
in part, by the use of a lower bound on the growth function γB(3,n) in the
computations presented in [7].

We now recall the definition of the free Burnside group. For integers
m ≥ 1 and n ≥ 2, the free Burnside group B(m,n) is defined as the quotient
of the free group of rank m by the normal subgroup generated by all n-th
powers. That is,

B(m,n) = 〈a1, . . . , am | Xn = 1〉,

where X ranges over all elements in the free group.
Adian [1] showed that B(m,n) has exponential growth for odd n ≥ 665

and m > 1. For the case m = 2, he obtained an explicit lower bound on
the growth function. These groups exhibit uniform exponential growth for
odd n ≥ 1003. Moreover, as it was shown in [5], any non-cyclic subgroup of
B(m,n) has uniform exponential growth (see also [4]). In [2], it was proven
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that n-periodic products of groups also have uniform exponential growth
for odd n ≥ 1003. For free Burnside groups, a different approach to this
problem can be found in [13]. For an exposition of the growth of periodic
quotients of hyperbolic groups, we refer to [9].

In this paper, we generalize Adian’s estimate to free Burnside groups of
arbitrary rank m ≥ 2. More precisely, we establish new explicit lower bounds
on the growth function γB(m,n),S with respect to a set of free generators S
for odd exponents n ≥ 665.

1 The Main Result

Let B(m,n) be a free Burnside group. Denote by S = {a1, . . . , am} its
generating set and let γ = γB(m,n),S be the growth function of B(m,n) with
respect to S.

Theorem 1 For all m ≥ 2, odd n ≥ 665 and any natural number s, the
following inequality holds:

γ(s) >
m

m− 1
(2m− 1− 2 · 10−3)s − 1.

Proof. Let γ(s) denote the number of elements of exact length s in B(m,n),
and let β(s) denote the number of reduced words of length s that do not
contain subwords of the form A8. By Definition 4.34 in [1, Ch.I], all such
words are absolutely reduced. Hence, such different words represent distinct
elements of B(m,n). Therefore, as in the proof of Theorem 2.15 in [1,
Ch.VI], we conclude that

γ(s) ≥ β(s).

For s ≥ 8i, denote by δi(s) the number of reduced words of the form XB8,
where i = |B|, s = |XB8|, and X does not contain a subword of the form A8.
Obviously,

δi(s) ≤ β(s− 8i)(2m)i.

To estimate β(s + 1), we note that every reduced word of length s + 1 is
obtained by juxtaposing to a reduced word Y of length s one of the 2m− 1
letters from S ∪ S−1 that is not the inverse of the last letter of that word.
Also, if no subword of the form A8 occurs in a word Y , then such a subword
can occur only at the end of Y a, where a ∈ S ∪ S−1. Thus,

β(s+ 1) ≥ (2m− 1)β(s)−
[ s+1

8
]∑

i=1

δi(s+ 1) ≥

≥ (2m− 1)β(s)−
[ s+1

8
]∑

i=1

β(s+ 1− 8i) · (2m)i, (1)
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where [c] denotes the integer part of number c.
Let α = 2 · 10−3. Now we prove that

β(s+ 1) > (2m− 1− α)β(s) (2)

by induction on s. For 0 < s < 7, the inequality is obvious, since in this case
β(s + 1) = (2m − 1)β(s). Assume that the inequality is true for all s < t.
Then for 1 ≤ i ≤ [(t+ 1)/8],

β(t) > (2m− 1− α)β(t− 1) > · · · > (2m− 1− α)8i−1β(t− (8i− 1)),

therefore,

β(t− (8i− 1)) <
β(t)

(2m− 1− α)8i−1
.

From the last inequality and (1), we get

β(t+ 1) ≥ (2m− 1)β(t)−
[ t+1

8
]∑

i=1

β(t) · (2m)i

(2m− 1− α)8i−1
≥

≥ β(t)

(
2m− 1− (2m− 1− α)

∞∑
i=1

(
2m

(2m− 1− α)8

)i
)

=

= β(t)

(
2m− 1− 2m(2m− 1− α)

(2m− 1− α)8 − 2m

)
.

