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The growing ratios of hyperbolic regular

mosaics with bounded cells
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Abstract. In 3- and 4-dimensional hyperbolic spaces there are
four, respectively five, regular mosaics with bounded cells. A
belt can be created around an arbitrary base vertex of a mosaic.
The construction can be iterated and a growing ratio can be
determined by using the number of the cells of the considered
belts. In this article we determine these growing ratios for each
mosaic in a generalized way.
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Introduction

Fejes Tóth, L. [2, p.261.] examined the area of circles with common centre
in the following way. Let C(r) be the area enclosed by the circle of radius

r. If a > 0, then lim
r→∞

C(r+a)−C(r)
C(r)

is equal to 0 in the Euclidean plane but it

is ea − 1 in the hyperbolic plane. This fact inspired several mathematicians
to deal with the structure of hyperbolic space ([3], [5], [8], [10], [12]).

In the following we examine two similar limits for d-dimensional hy-
perbolic regular mosaics H (regular tessellations or honeycombs [1]). In d-
dimensional spaces the Schläfli symbol of a regular mosaic is {n1, n2, . . . , nd},
where {n1, n2, . . . , nd−1} is the cell P (Coxeter [1]).

Let us fix a cell P (or a vertex) as the belt 0. Denote it by B0 and
create belts around it. The first belt consists of the cells of the mosaic
having common (finite) points with B0. They are neighbours of P . If the
belt i is known, let the belt (i+ 1) consist of the cells that have a common
(finite) point (not necessarily a common vertex) with the belt i, but have
no common point with the belt (i− 1).

Let Vi denote the volume of the belt i and Si =
∑i

j=0 Vj. We call the

limit lim
i→∞

Vi+1

Vi
the growing ratio or crystal-growing ratio. The definition was
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suggested by I. Vermes [10]. The often examined limit lim
i→∞

Vi
Si

also gives

information about the growing of regular mosaics.

Kárteszi [5] examined the mosaics with regular triangles {3,m} in the
hyperbolic plane. He took a triangle as the belt 0 and constructed the other

belts around it. He calculated that lim
i→∞

Vi
Si

=

√
(m−4)2−4−(m−6)

2
, (m > 6).

Horváth [3] showed for all regular mosaics {p, q} in the hyperbolic plane,

that lim
i→∞

Vi
Si

=
√
c2−4−(c−2)

2
, where c > 2 and c = (p− 2)(q− 2)− 2. Vermes

[10] gave this limit for mosaics with asymptotic polygons in the hyperbolic
plane. Zeitler [12] determined for the mosaic {4, 3, 5} in 3-dimensional
hyperbolic space, that lim

i→∞
Vi
Si

= 4
√

14− 14 and lim
i→∞

Vi+1

Vi
= 15 + 4

√
14. The

author [8] determined, that the lim
i→∞

Vi+1

Vi
= lim
i→∞

Si+1

Si
≈ 2381.8 and lim

i→∞
Vi
Si
≈

0.9996 in case of 4-dimensional mosaic {4, 3, 3, 5} and {5, 3, 3, 4} and calcu-
lated the limits for eight further mosaics with unbounded cells ([7]).

Coxeter [1] examined the higher dimensional hyperbolic regular mo-
saics too. He proved, that in 3-dimensional hyperbolic space the regular
mosaics with bounded cells are the mosaics {3, 5, 3}, {4, 3, 5}, {5, 3, 4} and
{5, 3, 5}, all the others have unbounded cells (see [6]). In 4-dimensional
hyperbolic space the mosaics {3, 3, 3, 5}, {4, 3, 3, 5}, {5, 3, 3, 5}, {5, 3, 3, 4},
{5, 3, 3, 3} have bounded cells. In higher dimensional hyperbolic spaces there
is no regular mosaic with bounded cells.

Let us take a regular d-dimensional polyhedron, as a cell of a mosaic.
Consider the middle point of the cell, a middle point of a (d−1)-dimensional
face, a middle point of its (d − 2)-dimensional face, and so on, finally a
vertex of the last edge, and all these points determine a simplex as a char-
acteristic simplex (fundamental domain) of the regular polyhedron. The
polyhedron and the regular mosaic are generated by reflections in facets
((d− 1)-dimensional hyperfaces) of a characteristic simplex. (More detailed
definition is given in the next section (and in [6, 11])).

In this article we are going to determine the limits defined above in a
general way for all the hyperbolic regular mosaics with bounded cells. Since
the examined regular mosaics are bounded, the volumes of all the cells are
finite. Thus, if ri is the number of the cells in the belt i and si =

∑i
j=0 rj,

then we can simplify the limits to lim
i→∞

Vi+1

Vi
= lim

i→∞
ri+1

ri
and lim

i→∞
Vi
Si

= lim
i→∞

ri
si

.

The method consists of three main steps using characteristic simplices of
the cells. First, we take the characteristic simplices of the mosaics and we
construct belts with characteristic simplices around their vertices and we
examine these simplex-belts. Second, we form belts with cells around the
middle points of l-dimensional faces of a cell and we examine the growing.
Finally, we take the belt (i + 1), defined above, as the union of the belts 1
around the vertices of belt i. This yields to a system of linear recurrence
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sequences with a coefficient matrix M for each regular mosaic, where the
recurrence sequences give the numbers of the different dimensional vertices
of the characteristic simplices in the belts. (See the exact definition later.)
Theorem 1 and Table 1 show the final results in 3- and 4-dimensional hy-
perbolic spaces; of these results, the ratios for the mosaics {3, 5, 3}, {5, 3, 4},
{5, 3, 5}, {3, 3, 3, 5}, {5, 3, 3, 3} and {5, 3, 3, 5} are new. The other results are
of course known ([3], [5], [8], [12]), but are found here by a general method.

Theorem 1 (Main theorem) For the hyperbolic regular mosaics with
bounded cells {n1, n2, . . . , nd} the growing ratios lim

i→∞
Vi+1

Vi
= z1 and limits

lim
i→∞

Vi
Si

= z1−1
z1

, where z1 is the largest eigenvalue of the coefficient matrix M

of the corresponding system of linear recurrence sequences determined by the
regular mosaic.

Now, we give the exact values of the limits for hyperbolic regular mosaics
based on Theorem 1. The decimal approximations can be seen in Table 1.

{p, q}: lim
i→∞

Vi+1

Vi
= pq

2
− p− q + 1 +

√
(q−2)(p−2)(pq−2p−2q)

2
= c+

√
c2−4
2

and

lim
i→∞

Vi
Si

=
√
c2−4−(c−2)

2
, where c = (p− 2)(q − 2)− 2.

{4,3,5} and {5,3,4}: lim
i→∞

Vi+1

Vi
= 15 + 4

√
14 and

lim
i→∞

Vi
Si

= 14+4
√

14
15+4

√
14

= 4
√

14− 14.

{5,3,5}: lim
i→∞

Vi+1

Vi
= 167

2
+ 13

2

√
165 and lim

i→∞
Vi
Si

= 165+13
√

165
167+13

√
165

= 13
2

√
165− 165

2
.

{3,5,3}: lim
i→∞

Vi+1

Vi
= 47

2
+ 21

2

√
5 and lim

i→∞
Vi
Si

= 45+21
√

5
47+21

√
5

= 21
2

√
5− 45

2
.

{3,3,3,5} and {5,3,3,3}: lim
i→∞

Vi+1

Vi
= 22 +

√
401 + c and lim

i→∞
Vi
Si

= 21+
√

401+c
22+
√

401+c

= −21−
√

401 + c, where c = 2
√

221 + 11
√

401.

{4,3,3,5} and {5,3,3,4}: lim
i→∞

Vi+1

Vi
= 1

2
(1195 + 11

√
11641 + c) and

lim
i→∞

Vi
Si

= 1
2
(−1193− 11

√
11641 + c), where

c =
√

2836582 + 26290
√

11641.

{5,3,3,5}: lim
i→∞

Vi+1

Vi
= 79876 + 3135

√
649 + c and lim

i→∞
Vi
Si

= −79875 −

3135
√

649 + c, where c = 2
√

3189673350 + 125205630
√

649.
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mosaic lim
i→∞

Vi+1

Vi
lim
i→∞

Vi
Si

{4, 3, 5}, {5, 3, 4} 29.9666 0.9666
{3, 5, 3} 46.9787 0.9787
{5, 3, 5} 166.9940 0.9940

{3, 3, 3, 5}, {5, 3, 3, 3} 84.0381 0.9881
{4, 3, 3, 5}, {5, 3, 3, 4} 2381.8277 0.9996

{5, 3, 3, 5} 319483.2496 0.999997

Table 1: Limits in the case of hyperbolic mosaics with bounded cells.

1 Definitions

Let us take a regular mosaic {n1, n2, . . . , nd}. An x-point (or x-vertex )
is the centre of an x-dimensional face (x-face) of the regular polyhedron
{n1, n2, . . . , nd−1}.

We consider 0-, 1-, 2-, . . . and d-points, where d-point is the centre of a
cell, (d− 1)-point is the centre of its (d− 1)-face, (d− 2)-point is the centre
of its (d − 2)-face, and similarly x-point is the centre of an x-face of the
(x+ 1)-face (x = 0, 1, . . . d− 1).

Let a characteristic simplex of a cell be the simplex, defined by the
vertices 0-, 1-, 2-, . . . and d-points, where d-point is the centre of the cell,
(d − 1)-point is the centre of its (d − 1)-face, and similarly x-point is the
centre of an x-face of the (x + 1)-face (x = 0, 1, . . . d − 1) (see [6, 11]).
The reflections in facets ((d− 1)-dimensional hyperfaces) of a characteristic
simplex generate not only cells, but also a regular mosaic. So, it is not only
the characteristic simplex of a cell, but also of the mosaic. Let us denote a
characteristic simplex by ∆. Figure 1 shows a part of mosaic {p, q} = {6, 3}
and a characteristic simplex (triangle). There are around a 2-point 2p and
around a 0-point 2q characteristic triangles. In Figure 2 the characteristic
simplices of the mosaics {p, q, r} = {4, 3, 4} and {4, 3, 5} can be seen. The
mosaic {4, 3, 4} is the well-known Euclidean cube mosaic. Around each
23-edge, 30-edge and 01-edge there are 2p, 2q, 2r characteristic simplices,
respectively. Around the other edges there are always 4 simplices.