It is easy to see that the inequality

2m(2m− 1− α)

(2m− 1− α)8 − 2m
< α

is equivalent to
2m(2m− 1) < α(2m− 1− α)8, (3)

which holds for any m ≥ 2. Since β(1) = 2m, from (2) we obtain

β(s) ≥ 2m · (2m− 1− α)s−1,

and hence,
γ(s) ≥ 2m · (2m− 1− α)s−1

for arbitrary s > 0. Finally, we get

γ(s) = 1+
s∑

i=1

γ(i) ≥ 1+2m
s∑

i=1

(2m−1−α)i−1 = 1+2m
(2m− 1− α)s − 1

2m− 2− α
=

=
2m(2m− 1− α)s − 2− α

2m− 2− α
>

m

m− 1
(2m− 1− α)s − 1.

This completes the proof. �
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Remark 1 The proof of the result shows that the inequality

γ(s) >
m

m− 1
(2m− 1− α)s − 1

holds for any α ∈ (0, 1) satisfying (3).

2 Some Applications

We will now show that Theorem 1 leads to explicit lower bounds on the
growth functions of a broad class of finitely generated groups. The argument
relies on the observation that the growth of a group G is bounded below
by the growth of any of its homomorphic images. Consequently, if an m-
generated group G admits a surjective homomorphism onto the free Burnside
group B(m,n) for an odd n ≥ 665, Theorem 1 immediately provides a lower
bound for the growth of G. This proves the following general result.

Corollary 1 Let G be an m-generated group, where m ≥ 2. If G admits
a surjective homomorphism onto the free Burnside group B(m,n) for some
odd integer n ≥ 665, then there exists an m-element generating set S for G
such that its growth function satisfies

γG,S(s) >
m

m− 1
(2m− 1− 2 · 10−3)s − 1.

An important class of groups satisfying the condition of Corollary 1 is
that of n-torsion groups. Let S be an arbitrary group alphabet, R be a set
of words over this alphabet, and let n > 1 be a fixed natural number. A
group G defined by the presentation

G = 〈S | Rn = 1, R ∈ R〉. (4)

is called an n-torsion group (see [3], Definition 1.1) if for any element y ∈ G,
either yn = 1 or y has infinite order. By Proposition 1.1 in [3], G admits a
surjective homomorphism onto the free Burnside group B(S, n) ∼= B(m,n).
Thus, our corollary shows that all finitely generated non-cyclic n-torsion
groups for odd n ≥ 665 exhibit exponential growth at a rate bounded below
by the growth of the corresponding free Burnside group.

Our main theorem can also be used to strengthen existing results on
product set growth within Burnside groups. For any finite subset S ⊂
B(m,n), define

Ss = {a1a2 . . . as | ai ∈ S}.
In [8], it was proved that for any finite symmetric subset S of the free
Burnside group B(m,n) that generates a non-cyclic subgroup, the inequality

|Ss| ≥ 4 · 2.9s/(400d)3−1 (5)
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takes place, where d is the least odd divisor of the number n satisfying the
inequality d ≥ 1003. In the proof of (5), Adian’s growth estimate for free
Burnside groups was used. The same reasoning allows us to strengthen the
aforementioned inequality.

Corollary 2 For any finite symmetric subset S of the free Burnside group
B(m,n) of odd exponent n ≥ 1003 that generates a non-cyclic subgroup, the
inequality

|Ss| ≥ 4 · 2.998s/(400d)3−1

takes place, where d is the least odd divisor of the number n satisfying the
inequality d ≥ 1003.

This result reinforces the fact that non-cyclic subgroups of free Burnside
groups of sufficiently large odd exponent have uniform exponential growth.

Analogously, we can strengthen Theorem 1 from the paper [6].
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