We now define several sets needed in what follows. Generally, the capital
letters denote sets, the lower-case letters the number of their elements and
the bold letters the vectors.

Kx : the set whose elements are the characteristic simplices having
a common x-point. (Then the union of the elements of Kd

is a cell. Figure 3 shows a K2 of the mosaics {4, 3, 4} and
{4, 3, 5}).

Ky
x : the set of y-points of Kx.
kyx : the number of y-points of Kx (kyx = |Ky

x |, kxx = 1).
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Figure 1: The characteristic simplex ∆ of the mosaic {6, 3}.
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Figure 2: The characteristic simplices ∆ of the mosaics {p, q, r} = {4, 3, 4}
and {4, 3, 5}.

Gx : the set whose elements are the cells having a common x-point.
(Figure 1 shows a G0 and Figure 2 shows two G1s. Their cells
have a common vertex or common edges, respectively.)

Gy
x : the set of y-points of Gx.
gyx : the number of y-points of Gx (gyx = |Gy

x|). Then gdx =
∣∣Gd

x

∣∣ is
the number of the cells having a common x-point.

Bi : the belt i; the set whose elements are the cells in the belt i.
By
i : the set of y-points of the belt i.
byi : the number of y-points of the belt i. (bdi is the number of the

cells of the belt i.)

Wi : the union of belts 0, 1, . . . , i (Wi =
i⋃

j=0

Bj).

W y
i : the set of y-points of Wi (W y

i =
i⋃

j=0

By
j ).

wyi : the number of y-points of Wi (wyi = |W y
i | =

i∑
j=0

byj ).



6 L. Németh

wi : wi := (w0
i w

1
i . . . wdi )

T .
vi : vi := (b0

i b
1
i . . . b

d
i )
T , then vi+1 = wi+1−wi. For example the

number of the cells of the belt (i+ 1) is bdi+1 = wdi+1 − wdi .

3 3
2

1

1

1

1

0

0

0

0

Figure 3: K2 of the mosaics {4, 3, 4} and {4, 3, 5}.

Let the belt 0 be a cell, then w0 = v0 = (k0
d k

1
d . . . k

d−1
d kdd)

T (if the belt
0 is a vertex, then w0 = v0 = (1 0 . . . 0 0)T ). The belt 0 also could be an
l-dimensional face, then w0 = v0 = (k0

l k
1
l . . . kl−1

l kll 0 . . . 0)T .

Let v denote the volume of a cell of a mosaic. Then lim
i→∞

Vi+1

Vi
= lim

i→∞

v·bdi+1

v·bdi

= lim
i→∞

bdi+1

bdi
and lim

i→∞
Vi
Si

= lim
i→∞

v·bdi

v·
i∑

j=0
bdj

= lim
i→∞

bdi
i∑

j=0
bdj

= lim
i→∞

bdi
wdi

(i ≥ 1). Thus we

can calculate the limits by considering the numbers of the cells instead of
the volumes.

2 Belts with characteristic simplices

We create the matrix K with elements kyx in the following way:

K =


k0

0 k1
0 . . . kd0

k0
1 k1

1 . . . kd1
. . . . . . . . . . . . . . .
k0
d k1

d . . . kdd

 .

The definition of kyx enables us to give the matrix K in another way

K = (the number of y-faces connecting to an x-face)

=


1 N0{n2,...,nd} N1{n2,...,nd} ... Nd−1{n2,...,nd}
2 1 N0{n3,...,nd} ... Nd−2{n3,...,nd}

N0{n1} N1{n1} 1 ··· Nd−3{n4,...,nd}
N0{n1,n2} N1{n1,n2} N2{n1,n2} ··· Nd−4{n5,...,nd}

... ... ... ... ...
N0{n1,n2,...,nd−2} N1{n1,n2,...,nd−2} N2{n1,n2,...,nd−2} ... 2
N0{n1,n2,...,nd−1} N1{n1,n2,...,nd−1} N2{n1,n2,...,nd−1} ... 1

 , (1)
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where Nl{m1,m2, . . . ,mj} denotes the number of l-dimensional faces of the
regular polyhedron {m1,m2, . . . ,mj}.

The kyx also give the number of y-dimensional faces incident to an x-
dimensional face.

For a row l of K, we have the next lemma.

Lemma 1 Properties of the matrix K, (l ≤ d).

i.
l∑

j=0

(−1)jkjl = 1.

ii.
d∑
j=l

(−1)jkjl = (−1)d.

iii.
d∑
j=l

(−1)d−jkjl = 1.

iv.
d∑
j=0

(−1)jkjl = 1− (−1)l + (−1)d.

Proof. We use the Euler-theorem for an n-dimensional polyhedron, which

is
n−1∑
j=0

(−1)jNj = 1 − (−1)n, where Nj is the number of j-dimensional faces

of a polyhedron.

i. The first l elements of the row l are the numbers of the facets of an
l-dimensional polyhedron. So

l∑
j=0

(−1)jkjl = k0
l − k1

l + · · ·+ (−1)jkjl + · · ·+ (−1)lkll

= N0 −N1 + · · ·+ (−1)jNj + · · ·+ (−1)(l−1)Nl−1 + (−1)l · 1
= 1− (−1)l + (−1)l = 1.

ii. The last l elements of the row l are the numbers of the facets of an
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(d− l)-dimensional polyhedron. So

d∑
j=l

(−1)jkjl = (−1)lkll + (−1)l+1kl+1
l + · · ·+ (−1)jkjl + · · ·

+ (−1)dkdl = (−1)l + (−1)l+1N0 + (−1)l+2N1 + · · ·

+ (−1)jN(j−l)−1 + · · ·+ (−1)dN(d−l)−1 = (−1)l+1
(
− 1 +N0−N1 + · · ·

+ (−1)j−(l+1)N(j−l)−1 + · · ·+ (−1)d−(l+1)N(d−l)−1

)
= (−1)l+1

(
− 1 + (1− (−1)d−l)

)
= −(−1)d−l+l+1 = (−1)d+2 = (−1)d.

iii.

d∑
j=l

(−1)d−jkjl = (−1)d
d∑
j=l

(−1)−jkjl = (−1)d
d∑
j=l

(−1)jkjl

= (−1)d · (−1)d = 1.

iv.

d∑
j=0

(−1)jkjl =
l∑

j=0

(−1)jkjl − (−1)lkll +
d∑
j=l

(−1)jkjl

= 1− (−1)l + (−1)d.

�

Lemma 2 A Kx consists of kdxk
d−1
d · · · k1

2k
0
1 pieces of characteristic sim-

plices. A cell has kd−1
d · · · k1

2k
0
1 characteristic simplices.

Proof. There are as many characteristic simplices connected to a p-point
as many ways are going from the p-point to a 0-point through chains of the
form: p-point, (p−1)-point, (p−2)-point, . . ., 1-point, 0-point. The number
of these chains is kd−1

d kd−2
d−1 · · · k1

2k
0
1 and the number of p-points is kdx. �

Remark. There also exist matrices K for regular mosaics in spherical
spaces. In the spherical case, a regular mosaic gives rise to a regular poly-
hedron.
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3 Belts with cells

In this section we consider a cell as a set of characteristic simplices having a
common d-point. We take an arbitrary x-point and calculate the number of
y-points of the set of cells having the common x-point. Based on the method
of the logic sieve, we can get the value gyx from the alternating sum of the
products of the elements of row x and column y of matrix K.

Lemma 3 gyx =
d∑

j=0,
j≥x,j≥y

(−1)d−jkjx · k
y
j .

Proof. The set of the cells Kd,j (j ∈ {1, 2, . . . , n = kdx}) having a common
x-point is the set Gx. It is the union of the characteristic simplices hav-
ing common d-points which are in the set of simplices having the common
x-point. In the cases {4,3,4} and {4,3,5}, Figure 2 shows the set whose
elements are the cells having the common 1-point and it is the union of the
characteristic simplices having common 3-points, where the 3-points are the
vertices of the characteristic simplices having the common 1-point.
Now we get, that

Gy
x = Ky

d,1 ∪K
y
d,2 ∪ · · · ∪K

y
d,n =

n⋃
j=1

Ky
d,j

where n = kdx.


(kyx) · · · kd−1

x kdx
...

kyd−1

kyd


Figure 4: The elements of K whose alternating sum gives gyx in Lemma 3.

In the following we determine the number gyx = |Gy
x|. The product kdxk

y
d

is larger than gyx, because the multiplicities of some y-points are larger than
one. Take the expression

kdxk
y
d − k

d−1
x kyd−1 + kd−2

x kyd−2 · · · (−1)d−jkjxk
y
j · · · (−1)d−mkmx k

y
m, (2)

where m is equal to the maximum of the set {x, y}, d ≥ j ≥ l, and we prove
that (2) gives gyx without multiplicity.
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The product kjxk
y
j is the number of y-points connecting to the j-dimensional

faces. Now we examine all the subexpressions kjxk
y
j of (2) considering the

multiplicity of an arbitrary y-point. Let l (x ≤ l ≤ m) be the minimum
dimension, so that y-point is on an l-dimensional common face with the
vertex x, but not on any smaller-dimensional common faces. Then there
is an l-point on the common l-face with y ∈ Kl. The subexpression kdxk

y
d

of (2) gives the number of the considered y-points as many times as the
number of Kd around l-point, so kdl times. Similarly, in case of kd−1

x kyd−1 the

multiplicity of y-point is the number of Kd−1 around l-point, so it is kd−1
l .

And similarly for the other terms. Using Lemma 1 we get

kdl − kd−1
l + kd−2

l − · · ·+ (−1)d−lkll =
d∑
j=l

(−1)d−jkjl = 1.

Thus the expression (2) calculates the exact numbers (without multiplicity)
of y-points of Gy

x. �

We can write gyx in a matrix in the following way:

G =


g0

0 g1
0 . . . gd0

g0
1 g1

1 . . . gd1
. . . . . . . . . . . . . . .
g0
d g1

d . . . gdd

 .

For a row x of G, we have the next lemma.

Lemma 4
d∑
j=0

(−1)jgjx = 1.

Proof.

d∑
j=0

(−1)jgjx =
d∑
j=0

(−1)j
d∑

i=0,
i≥x,i≥j

(−1)d−ikixk
j
i =

d∑
i=x

(−1)d−ikix

i∑
j=0

(−1)jkji

=
d∑
i=x

(−1)d−ikix · 1 =
d∑
i=x

(−1)d−ikix = 1.

�

Lemma 5 Let H be the common part of a Gx and a convex part of the
mosaic and let the number of j-points (j ∈ {0, 1, . . . , d}) of H be h0

x, h1
x,. . . ,

hdx, respectively. Then
d∑
j=0

(−1)jhjx = 1.
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Proof. If H is a Gm (0 ≤ m ≤ x) then hjx = gjm and Lemma 4 applies when
x = m.
In the following we examine the other cases. As Gx is convex, H is also
convex. If H contains the two vertices of an edge, then it contains this edge
too. If H contains i pieces of i-dimensional faces connecting to a common
(i + 1)-dimensional face, then it contains the common (i + 1)-dimensional
face as well (i ∈ 0, 1, . . . , d− 1). So H always consists of whole faces of the
cells. Let l be the largest integer, for which hlx > 0, the largest dimension of
the faces of H is l. Then H consists of hlx pieces of l-faces of the mosaic.
If hlx = 1 then H is an l-dimensional face (an l-dimensional polyhedron).
Then using the Euler-theorem for H we get

h0
x − h1

x + · · ·+ (−1)l−1hl−1
x + (−1)lhlx = 1− (−1)l + (−1)l = 1. (3)

If hlx > 1 then we build up H with hlx pieces of l-faces. The alternating sum
of any m-dimensional face (which is an m-dimensional regular polyhedron)
is 1 from the equation (3) when l = m. Let H1 be an l-face. If we join two
l-faces together along a common (l−1)-dimensional face, let it be H2. Then
from the sum of alternating sums of the two l-faces we have to extract the
alternating sum of (l− 1)-face. So we get (1 + 1)− 1 = 1, too. Join again to
it another l-face, and we get H3, and so on until we get H. Generally, let m
be the largest dimensional common face of Hi and the next l-face. In this
case the number of the common m-faces is 1. The alternating sum of Hi+1

is 2− (k0
m + · · ·+ (−1)mkmm) = 1, where kym gives how many common y-faces

there are. The value kym also shows how many y-faces connect to an m-face
on the l-face. So it is an element of the matrix K of the regular l-face and
the alternating sum k0

m + · · ·+ (−1)mkmm is 1 from Lemma 1. �

Lemma 6 Rank(G) = d+ 1.

Proof. Take the column vectors of G. They are independent if and only
if the only linear combination which gives the vector zero is the linear com-
bination with all coefficients zero αj (j ∈ 0, 1, . . . , d). In case of any row x
(the xth coordinates of the vectors) we get

d∑
j=0

αjg
j
x =

d∑
j=0

αj

d∑
i=0,

i≥x,i≥j

(−1)d−ikixk
j
i =

d∑
i=x

i∑
j=0

αj(−1)d−ikixk
j
i

=
d∑
i=x

(−1)d−ikix

i∑
j=0

αjk
j
i = 0.

It is equal to zero if and only if the coefficients αj are the only solutions of

the linear equation system
i∑

j=0

αjk
j
i = 0, (i ∈ x, . . . , d). For row x = 0, we
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can write the equation system in the form below

0 = k0
0α0

0 = k0
1α0 + k1

1α1

0 = k0
2α0 + k1

2α1 + k2
2α2

· · ·
0 = k0

dα0 + k1
dα1 + · · ·+ kddαd,

which results that all αj must be 0, because none of kyx are zero. �

Lemma 7

wyi+1 =
d∑
j=0

(−1)jwji · g
y
j . (4)

Proof. The cells of the belt (i+1) come from among the cells of the mosaic
having common vertices with the belt i but not in Wi. And Wi+1 = Bi+1 ∪
Wi =

⋃
j∈W 0

i

G0,j.

We take an arbitrary y-point in the belt (i+ 1).
When it is in the belt i, then it is contained by g0

y pieces of G0 and its
multiplicity is g0

y calculated by subexpression w0
i · g

y
0 . In a similar way we

get that the multiplicity of y-point is gjy using the expression wji · g
y
j . Now

we sum the multiplicity with alternating signs based on (4) and after using
Lemma 4 we get that the multiplicity of any y-point is exactly one.
If y-point is on the belt i or in the belt (i+ 1) we can prove in a similar way
applying Lemma 5 that the multiplicity of y-point is also one. �

Let define

M = GT


1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . (−1)d

 . (5)

Then using Lemma 7 for all y we get the form

wi+1 = Mwi (6)

and furthermore

vi+1 = wi+1 −wi = Mwi − Iwi = (M− I)wi,

where I is the identity matrix.
Lemma 6 provides that rank(G) = d+ 1 and looking at (5) we have the

following result:

Lemma 8 Rank(M) = d+ 1.
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4 Eigenvalues of matrix M

We get the following linear recursion for the sequences wyi (y ∈ 0, 1, 2, . . . , d)
in a matrix form, where the index of recursion is i (i ≥ 0): wi+1 = Mwi.
The recursive sequences wyi are defined by (4). Let n = d+1 be the rank(M).

Let the sequence {ri}∞i=1 be defined by

ri = αTwi, (7)

where α is a real vector. The coordinates of vi (i ≥ 1) also satisfy the
equation (7), since vi = (M− I)M−1wi and eTy vi = byi = eTy (I −M−1)wi,
so αT = eTy (I−M−1), where eTy is the yth normal basis vector.

Let

zn = β1z
n−1 + β2z

n−2 + · · ·+ βnz
0 (8)

be the characteristic equation of the matrix M, where βj ∈ R and βn 6= 0
for rank(M) = n.

Lemma 9 The characteristic equation of the recursive sequence ri and ma-
trix M are the same.

Proof. Using the theorem of Cayley–Hamilton, z can be substituted by M
in (8), and we get

Mn = β1M
n−1 + · · ·+ βjM

n−j + · · ·+ βnM
0

αTMnwi−n = αT
(
β1M

n−1 + · · ·+ βjM
n−j + · · ·+ βnM

0
)
wi−n

= β1α
TMn−1wi−n + · · ·+ βjα

TMn−jwi−n + · · ·+ βnα
TM0wi−n. (9)

In case of 1 ≤ i, j from (6) and (7) we get

rj = αTMj−iwi,

and
ri−j = αTMn−jwi−n, (i ≥ j + 1, i ≥ n+ 1). (10)

Substituting (10) into (9) we get

ri = β1ri−1 + · · ·+ βjri−j + · · ·+ βnri−n, (i ≥ n+ 1).

So, ri is a linear recursive sequence with (at most) rank n and then its
characteristic equation is also (8). �

The factorization of the common characteristic polynomial is:

zn − β1z
n−1 − β2z

n−2 − · · · − βnz0 = (z − z1)m1 · · · (z − zh)mh ,
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where z1, . . . , zh are non zero, different roots and m1 + · · · + mh = n, 1 ≤
h ≤ n.

Any elements of the linear recursive sequence ri can be determined ex-
plicitly because of the theorem of recursive sequences ([9, p.33]) as follows

ri = g1(i)zi1 + g2(i)zi2 + · · ·+ gh(i)z
i
h,

where gk(i) are the polynomials in i with degree at most (mk−1) and depend
on r1, r2, . . . , rn, mk and zk (k = 1, . . . , h). If zk is a simple root, mk = 1,
then gk(i) = gk is a constant.

Now we assume that all the roots of the characteristic equation (8) are
real (zk ∈ R, k = 1, . . . , h ≤ n) and ri 6= 0 (i ≥ 1). And let si =

∑i
j=0 rj.

Lemma 10 Let 1 < h ≤ n, |z1| > |zk| 6= 0, |z1| > 1, g1 6= 0 (k = 2, . . . , h),
then lim

i→∞
ri+1

ri
= z1 and lim

i→∞
ri
si

= z1−1
z1

(i ≥ 1).

Proof. In the case h > 1, |z1| > |zk|, |z1| > 1, g1 6= 0 (k = 2, . . . , h).

As lim
i→∞

(
zk
z1

)i
= 0 and lim

i→∞

zjk
zi1

= 0 (2 ≤ k ≤ h, j ≤ i), then

lim
i→∞

ri+1

ri
= lim

i→∞

g1z
i+1
1 + g2(i+ 1)zi+1

2 + · · ·+ gh(i+ 1)zi+1
h

g1zi1 + g2(i)zi2 + · · ·+ gh(i)zih

= lim
i→∞

g1z1 + g2(i+ 1)z2

(
z2
z1

)i
+ · · ·+ gh(i+ 1)zh

(
zh
z1

)i
g1 + g2(i)

(
z2
z1

)i
+ · · ·+ gh(i)

(
zh
z1

)i = z1.

Furthermore

lim
i→∞

ri
si

= lim
i→∞

ri
i∑

j=0

rj

= lim
i→∞

g1z
i
1 + g2(i)zi2 + · · ·+ gh(i)z

i
h

g1

i∑
j=0

zj1 +
i∑

j=0

g2(j)zj2 + · · ·+
i∑

j=0

gh(j)z
j
h

= lim
i→∞

g1z
i
1 + g2(i)zi2 + · · ·+ gh(i)z

i
h

g1
zi+1
1 −1

z1−1
+

i∑
j=0

g2(j)zj2 + · · ·+
i∑

j=0

gh(j)z
j
h

= lim
i→∞

g1 + g2(i)
(
z2
z1

)i
+ · · ·+ gh(i)

(
zh
z1

)i
g1

z1− 1

zi1

z1−1
+

i∑
j=0

g2(j)
zj2
zi1

+ · · ·+
i∑

j=0

gh(j)
zjh
zi1

=
z1 − 1

z1

.

�

Lemma 11 If 1 < h ≤ n, |z1| > |zk| 6= 0, |z1| > 1, g1 6= 0 (k = 2, . . . , h),
then lim

i→∞
si+1

si
= lim

i→∞
ri+1

ri
(i ≥ 1).
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Proof. It is similar to the previous cases.

lim
i→∞

si+1

si
= lim

i→∞

i+1∑
j=0

rj

i∑
j=0

rj

= lim
i→∞

g1

i+1∑
j=0

zj1 +
i+1∑
j=0

g2(j)zj2 + · · ·+
i+1∑
j=0

gh(j)z
j
h

g1

i∑
j=0

zj1 +
i∑

j=0

g2(j)zj2 + · · ·+
i∑

j=0

gh(j)z
j
h

= lim
i→∞

g1z1

z1− 1

zi1

z1−1
+

h∑
k=2

(
gk(i+ 1)zk

(
zk
z1

)i
+

i∑
j=0

gk(j)
zjk
zi1

)

g1

z1− 1

zi1

z1−1
+

h∑
k=2

i∑
j=0

gk(j)
zjk
zi1

= z1 = lim
i→∞

ri+1

ri
.

�

5 Proof of Main theorem

The proof is the summarising of the previous sections. For the limits lim
i→∞

Vi+1

Vi

and lim
i→∞

Vi
Si

we have to calculate the numbers of the cells in the belts. First,

we can construct a matrix K for every hyperbolic regular mosaic. Second,
from matrix K we get the matrix G, where an element gyx is the alternating
sum of the products of the elements of row x and column y of matrix K.
Third, this matrix G generates the matrix M, which contains the coefficients
of the system of the linear recurrence sequences given by the matrix form
wi+1 = Mwi. Recall, the yth coordinate (y ∈ 0, 1, 2, . . . , d; defined by (4))
of wi equals to the number of y-points in the union of belts j (0 ≤ j ≤ i),
moreover, the yth coordinate of the vector vi = (M− I)M−1wi gives the
number of y-points in belts i.

Finally, let ri = bdi , the number of cells in the belt i. Recall, byi =
eTy (I −M−1)wi. The lemmas of Section 4 provide, that for the limits we

have to give the largest eigenvalue z1 of matrix M. Thus lim
i→∞

Vi+1

Vi
= z1 and

because of the algebra of limits lim
i→∞

Vi+1

Si
= lim

i→∞
(Vi+1

Vi
· Vi
Si

) = lim
i→∞

Vi+1

Vi
· lim
i→∞

Vi
Si

= z1 · z1−1
z1

= z1 − 1.
The exact values and decimal approximations of the limits for hyperbolic

regular mosaics can be found at the end of Introduction. In the next sub-
section we give and enumerate the important results of the calculations of
the limits.

Remark 1 Two mosaics are called dual mosaics if the orders of their Schläf-
li symbols are opposite to each other. For example, mosaics {4, 3, 5} and
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{5, 3, 4} are dual to each other. We can see that in case of dual mosaics
the limits are the same (see: [8]), because the vertices of the characteristic
simplices are inverted, l-points become (d− l)-points (0 ≤ l ≤ d) of the dual
mosaic. Thus, the number of the vertices in the belts are equal to the number
of the cells in the belts of the dual mosaic. The consequence is that the limits
are the same.

Remark 2 We shall also get the same limits if we define belt 0 with an
arbitrary l-dimensional face (0 ≤ l ≤ d), then

w0 = v0 = (k0
l k

1
l . . . kl−1

l kll 0 . . . 0)T

and if we define the sequence ri, (i ≥ 0) by the number of any l-dimensional
face (0 ≤ l ≤ d), so ri = bli and si = wli.

5.1 Results for the mosaics

First of all we give the matrices K and M for all the hyperbolic regular
mosaics with bounded cells.

In 2-dimensional space the Schläfli symbols of the regular mosaics are
{p, q}. If 1

p
+ 1

q
< 1

2
, they are in the hyperbolic plane, if 1

p
+ 1

q
= 1

2
, they are

the Euclidean regular mosaics {3, 6}, {6, 3} and {4, 4}. The matrices K and
M can always be written in the form

K =

1 q q
2 1 2
p p 1

 , M =

pq − 2q + 1 −2p+ 2 p
pq − q −2p+ 1 p
q −2 1

 .

In 3-dimensional Euclidean and hyperbolic spaces we can also obtain the
matrix M in another way. The order of the transformation group that fixes
the 0-point is V = 4π

π
r

+π
q
−π

2
= 4

1
r

+ 1
q
− 1

2

= 8rq
4−(r−2)(q−2)

. So the number of the

simplices of K0 is V . There is only one 0-point of K0, so k0
0 = 1. The

number of characteristic simplices having common 01-edge is r, so k1
0 = V

2r
.

Similarly, k2
0 = V

4
and k3

0 = V
2q

. The number of the elements of K1, K2 and

K3 are 4r, 4p and U = 4π
π
p

+π
q
−π

2
= 4

1
p

+ 1
q
− 1

2

= 8pq
4−(p−2)(q−2)

, respectively.

If x = y, then kyx = 1. Otherwise kyx is equal to the ratio of |Kx| and the
number of simplices having common xy-edge.

Summarising we get the matrix K (which is the same as (1));

K =


1 V

2r
V
4

V
2q

2 1 r r
p p 1 2
U
2q

U
4

U
2p

1

 .
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Details for regular mosaics in 3-dimensional and 4-dimensional spaces
are presented below.

Mosaic {4, 3, 5}:

K =


1 12 30 20
2 1 5 5
4 4 1 2
8 12 6 1

, M =


63 −22 12 −8
132 −41 20 −12
90 −25 11 −6
20 −5 2 −1

.

Mosaic {5, 3, 4}:

K =


1 6 12 8
2 1 4 4
5 5 1 2
20 30 12 1

, M =


111 −62 35 −20
186 −101 55 −30
84 −44 23 −12
8 −4 2 −1

.

Mosaic {3, 5, 3}:

K =


1 20 30 12
2 1 3 3
3 3 1 2
12 30 20 1

, M =


93 −29 21 −12
290 −82 57 −30
210 −57 39 −20
12 −3 2 −1

.

Mosaic {5, 3, 5}:

K =


1 12 30 20
2 1 5 5
5 5 1 2
20 30 12 1

, M =


273 −77 35 −20
462 −126 55 −30
210 −55 23 −12
20 −5 2 −1

.

Mosaic {4, 3, 3, 5}:

K =


1 120 720 1200 600
2 1 12 30 20
4 4 1 5 5
8 12 6 1 2
16 32 24 8 1

, M =


2641 −126 44 −24 16
7560 −327 104 −52 32
7920 −312 91 −42 24
3600 −130 35 −15 8
600 −20 5 −2 1

.

Mosaic {5, 3, 3, 4}:

K=


1 8 24 32 16
2 1 6 12 8
5 5 1 4 4
20 30 12 1 2
600 1200 720 120 1

, M=


9065 −4588 2325 −1180 600
18352 −9269 4685 −2370 1200
11160 −5622 2833 −1428 720
1888 −948 476 −239 120
16 −8 4 −2 1

.

Mosaic {3, 3, 3, 5}:

K =


1 120 720 1200 600
2 1 12 30 20
3 3 1 5 5
4 6 4 1 2
5 10 10 5 1

, M =


121 −14 8 −6 5
840 −55 23 −14 10
1920 −92 31 −16 10
1800 −70 20 −9 5
600 −20 5 −2 1

.
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Mosaic {5, 3, 3, 3}:

K=


1 5 10 10 5
2 1 4 6 4
5 5 1 3 3
20 30 12 1 2
600 1200 720 120 1

, M=


2841 −2298 1745 −1180 600
5745 −4639 3515 −2370 1200
3490 −2812 2125 −1428 720
590 −474 357 −239 120
5 −4 3 −2 1

.

Mosaic {5, 3, 3, 5}:

K=


1 120 720 1200 600
2 1 12 30 20
5 5 1 5 5
20 30 12 1 2

600 1200 720 120 1

, M=


339361 −11458 2905 −1180 600
687480 −23159 5855 −2370 1200
418320 −14052 3541 −1428 720
70800 −2370 595 −239 120
600 −20 5 −2 1

.

Now we summarise the eigenvalues and the (rounded) values of g1 for all
the mosaics for the cases where the belt 0 is a cell (or a vertex). The values
of g1s are in brackets. They all satisfy the conditions of Lemmas 10 and 11.
The calculation was made using Maple software.

{4, 3, 5}: 15± 4
√

14, 1, 1; 3.8571, (0.8304).
{5, 3, 4}: 15± 44

√
14, 1, 1; 2.1429, (0.3322).

{5, 3, 5}: 167
2
± 13

2

√
165, 1, 1; 1.6364, (0.1266).

{3, 5, 3}: 47
2
± 21

2

√
5, 1, 1; 2, (0.2918).

{3, 3, 3, 5}: 22±
√

401± 2
√

221 + 11
√

401, 1; 117.6044, (8.8448).

{5, 3, 3, 3}: 22±
√

401± 2
√

221 + 11
√

401, 1; 1.4629, (0.0737).

{4, 3, 3, 5}: 1
2
(1195± 11

√
11641±

√
2836582 + 26290

√
11641), 1; 3.8242,

(0.2584).

{5, 3, 3, 4}: 1
2
(1195± 11

√
11641±

√
2836582 + 26290

√
11641), 1; 1.1090,

(0.0069).

{5, 3, 3, 5}: 79876±3135
√

649±2
√

3189673350 + 125205630
√

649, 1; 1.0622,
(0.0019).

{p, q}: z1 = c+
√
c2−4
2

> 1, 1 = c−(c−2)
2

=
c−
√

(c−2)2

2
> z2 = c−

√
c2−4
2

> 0,
z3 = 1, where c = (p − 2)(q − 2) − 2 > 4; Since r1 = g1z1 + g2z2 + g3,
r2 = g1z

2
1 + g2z

2
2 + g3, r3 = g1z

3
1 + g2z

3
2 + g3 and r1 − r2 + r3 − r2 =

g1z1(1−z1 +z2
1−z1)+g2z2(1−z2 +z2

2−z2) = g1z1(1−z1)2 +g2z2(1−z2)2 > 0,

then g1 = z2(r1−r2)+(r3−r2)
z1(z1−z2)(z1−1)

> (r1−r2)+(r3−r2)
z1(z1−z2)(z1−1)

> 0.
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